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Abstract

Bivalves and gastropods are the two largest classes of extant molluscs. Despite sharing a huge number of features, they do not share a
key ecological one: gastropods are essentially epibenthic, although most bivalves are infaunal. However, this is not the ancestral
bivalve condition; Cambrian forms were surface crawlers and only during the Ordovician a fundamental infaunalization
process took place, leading to bivalves as we currently know them. This major ecological shift is linked to the exposure to a
different redox environoments (hypoxic or anoxic) and with the Lower Devonian oxygenation event. We investigated selec-
tive signatures on bivalve and gastropod mitochondrial genomes with respect to a time calibrated mitochondrial phylogeny
by means of dN/dS ratios. We were able to detect 1) a major signal of directional selection between the Ordovician and the
Lower Devonian for bivalve mitochondrial Complex I, and 2) an overall higher directional selective pressure on bivalve
Complex V with respect to gastropods. These and other minor dN/dS patterns and timings are discussed, showing that

the Ordovician infaunalization event left heavy traces in bivalve mitochondrial genomes.
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Introduction

The rise of Ediacara-type organisms, as well as the Cambrian
explosion, is traditionally connected with the increasing
oxygen levels of late-Proterozoic oceans (see, f.i., Anbar and
Knoll 2002; Narbonne 2005; Canfield et al. 2007; Sperling
etal. 2013; Li et al. 2015; Tostevin et al. 2016; and reference
therein). However, knowledge is growing about eukaryotes
inhabiting hypoxic, anoxic, or even euxinic environments: such
organisms are scattered across many different branches of the
tree of eukaryote life (Levin 2003; Engel 2007; Danovaro et al.
2010; Borgonie et al. 2011; Danovaro et al. 2016). Indeed, the
existence of several unrelated eukaryotes that are able to live
at low oxygen concentration, or even with no oxygen at all
(Danovaro et al. 2010, 2016; but see Bernhard et al. 2015),
suggests this to be a plesiomorphy of all eukaryotes, whose
common ancestor ought to have been a facultative anaerobe
(Muller et al. 2012; Mentel et al. 2016).

In any case, the palaeobiochemistry of early eukaryotes and
early metazoans is intimately interwoven with the evolutionary
history of mitochondria. No doubt can be currently cast on the
endosymbiontic origin of mitochondria from a-proteobacter-
ial-like ancestors (Gray et al. 1999; Sicheritz-Ponten and

Andersson 2001; Fitzpatrick et al. 2006; Atteia et al. 2009;
Koonin 2010; Abhishek et al. 2011; Thrash et al. 2011; Gray
2012; Degli Esposti et al. 2014; Gray 2015), but the detailed
steps of this process are largely unknown and several hypoth-
eses have been proposed (Gray 2015).

Organelles of Mitochondrial Origin (OMOs) have been
identified in all eukaryotes (Hjort et al. 2010; Shiflett and
Johnson 2010; Mdller et al. 2012) and notably, some of
them work in anaerobic conditions too (Miller et al. 2012;
Mentel et al. 2016). Therefore, it is conceivable that the
common ancestor of all mitochondria was at least able to
survive under hypoxia (Wang and Wu 2014), if not full
anoxia (Mentel et al. 2016). As a consequence, all eukaryotes
have inherited OMOs (including typical mitochondria) that are
in some way effective in anoxic episodes too. Moreover, sig-
nificant hypoxic/anoxic events are reported in geological strata
(f.i., Liet al. 2015). It is therefore conceivable, recall this sce-
nario that eukaryotic life evolved on pre-existent protomito-
chondrial features, under aerobic, anaerobic, and all
intermediate conditions.

