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Abstract: Renal cancer (RC) represents 3% of all cancers, with a 2% annual increase in incidence
worldwide, opening the discussion about the need for screening. However, no established screening
tool currently exists for RC. To tackle this issue, we assessed surface-enhanced Raman scattering
(SERS) profiling of serum as a liquid biopsy strategy to detect renal cell carcinoma (RCC), the most
prevalent histologic subtype of RC. Thus, serum samples were collected from 23 patients with RCC
and 27 controls (CTRL) presenting with a benign urological pathology such as lithiasis or benign
prostatic hypertrophy. SERS profiling of deproteinized serum yielded SERS band spectra attributed
mainly to purine metabolites, which exhibited higher intensities in the RCC group, and Raman bands
of carotenoids, which exhibited lower intensities in the RCC group. Principal component analysis
(PCA) of the SERS spectra showed a tendency for the unsupervised clustering of the two groups.
Next, three machine learning algorithms (random forest, kNN, naïve Bayes) were implemented as
supervised classification algorithms for achieving discrimination between the RCC and CTRL groups,
yielding an AUC of 0.78 for random forest, 0.78 for kNN, and 0.76 for naïve Bayes (average AUC
0.77 ± 0.01). The present study highlights the potential of SERS liquid biopsy as a diagnostic and
screening strategy for RCC. Further studies involving large cohorts and other urologic malignancies
as controls are needed to validate the proposed SERS approach.

Keywords: renal cell carcinoma; Raman spectroscopy; SERS; liquid biopsy; machine learning

1. Introduction

Renal cancer (RC) represents 3% of all cancers, with a 2% annual incidence increase
worldwide [1,2]. Renal cell carcinoma (RCC) is the most prevalent histologic subtype
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of RC, accounting for approximately 90% of all renal malignancies [3]. In recent years,
the survival outcomes of RCC have improved significantly. Nonetheless, up to a third
of patients are diagnosed with regional or distant metastasis [4,5], with a 5-year overall
survival rate of around 12% for metastatic cases, thus opening the discussion about the need
for screening and developing new diagnostic tools that can facilitate early detection [5,6].
Several screening strategies have been considered for RCC, but none of them are currently
approved. For instance, despite having good sensitivity and specificity, contrast-enhanced
computer tomography (CECT) is not suitable for this purpose because of its invasive
nature, high irradiation, and lack of cost effectiveness [7]. Ultrasonography has emerged
as a potential screening tool, but the accuracy is operator dependent and influenced by
tumor size and location. For example, Jamis-Dow et al. reported an accuracy of just 62%
for tumors less than 3 cm [8]. Several serum and urine biomarkers have also been studied,
but none of them have yet been validated [9–11].

In recent years, surface-enhanced Raman scattering (SERS) profiling of biofluids
has shown promising results as a screening and diagnostic method, especially with the
development of low-cost and easy-to-use Raman spectroscopes [12].

Raman spectroscopy is a type of vibrational spectroscopy based on the inelastic scat-
tering of laser photons, which provides information concerning the molecular structure
of samples [13]. The main advantages of Raman spectroscopy are the ability to analyze
samples with little to no pre-processing steps, having a fast turnaround time, and being
amenable to implementation in point-of-care settings. However, the use of Raman spec-
troscopy for biomedical applications is hindered by the relatively low sensitivity for low
concentrations of analytes such as those from serum or urine. SERS is a method to amplify
the Raman signal of analytes based on the adsorption on metallic nanostructures [12]. Since
only the Raman signal of molecules adsorbed on the SERS substrate is amplified, SERS can
greatly improve the specific detection of analytes from complex biological fluids, especially
purine metabolites.

Our group previously demonstrated the possibility of using SERS profiling of biofluids
to detect several types of malignancies, including breast, gastrointestinal, lung, ovarian,
oral, and prostate cancer [14–17]. However, no such study has yet been performed in the
case of RCC. In this pilot study, the diagnostic accuracy of SERS profiling of serum for
RCC was explored for the first time, with the aim of highlighting its potential use as a
screening tool.