Given the gene content of extant genome-owning OMOs,
a large proportion of the endosymbiont genome have been
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lost or transferred to the nucleus, a process termed Genome
Reductive Evolution (GRE; Andersson and Kurland 1998;
Khachane et al. 2007; Ghiselli et al. 2013; Kannan et al.
2014). Only few protein coding genes (PCGs) are still retained
in the organelle genome: typically they are 13 in metazoans'’
mitochondria (see, e.g. Boore 1999; Breton et al. 2014), but
down to three in apicomplexans (Feagin 1994; Rehkopf et al.
2000). A possible reason for their retention in the mitochon-
drial genome is that these genes must be directly regulated by
mitochondrial environment, being co-location mandatory for
an effective redox regulation (CoRR hypothesis; Race et al.
1999; Allen 2003a, 2003b; Lane 2007).

Bivalves and gastropods are the two largest classes of mol-
luscs, with ~3,550 and ~7,900 genera, respectively (Millard
2001). Both classes originated in the Lower Cambrian and
were initially composed by epibenthic species. However, at
the beginning of the Ordovician, their evolutionary pathways
diverged, because bivalves experienced a huge change in their
living habits. The few Cambrian forms of bivalves slowly dis-
appered and modern bivalves arose (Cope 1996; Fang 2006;
Sanchez 2008; Fang and Sanchez 2012; Cope and Kfiz 2013;
Polechovd 2015; Mondal and Harries 2016a, 2016b). This
transition was remarkably driven by the invasion of the infau-
nal (or endobenthic) zone. During the so-called Cambrian
Substrate Revolution (Bottjer et al. 2000; Dornbos et al.
2004), Neoproterozoic coherent matgrounds shifted to bio-
turbated mixgrounds, and the ancestral, surface-crawling bi-
valve forms, which fed by sediment grazing (Seilacher 1999;
Bottjer et al. 2000; Dornbos et al. 2004; Fang 2006; Mondal
and Harries 2016a), evolved into filter-feeding sediment bur-
rowers (Fang and Sanchez 2012; Polechova 2015; Mondal
and Harries 2016a). This, in turn, was coupled with several
major changes in body shape: pedal palps, palp proboscides,
gills, as well as foot, were all affected by the infaunalization
process and, consequently, heavily reduced or highly modified
(Cope 1996; Fang and Sanchez 2012; Cope and Kfiz 2013;
Mondal and Harries 2016a, 2016b).

At the same time, the infaunalization of bivalves had an-
other, not minor, outcome, as the infaunal zone is also typi-
cally hypoxic, and even anoxic in some cases (Anbar and Knoll
2002; Fang and Sanchez 2012). It is not unconceivable that
more efficient and enlarged ctenidia, suitable for gas ex-
change in deeper and possibly anoxic sediments, was itself
the trigger that eventually led to the evolution of the distinc-
tive bivalve feeding gills (Morton 1996). However, the adap-
tation to less oxygenated environments ought to have
triggered more profound biochemical changes. If, in some
way, the mitochondrial machinery adapted to hypoxic condi-
tions, directional selective pressures on key genes are ex-
pected, as well as the ability to exploit different, hypoxia-
optimized respiratory substrates.

Specifically, different quinone (Q) types are known from
different organisms and they show variable efficiency with
respect to oxygen levels. Menaquinone is the dominant

membrane Q in some prokaryotes, like gram-positive bacteria
(Degli Esposti 2015); plastoquinone is the typical membrane Q
of cyanobacteria (Battchikova et al. 2011). According to
Aussel and colleagues (2014), the rise of atmospheric
oxygen eventually led to ubiguinone, by allowing the required
hydroxylation reactions. Ubiquinone is basically ubiquitous
across the tree of life: respiratory Complex | is the common
name of the largest, multi-subunit complex of the respiratory
chain, NADH:ubiquinone oxidoreductase (Wirth et al. 2016).

Rhodoguinone (RQ) is a rare ubiquinone analog and per-
forms poorly as a substrate for respiratory complexes | and I
(Lenaz et al. 1968). However, it is known to be correlated with
anaerobiosis in many protists and metazoans (Mdller et al.
2012; Degli Esposti 2015); notably, bivalves are among
those hypoxia-exposed animals that were found to contain
RQ (Van Hellemond et al. 1995). Furthermore, a handful of
genetic signatures on some Complex | subunits, as well as on
the cytochrome b of the cytochrome bc; complex (Complex ll),
were linked to the presence of RQ in the respiratory chain
(Degli Esposti 2015). One of the Complex | subunits that
show RQ-related mutations is the mitochondrially-encoded
NuoH (NAD1; Degli Esposti 2015); the cytchrome b gene
(cytb) also maps onto mitochondrial genomes. All this consid-
ered, it is conceivable that the use of RQ had a pivotal role in
the infaunalization of bivalves and that the examination of
nadl and cytb may show clues of this biochemical fine-
tuning, with special reference to the Q reacting chamber.

Indeed, mitochondrial genomes (mtDNAs) of extant bi-
valves and gastropods are the outcomes of more than 480
Myr of post-Ordovician evolution and they do enclose several
genetic signatures of their legacy. In fact, molluscan mtDNAs
often show peculiar features. For example, gastropod
mtDNAs show high levels of gene-gene overlapping bound-
aries (White et al. 2011), and are extremely divergent from
other mtDNAs (Thomaz et al. 1996; Chiba 1999; Parmakelis
and Mylonas 2004; Pinceel et al. 2005; Parmakelis et al.
2013). Bivalve mtDNAs may be very large molecules, up to
the 46,985 bp of Scapharca broughtonii (Liu et al. 2013; Plazzi
et al. 2016); often contain many regions that are apparently
untranslated (Ghiselli et al. 2013); may present the phenom-
enon called Doubly Uniparental Inheritance (DUI), where two
separate, sex-linked mitochondrial lineages are passed from
parents to offspring (Breton et al. 2007; Passamonti and
Ghiselli 2009; Zouros 2013; Breton et al. 2014); appear to
encode supernumerary open reading frames (Breton et al.
2009; Milani et al. 2013); have a terrific degree of gene rear-
rangement (Valles and Boore 2006; Simison and Boore 2008;
Plazzi et al. 2013); may follow a very unbalanced strand usage
(Plazzi et al. 2016).

Even if mitochondria, as aforementioned, most probably
retained some sort of ability to live and work in hypoxia,
their efficiency with lower concentrations in oxygen was prob-
ably improved with infaunalization. Here, we investigated the
adaptation to hypoxia in terms of natural selection trends and
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guinone pool-related signatures on bivalve mitochondrial ge-
nomes; moreover, we compared them to gastropods, which
did not underwent a massive infaunalization, with respect to
the common ancestor of conchiferans (Brusca et al. 2016).

Materials and Methods

Phylogenetic Analyses

Ninety eight bivalves and 110 gastropod complete mtDNAs
were downloaded from GenBank. In order to root the
Gastropoda tree, five outgroup conchiferan mtDNAs were
also downloaded: Katharina tunicata (Polyplacophora),
Nautilus macromphalus (Cephalopoda), Graptacme eborea,
Siphonodentalium lobatum (Scaphopoda), and Solemya
velum (Bivalvia). Bivalve species are detailed in Plazzi et al.
(2016); conversely, GenBank Accession Number, as well as
systematics of selected gastropod species, are provided in sup-
plementary Additional file S1, Supplementary Material online,
for details. The package masking_package v1.1 (available at
https://github.com/mozoo/masking_package; Plazzi et al.
2016) was used to 1) align translated PCGs and rDNA genes
with T-Coffee (Notredame et al. 2000), 2) mask out phyloge-
netically noisy and uninformative sites through a consensus
among different masking softwares—Aliscore 2.0 (Misof and
Misof 2009), BMGE 1.1 (Criscuolo and Gribaldo 2010),
Gblocks 0.91b (Castresana 2000), Noisy (Dress et al. 2008),
and Zorro (Wu et al. 2012)—and 3) obtain a concatenated
alignment of masked sequences. The partitioning scheme, as
well as molecular evolution models, was explored through
PartitionFinderProtein and PartitionFinder 1.1.0 (Lanfear
et al. 2012), opting for the Bayesian Information Criterion
and a greedy approach. Furthermore, the simple indel
method of Simmons and Ochoterena (2000), implemented
in GapCoder (Young and Healy 2003), was used to code
indels in the alignments.