2. Materials and Methods
2.1. Patients

We prospectively enrolled 23 patients with RCC (10 patients with Stage 1 RCC,
2 patients with Stage 2, and 11 patients with Stage 3) attending the Clinical Institute of Urol-
ogy and Renal Transplantation, Cluj-Napoca, Romania. In parallel, we enrolled 27 controls
(CTRL) presenting with other non-malignant pathologies (Supplementary Tables S1 and S2).
The pathology assessment for the RCC group was conducted using the AJCC 7th edition
TNM classification [18]. The study was approved by the Ethics Committee of the Clinical
Institute of Urology and Renal Transplantation (Document No. 1/2018).

2.2. Sample Collection

An amount of 10 mL of blood was collected in serum separator tubes from patients
before any treatment. Serum was separated by centrifugation at 425 g for 5 min and
subsequently stored at −80 ◦C until further analysis.

2.3. SERS Profiling

For the SERS analysis, 50 µL of serum was mixed with 450 µL of methanol and
centrifuged for 10 min at 5800 g. The supernatant was carefully collected for further
analysis. Silver nanoparticles synthesized by reduction with hydroxylamine hydrochloride
(hya-AgNPs) were used as SERS substrates [19]. The SERS analysis was performed on
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a mixture of 45 µL of hya-AgNPs activated with Ca2+ (final concentration of Ca(NO3)2
was 10−4 M) and 5 µL of serum. A drop of 5 µL from this mixture was deposited on a
microscope slide covered with aluminum foil, and the SERS spectra were immediately
acquired. SERS spectra were acquired using an InVia Raman Spectrometer (Renishaw)
equipped with a 532 nm laser (180 mW) coupled to an upright Leica microscope. The
532 nm laser was focused on the sample through a 5X objective (Leica, NA = 0.12). Each
measurement consisted of an average of 3 acquisitions, 20 s of integration each time. The
laser power on the sample was set to 10% (18 mW).

2.4. Statistical Analysis

The raw SERS spectra were pre-processed by selecting only the spectral region between
400 and 1800 cm−1 for further analysis. The subsequent pre-processing steps included
vector normalization, rubber-band baseline subtraction, and smoothing (Savitzky–Golay,
with the window set to 5 and the polynomial order set to 2).

Next, principal component analysis (PCA) was performed to reduce the dataset’s
dimensionality and allow the visualization of the unsupervised clustering of the RCC and
CTRL groups. To select relevant principal components (PCs) that allowed for discrimination
between the RCC and CTRL groups, Student’s t-test was employed. A probability p-value
of less than 0.05 was considered significant.

The selected PCs were then used as inputs for three machine learning algorithms
(random forest, kNN, and naïve Bayes) that were trained to discriminate between the
RCC and CTRL groups. The machine learning algorithms were internally validated using
leave-one-out cross-validation.

The statistical analysis was performed using Quasar-Orange software, Orange-
Spectroscopy library (Bioinformatics Laboratory of the University of Ljubljana) [20].

3. Results

The average SERS spectra of the RCC and CTRL groups, together with their standard
deviation, are shown in Figure 1A.
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Figure 1. (A) The average SERS spectra of serum from renal cell carcinoma (RCC) versus control
(CTRL) patients. (B) The distribution of score values for principal component (PC) 2 and PC6 of
RCC (red) and CTRL (blue) patients. (C) Score plots of PC2 and PC6 for RCC (red) and CTRL (blue)
patients. (D) Loading plots of PC2 and PC6.

The SERS spectra of serum were dominated by the SERS bands attributed to purine
metabolites (uric acid, hypoxanthine, and xanthine) and carotenoids (Table 1). Although
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the detection of carotenoids is based on resonant Raman scattering and not SERS, their
resonant Raman signal appears in the recorded biofluid SERS spectrum [21].

Table 1. Tentative assignment of the SERS bands [22–25].

Metabolite SERS Band Assignment (cm−1)

Uric acid 534, 590, 638, 811, 890, 1130, 1204, 1260, 1357, 1560, 1684
Hypoxanthine 725, 1450, 1684

Xanthine 1357, 1684
Carotenoids 1155, 1520

Methanol 1015

The major differences between the SERS spectra of the RCC and CTRL groups are
represented by the carotenoids’ bands (1155 and 1520 cm−1), which were less intense in
the RCC group. In contrast, SERS bands of purine metabolites (534, 590, 638, 725, 811, 890,
1130, 1357, 1450, 1560, and 1684 cm−1) showed higher intensities in the RCC group.

The first nine PCs were kept for further analysis, which explained 98% of the variance
in the initial dataset (Supplementary Figure S1). The differences in score values of the nine
PCs between the RCC and CTRL groups were tested by Student’s t-test. The scores of
PC2 and PC6 showed statistically significant differences between the two groups (p < 0.05)
(Figure 1B). The score plot for PC2 and PC6 showed a clear tendency of clustering of
the two groups (Figure 1C). The loading plots corresponding to PC2 and PC6 are shown
in Figure 1D, highlighting the main contributors to the clustering of the SERS spectra.
Thus, PC2 was dominated by the carotenoid bands at 1155 and 1520 cm−1, while PC6 was
dominated by bands attributed to purine metabolites.

To test the performance of SERS profiling as a screening tool for RCC, three machine
learning algorithms were used (random forest, kNN, and naïve Bayes). The two previously
selected PCs were employed as input for the machine learning algorithms, yielding an AUC
of 0.78 for random forest, 0.78 for kNN, and 0.76 for naïve Bayes (average AUC 0.77 ± 0.01)
(Figure 2). The performance metrics of the three classifiers after internal leave- one-out
cross-validation are presented in Table 2.
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Table 2. The performance metrics for the classification of renal cell carcinoma and control group
patients based on surface-enhanced Raman spectroscopy (SERS) spectra of serum using three
classification algorithms (random forest, kNN, and naïve Bayes). AUC—area under the curve;
CA— classification accuracy; F1—score represents the harmonic mean of precision and recall;
Precision—positive predicted values; Recall—sensitivity.

Machine Learning Model AUC CA F1 Precision Recall

Random forest 0.78 0.72 0.71 0.72 0.72
kNN 0.78 0.80 0.80 0.80 0.80

Naïve Bayes 0.76 0.70 0.69 0.69 0.70

To explore the effect of cancer stage on classification accuracy, the three machine
learning algorithms were trained to discriminate between the CTRL group, Stage 1 RCC
subgroup, and Stage 3 RCC subgroup. For each comparison, the most significant PCs were
used (Supplementary Tables S3–S5). As expected, the diagnostic accuracy in discriminating
high Stage 3 RCC was slightly better (average AUC 0.79 ± 0.08) than in the case of Stage 1
RCC (average AUC 0.72 ± 0.05) (Supplementary Tables S3 and S4). No Stage 2 RCC sub-
group analysis was performed because of the small number of patients (n = 2). The average
classification accuracy yielded by the three machine learning algorithms in discriminating
between Stage 1 RCC and Stage 3 RCC was 0.80 ± 0.1 (Supplementary Table S5).

A lower intensity of the resonant Raman bands at 1155 cm−1 and 1520 cm−1 attributed
to carotenoids was also previously reported in serum samples of breast, gastrointestinal,
lung, ovarian, oral, and prostate cancer patients [15].

4. Discussion

The increasing annual number of newly discovered RCC cases and the high number
of locally advanced or metastatic stages have prompted a quest for new efficient screening
strategies. In this study, we demonstrated the possibility of discriminating between the RCC
and CTRL groups based on the SERS spectra of deproteinized serum. From a clinical per-
spective, SERS-based profiling could be used as a preliminary screening strategy, followed
by detailed imaging studies with CECT, contrast-enhanced MRI, or contrast-enhanced
ultrasound in patients in whom malignancy is suggested by SERS profiling.

The results suggest that the ability of SERS profiling of serum to discriminate RCC
patients stems from the fact that they exhibit higher levels of purine metabolites (uric acid,
xanthine, and hypoxanthine), but lower levels of carotenoids (Figure 1 and Table 1).

Hypoxanthine, xanthine, and uric acid are the last components in the catabolism
of purine nucleotides adenosine and guanosine phosphate. Extensive epidemiological
evidence showed that elevated baseline serum uric acid (hyperuricemia) is associated with
increased cancer risk across cancer types [26], and in RCC in particular [27]. The effect seems
to be exerted by the upregulation of key components of chronic inflammatory pathways
such as adiponectin, C-reactive protein, and leptin [26]. Hyperuricemia is caused by the
imbalance between uric acid production and excretion because of a multitude of genetic
and environmental factors, including diet and alcohol consumption [26]. In addition, once
the malignant process has started, uric acid is continuously released from dead and dying
cells. The higher intensity in SERS bands attributed to uric acid in the RCC group is in line
with previous SERS studies concerned with breast, gastrointestinal, lung, ovarian, oral, and
prostate cancer.