A Maximum Likelihood phylogeny was estimated using RA
x ML 8.2.0 (Stamatakis 2014). Within the Bivalvia tree,
Solemya velum (Opponobranchia) was forced as sister group
of all other OTUs. Conversely, Gastropoda were constrained
as a monophylum, so that at least some possible artifacts, due
to long-branch attraction (LBA) with the 5 outgroup taxa, are
avoided. Moreover, the mtDNA of Lottia digitalis (GenBank
Accession Number NC_007782) turned out to be very fast-
evolving and very prone to create LBA artifacts, therefore this
taxon was excluded from the study, thus lowering the number
of ingroups to 109. Being Lottia the only known representa-
tive of the clade with a published complete mtDNA, unfortu-
nately this also led to the exclusion of the whole
Patellogastropoda from our analysis.

The ML analysis was extensively described elsewhere (see,
in particular, see supplementary Additional file S4,
Supplementary Material online of Plazzi et al. 2016). Briefly,
several preliminary inferences were carried out to explore the

best-performing combinations of manual/automatic rearran-
gement radius and number of rate categories for the CAT
model accounting for evolutionary rate heterogeneity
(Stamatakis 2006); then, the Best-Known Likelihood (BKL)
tree was inferred under the selected parameter set calling
10 runs from 10 randomized MP starting trees; finally, 1000
boostrap replicates were run with the same settings and con-
sensus support values were annotated on the BKL tree.

The same datasets were used for Bayesian Inference (BI),
exploiting MrBayes 3.2.1 (Ronquist et al. 2012). Two separate
analyses (with four chains each) were run for 10,000,000
generations of MC3, sampling every 100 trees. Convergence
was assessed by manual inspection of standard deviation of
average split frequencies sampled every 1,000 generation and
of Potential Scale Reduction Factor (PSRF; Gelman and Rubin
1992). Stable standard deviation of average split frequencies
was also used to manually identify the burn-in point.

Time calibration on the BKL tree was carried out with r8s
1.70 (Sanderson 2003). Selected clades were chosen as cali-
bration point and their first appearance was computed thanks
to the Paleobiology Database (http:/fossilworks.org): namely,
these clades are listed in Plazzi et al. (2016) for bivalves,
whereas for gastropods they are the complete Gastropoda
class, Conidae, Heterobranchia, Neritidae, Planorbidae, and
Stylommatophora. We used the Langley-Fitch (clock)
method and the Truncated Newton algorithm; several
rounds of cross-validation were run in order to estimate the
best-performing smoothing parameter up to the sixth decimal
digit; five restarts and five guesses were used each round.

Trees were graphically edited and annotated with
Phylowidget (Jordan and Piel 2008), Dendroscope 3.3.2
(Huson and Scornavacca 2012), and FigTree 1.4.2 (Rambaut
2006-2014).

dN/dS Analyses

The software PAML 4.8a (Yang 1997; 2007) was used for all
dN/dS analyses, providing the BKL tree (rooted and with fixed
branch lengths) as the user tree. The masked amino acid align-
ments of bivalves and gastropods were retrotranslated into
the original nucleotide sequences, thus retaining only
codons relative to phylogenetically informative sites that
were previously selected; this retrotranslation was carried
out in the R environment (R Development Core Team
2008), loading the package seginr (Charif and Lobry 2007).
Genes were clustered by complex; five different datasets were
prepared (table 1).

As a first step, a dN/dS analysis on each dataset was re-
guested to PAML constraining a single dN/dS ratio along the
entire tree; alternatively, a dN/dS analysis was also run allow-
ing a specific dN/dS ratio for each given branch in the tree. We
used the likelihood ratio test (LRT) to determine the best-fitting
model; all LRTs were computed by R and, to be conservative, a
y2distribution with N —1 degrees of freedom was used,
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Table 1

Datasets of Codon Alignments

Dataset Complex Genes

c Complex | nad1, nad2, nad3, nad4, nad4L,
nad5, nad6

(@]]] Complex I cytb

cv Complex IV cox1, cox2, cox3

v Complex V atp6, atp8®

total Complexes [+l1+IV+V nad1, nad2, nad3, nad4, nad4L,

nad5, nad6, cytb, cox1, cox2,
cox3, atp6, atp8®

2Given that atp8 was originally excluded from bivalve phylogeny due to
many phylogenetic issues (Plazzi et al. 2016), this gene was included in the CV
and total gastropod datasets only.

where N is the number of branches of the rooted tree
(Wong et al. 2004).

The selected dN/dS ratios were then plotted against time.
At fixed time intervals, starting from the root age, the dN/dS
ratios exhibited by all branches present in the age-calibrated
tree at that time lapse were plotted against the age of that
time lapse: this resulted in a bivariate distribution, with an
increasing number of observation towards the recent times,
because the number of tree branches is obviously growing in
the same direction.

This distribution was determined both for bivalves and gas-
tropods and for all the five datasets. Within-class bivariate
distribution of dN/dS ratios > 1 were tested for significant dif-
ferences through the Cramér test (Baringhaus and Franz
2004) implemented in the cramer R package, using 1,000
permutation Monte-Carlo-bootstrap replicates and @cramer
as the kernel function.

On the other side, all points with a dN/dS ratio> 1 were
considered for each class (Bivalvia and Gastropoda) and for
each dataset and their distribution with respect to time was
computed. Among-class significant differences in the distribu-
tion of dN/dS ratios (>1) over time were tested using the
Kolmogorov-Smirnov approach, which is also implemented
in R.

Finally, Phanerozoic concentrations of atmospheric oxgen
were taken from Glasspool and Scott (2008) and superim-
posed over the described distributions.

Quinone Pool-Related Signatures

All available cytb and nadl sequences from metazoan
mtDNAs were downloaded from the OGRE database
(Jameson et al. 2003) in February, 2017: in this way 1,240
(cytb) and 1,241 (nad1) sequences were obtained and aligned
with PSI-Coffee (Notredame et al. 2000). Regions of cytb and
nadT genes that may show RQ-related signatures were taken
from Degli Esposti (2015) and located on the complete gas-
tropod protein alignments from the present work and on the
complete bivalve protein alignments from our previous one

(Plazzi et al. 2016), as well as on total metazoan alignments.
Sitewise composition analysis and x* tests were carried out
with Microsoft Excel®. Conservation and functional analyses
were carried out with the TeXshade package (Beitz 2000);
given that the complete analysis of the total metazoans align-
ments turned out to be too computative expensive, a random
subset of 124 sequences (10%) was drawn from the whole
datasets using a custom R script.

Results

Phylogenetic Analyses of Class Gastropoda

Amino acid and rDNA alignment lengths after masking phase,
as well as masking-surviving site percentages with respect to
the original alignment and sequence lengths, are shown in
supplementary Additional files S2 and S3, Supplementary
Material online, for details. The best partitioning scheme se-
lected by PartitionFinder separated cox3 +nad2 genes, all re-
maining PCGs genes, and rRNAs (which were taken together;
see supplementary Additional file S4, Supplementary Material
online for details).