Besides uric acid, a higher intensity of the SERS bands attributed to hypoxanthine
(725, 1450, and 1684 cm−1) and xanthine (1684 cm−1) was also noted in the case of the RCC
group, in accordance with previous studies concerned with breast, gastrointestinal, lung,
ovarian, oral, and prostate cancer [15]. Increased levels of hypoxanthine in patients with
RCC were previously reported in a metabolomic study by Monteiro et al. [28], with the
authors also reporting increased levels of this metabolite in older and smoking patients,
an effect that possibly confounds hypoxanthine as an RCC marker. Mechanistically, the
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increase in the levels of hypoxanthine and xanthine might be the result of the cancer-
associated downregulation of xanthine oxidoreductase (XOR), the enzyme that catalyzes
the conversion of xanthine and hypoxanthine to uric acid [29]. However, this mechanism is
not specific to RCC.

In contrast to the case of the SERS bands attributed to purine metabolites, which
exhibited low intensities in RCC, the resonant Raman bands at 1155 cm−1 and 1520 cm−1

attributed to carotenoids exhibited lower intensities (Figure 1A and Table 1). Carotenoids
are a class of more than 750 naturally occurring organic pigments [30]. The most studied
carotenoids are beta-carotene, lycopene, lutein, and zeaxanthin, which are found in various
fruits and vegetables. Low dietary intake or blood concentrations of carotenoids have been
linked to a higher incidence of cardiovascular diseases, cancer, and all-cause mortality [31].
A similar effect was also noted for RCC [32]. Carotenoids inhibit oxidative damage to
DNA, mutagenesis, tumor growth, and malignant transformation, and enhance cell–cell
communication, thereby protecting cells against malignant transformation [32]. However,
similar to purine metabolites, perturbations in carotenoids are not specific to RC.

The PCA of the SERS spectra identified two PCs that were significantly different
between the RCC and CTRL groups (PC2 and PC6). PC2 was dominated by negative bands
at 1155 cm−1 and 1520 cm−1 attributed to carotenoids, and the SERS spectra pertaining
to the RCC group clustered towards the negative side of the axis, in line with the lower
intensity of these SERS bands in the RCC group. Conversely, PC6 was dominated by
positive SERS bands attributed to purine metabolites, and as expected, spectra from the RCC
group were positioned towards higher PC6 score values. Taken together, the results of the
PCA suggest that the spectral information concerning purine metabolites and carotenoids
was sufficient to achieve a good separation between the RCC and CTRL groups.

To quantify the classification accuracy yielded by SERS profiling, three machine
learning algorithms were trained to discriminate between the RCC and CTRL groups,
yielding an AUC of 0.78 for random forest, 0.78 for kNN, and 0.76 for naïve Bayes (average
AUC 0.77 ± 0.01) (Table 2)).

While no previous study has been reported yet concerning SERS profiling of biofluids
in RCC patients, there are several studies employing Raman spectroscopy for the anal-
ysis of pathology specimens (see meta-analysis by Jin et al. [33]), as well as one study
involving the SERS analysis of homogenized tissue samples [30]. Thus, SERS profiling of
homogenized tissue samples yielded an overall accuracy of 0.93, higher than the overall
accuracy of 0.77 reported in the present study (Table 2). It is important to note that when
analyzing homogenized tissue by SERS, the types of molecules amenable to detection are
broader and include proteins. On the other hand, since the method requires excised tissue
samples, it cannot be implemented as a liquid biopsy or screening strategy, representing an
important limitation.

While perturbations in purine metabolites and carotenoids are a general feature of
malignancies, making purine metabolites and carotenoids non-specific markers, we have
previously demonstrated the possibility of attaining a differential diagnosis between breast,
colorectal, lung, ovarian, and oral cancer based on subtle differences in the SERS spectra of
serum [15]. Whether this feat can also be achieved in the case of RCC is currently unknown.