The topology yielded by the RA x ML ML analysis is largely
concordant with the topology yielded by the BI MC? run,
therefore only the ML tree is shown in figure 1, after collaps-
ing nodes with BP < 60, along with the phylogenetic tree of
the class Bivalvia collapsed and redrawn from Plazzi et al.
(2016). The tree shown in figure 1 is collapsed at higher
taxonomic levels; original trees are presented as supple-
mentary Additional file S5, Supplementary Material
online, for details (BKL tree with BP) and see supplemen-
tary Additional file S6, Supplementary Material online, for
details (Bl tree with PP).

Three clades emerge from the Gastropoda node:
Neritimorpha, here represented by four species of the genus
Nerita (BP=100; PP=1.000); Vetigastropoda (BP=93;
PP=1.000); and a cluster of Caenogastropoda+
Heterobranchia (BP=67; unsupported by Bl). Our phyloge-
netic dataset was not suitable to resolve the deepest node
of Gastropoda, that is, it was not able to identify which of
these nodes is sister group to all other gastropods. However, it
has to be noted that the cluster Neritimorpha+
Vetigastropoda was recovered under Bl with PP=0.995.

See supplementary Additional file S7, Supplementary
Material online, for details shows the complete ultrametric
tree along with the geological scale taken from Cohen et al.
(2013), whereas ages and evolutionary rates of single
branches are detailed in supplementary Additional file S8,
Supplementary Material online, for details. The origin of
Neritimorpha was constrained to 265 Ma; the origin of
Vetigastropoda (node N104) was estimated to 461.93 Ma
(Middle  Ordovician). The common  ancestor  of
Caenogastropoda and Heterobranchia (node N92) would
have lived 509.20 Ma, in the middle Cambrian.
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Fic. 1.— Outline of gastropod evolution over ages. Redrawn from the BKL tree computed from 114 complete mtDNAs (taking only PCGs and rDNAs
into account). Nodal support was estimated by 1,000 bootstrap replicates: only nodes with BP > 60 are shown. Species were clustered by high-level taxa;
time scale in million years. Taxa marked with asterisks are polyphyletic. In particular, Hypsogastropoda were also recovered as polyphyletic; however, in that
the bulk of Hypsogastropoda was monophyletic, we labeled it as “Hypsogastropoda sensu stricto”. We refer to supplementary Additional file S5,
Supplementary Material online for the complete ML tree with BP, see supplementary Additional file S6, Supplementary Material online for the complete
Bl tree with PP, and see supplementary Additional file S7, Supplementary Material online for the complete ultrametric tree. The phylogenetic tree of bivalves,
redrawn from Plazzi et al. (2016) is shown in the top left insert for the sake of comparison. We refer to Neoheterodontei as in Taylor et al. (2007);
“Unionoidea (M)" indicates male-transmitted mtDNA, while “Unionoidea (F and F-like)” indicates female-transmitted mtDNA, as well as mtDNAs of non-
DUl species (for the DUI phenomenon, see references in text). a—i, representative gastropods (not to scale): a, Fissurella picta (Vetigastropoda); b, Planorbis sp.
(Planorbidae); ¢, Vermetidae sp. (Vermetidae); d, Cymbiola nobilis (Hypsogastropoda sensu stricto); e, Rapana venosa (Hypsogastropoda sensu stricto); f, Helix
lucorum (Stylommatophora); g, Haliotis tuberculata (Vetigastropoda); h, Neverita josephinia (Naticidae); i, Ampullaria sp. (Ampullariidae).

Caenogastropoda originated earlier than Heterobranchia,
being dated to 478.62 Ma in the Tremadoc (node N91), and
cladogenetic events took place slowly and continuously for at
least 180 Myr: in the second part of the Carboniferous
(Pennsylvanian), most of the biodiversity of Caenogastropoda
was already established. Conversely, Heterobranchia originated
later (409.10 Ma, in the Lower Devonian), but a quick expan-
sion of the clade was already accomplished in its main lineages
within 40 Myr, before the end of the period (around the
Frasnian).

dN/dS Analyses

In all cases, the null hypothesis that a single dN/dS applies to all
the tree branches was rejected by the LRT (P=0). dN/dS over

time is shown for bivalves in supplementary Additional file S9,
Supplementary Material online, for details, whereas signifi-
cance levels of pairwise comparisons are given in table 2.
Overall, it is evident that atp6 underwent higher degrees of
directional selective pressure, as it is demonstrated by a large
number of points with dN/dS > 1 along all the phylogenetic
history of the Class. Conversely, for Complex | and IV and for
cytb directional selective pressure seems to be concentrated
before the staggering increase of atmospheric oxygen in the
Lower Devonian (400 Ma; Glasspool and Scott 2008): more
specifically, whereas for Complex | it lasted up to 400 Ma, for
Complexes IV and cytb it substantially ended with the
Cambrian—-Ordovician transition (485.4 Ma; Cohen et al.
2013). In fact, all distributions are significantly different from
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Table 2
Pairwise Cramér Test
a (e} clv v Total

Bivalvia
cl 6.49E-02 2.00E-03*** 0.00E+00*** 9.41E-01
(@] 178.66 0.00E+00*** 0.00E+00*** 7.39E-02
cv 1,455.47 1,996.01 0.00E+00*** 3.00E-03***
v 1,214.03 942.23 2,532.72 9.99E-04***
Total 30.47 170.55 1,454.63 1,095.67

Gastropoda
cl 6.99E-02 9.99E-04*** 4.00E-03*** 5.89E-02
(@] 353.64 2.89E-01 1.60E-02* 8.41E-01
cv 599.16 131.78 9.99E-04*** 6.78E-01
v 765.16 546.76 712.94 9.99E-03**
Total 408.77 19.67 54.12 560.43

Only point with dN/dS > 1 are considered; see text for details. Values below the diagonal of the matrix are the test statistics, whereas the P-values are given above the

diagonal (* <0.05; ** <0.01; *** <0.005).

each other, with the only exception of the Cl/cytb comparison
(table 2).

Data from gastropods are shown in supplementary
Additional file S10, Supplementary Material online, for details.
With the exception of some scattered events of directional
selective pressure on Complex V, none of the mitochondrial
complexes seem to have experienced marked degrees of di-
rectional selective pressure after the origin of the Class, 516
Ma (Orlowski 1985), and never in the Palaeozoic.

Figure 2 depicts the distribution of all time lapses with
dN/dS> 1 over time, whereas level of significance of
Kolmogorov-Smirnov tests are given for all datasets in
table 3. Although the pairwise comparison is not significant
for cytb and IV, it is evident 1) that Complex V experienced,
much more frequently in bivalves than in gastropods, signifi-
cantly higher levels of directional selective pressure, and 2)
that directional selective pressure had its acme before the in-
crease in atmospheric oxygen for bivalves, and after it for
gastropods.

Amino Acid Signatures on cytb and nad1

The region selected for cytb gene was from site 176 to site
234 (using yeast numbering; Degli Esposti et al. 1993). Site
204 is a relatively conserved Thr (963 out of 1240 metazoans
sequences; 77.66%); in bivalves and gastropods the conser-
vation is much lower (48.98 and 46.94%, respectively) and
this residue is often substituted with Lys (15 times in bivalves;
50 in gastropods). Site 206 is a highly conserved Ser (97.66
and 98.26% among metazoans and gastropods, respectively);
notably, only 89.80% of the bivalve sequences have S206.
The region selected for nad7 gene was from site 19 to site
66 (Thermus thermophilus numbering; Baradaran et al. 2013).
Site 42 is a relatively conserved Met (934 out of 1241 meta-
zoan sequences; 75.26%), which in bivalves and gastropods is
much more variable (14.43 and 25.22%, respectively). Q43 is
highly conserved both in metazoans (96.54%) and in

gastropods (98.26%), but in bivalves is much more variable
(71.13%). Finally, and similarly, G52 is highly conserved in
metazoans (95.17%) and in gastropods (86.09%), but in bi-
valves is much less conserved (55.67%) and often substitued
with a Ser (37 times).