Other liquid biopsy strategies have also been considered for RCC, the most advanced
marker for its detection being kidney injury molecule-1 (KIM-1), which yielded an accuracy
of around 75% [34]. Given the relatively low incidence of RC, the clinical implementation of
a screening strategy with such accuracy would translate to many healthy subjects requiring
invasive procedures to rule out false positive findings. MicroRNA profiling has also been
explored for RCC diagnosis and screening, with a recent review by Sequira et al. reporting
accuracies ranging from 0.7 to 0.93 for various miRNA panels [11]. Taken together, the
current landscape of liquid biopsy strategies for RCC detection is promising. Still, there is a
lack of markers validated in large, prospective, randomized studies [9], highlighting the
need for novel approaches tackling this issue.
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One of this study’s main limitations is represented by the small number of enrolled
patients. Moreover, the control groups should also have ideally included patients with
other types of urologic malignancies (e.g., prostate and bladder cancer), since all these ma-
lignancies share the same clinical presentation and subsequent work-up. Ideally, the study
should have included an external validation cohort, as recommended by the REMARK
guideline on study methodology for new tumor marker studies [35]. Instead, internal
leave-one-out cross-validation was used to validate the model because an external cohort
was not available, as recommended by the same authors [35]. The inclusion of an external
validation cohort is mandatory in future studies. As an additional limitation, the SERS
spectra were acquired using a state-of-the-art Raman spectroscope operated under the ideal
setting of a laboratory. We recently reported that the diagnosis of gastrointestinal cancer
using a portable Raman spectroscope operated in a clinical setting is feasible [14]. Whether
the use of a more realistic scenario for the acquisition of SERS spectra would have impacted
the accuracy is unknown.

Another issue that we did not address in this study concerns the evaluation of renal
cysts, which are vesicular lesions that can be either benign or malignant. The work-
up for renal cysts requires contrast-enhanced computer tomography, which allows the
classification of the cysts using the Bosniak scale. In the case of Bosniak III cysts, which
are defined as indeterminate cystic masses with thickened irregular walls or septa with
enhancement and which have an approximately 50% chance of being malignant [9], partial
or radical nephrectomy is warranted. Existing non-invasive methods of reducing the
number of unnecessary nephrectomies are suboptimal, as highlighted by a recent study
evaluating contrast-enhanced ultrasonography (CEUS), which reported that only 63% of
CEUS-diagnosed Bosniak III cysts were malignant after partial or radical nephrectomy [36].
Whether SERS is also able to differentiate between benign and malignant cystic lesions is
currently unknown and will require future studies.

5. Conclusion

In this study, we demonstrated, for the first time, that SERS profiling of serum al-
lows for the detection of RCC by capturing key perturbations in purine and carotenoid
metabolism, yielding an average accuracy of 0.77 based on three different machine learning
algorithms. Future studies assessing the accuracy of SERS profiling in large prospective
cohorts with external validation are warranted to validate this strategy and translate it to
the current clinical setting.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines10020233/s1, Supplementary Figure S1: The relationship between the number
of principal components (x-axis) and the explained variance in the original dataset (y-axis) of renal
cell carcinoma and control patients; Supplementary Table S1: Demographic data and tumor related
information of the renal cell carcinoma patients enrolled in the study; Supplementary Table S2:
Demographic data of control patients; Supplementary Table S3: The performance metrics for the
classification of Stage 1 renal cell carcinoma and control group patients based on surface-enhanced
Raman scattering (SERS) spectra of serum using three classification algorithms (random forest,
kNN and naïve Bayes). PCs 2, 6 and 9 were used as input for the machine learning algorithms.
AUC—area under the curve; CA—classification accuracy; F1—score representing the harmonic mean
of precision and recall; Precision—positive predicted value; Recall—sensitivity; Supplementary
Table S4: The performance metrics for the classification of Stage 3 renal cell carcinoma and control
group patients based on surface-enhanced Raman scattering (SERS) spectra of serum using three
classification algorithms (random forest, kNN and naïve Bayes). PC s 2, 6, 9 and were used as
input for the machine learning algorithms. AUC—area under the curve; CA—classification accuracy;
F1—score representing the harmonic mean of precision and recall; Precision—positive predicted
value; Recall—sensitivity; Supplementary Table S5: The performance metrics for the classification
of Stage 1 and 3 renal cell carcinoma and control group patients based on surface-enhanced Raman
scattering (SERS) spectra of serum using three classification algorithms (random forest, kNN and
naïve Bayes). PCs 1 and 9 were used as input for the machine learning algorithms. AUC—area under

https://www.mdpi.com/article/10.3390/biomedicines10020233/s1
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the curve; CA—classification accuracy; F1- score representing the harmonic mean of precision and
recall; Precision—positive predicted value; Recall—sensitivity.
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