Almost all x? tests are highly significant with the only ex-
ception of the bivalve/gastropod comparison on M42: raw
data, as well as x* levels of significance, are listed in supple-
mentary Additional file S11, Supplementary Material online,
for details, whereas protein conservation is shown in figure 3
along with basic functional features.

Discussion

The phylum Mollusca is the second phylum in the world in
terms of biodiversity, after the Arthropoda (Brusca et al.
2016). Like arthropods, molluscs are spread in most of the
biotas of the planet, and were also able to stably colonize
freshwater and subaerial environments. Probably the key of
the stunning evolutionary success of molluscs is mainly due to
the versatility of their original Bauplan, with special reference
to foot muscle, shell (at least for conchiferans), mantle cavity,
and bipectinate gills (ctenidia).

In marine environments, the three largest classes of mol-
luscs colonized the three main faunal zones: cephalopods are
preferentially pelagic, gastropods are mostly epibenthic, and
bivalves are commonly found in the endofaunal zone, al-
though the lamellibranch condition and, among other fea-
tures, the evolution of byssus allowed different group to
exploit other ecological niches.

Bivalves and gastropods are strictly related conchiferans,
therefore they share a long array of features, but a key differ-
ence, which probably was the trigger of most of the other
bivalve autapomorphies (e.g. the bivalve shell, the loss of a
head, lamellibranchiate gills; see Morton 1996), is the shift to
the infaunal zone itself.
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It is known that bivalve mitochondria can turn off
Complexes I, lll, IV in anaerobic conditions, the proton gradi-
ent being established thanks to Complex | alone (Mller et al.
2012). This is in agreement with the peculiar dN/dS pattern of
bivalves (fig. 2 and see supplementary Additional file S9,
Supplementary Material online): during the early infaunaliza-
tion phase, Complex | probably underwent massive selective
pressures to improve its efficiency to adapt to the new envi-
ronment. Conversely, gastropods did not enter the infaunal
zone and coherently do not show the Ordovician Complex |
signature of bivalves (see supplementary Additional file S10,
Supplementary Material online).

Establishing a proton grandient by means of the Complex |
alone probably requested heavy selective pressure on the
Complex V, too—a condition which is typical of the complete
evolutionary history of bivalves (see supplementary Additional
file S9, Supplementary Material online). Again, nothing similar
was detected for gastropods (see supplementary Additional
file S10, Supplementary Material online). However, it has to be
noted that the catalytic subunits of mitochondrial ATP
synthase are all coded by nuclear DNA (Baker et al. 2012;
Walker 2013; Zhou et al. 2015), therefore we cannot reject
the hypothesis that the peculiar pattern of bivalve atp6 is con-
nected to some feature of this single gene.

Directional selective pressure on Complex | seems to
become milder in correspondence with the increasing atmo-
spheric levels of oxygen (see supplementary Additional file S9,
Supplementary Material online). It is conceivable that the over-
all higher oxygen partial pressure led to an overall increase in
dissolved oxygen, which ended up in a higher oxygen avail-
ability within sediments, where bivalves then stably lived and
speciated. In this scenario, selective pressure may have been
relaxed for bivalve mtDNAs; once more, nothing similar hap-
pened to epibenthic gastropods (see supplementary
Additional file S10, Supplementary Material online).

Dramatic differences between bivalves and gastropods are
evidenced by distribution of time lapses with dN/dS > 1
(fig. 2). For bivalve Complex | they suddenly drop after the
lower Devonian oxygenation event, whereas, on the contrary,
they appear for gastropods Complex | at the same time.
Notably, no significant differences were detected between
bivalves and gastropods when the same distributions are com-
puted for cytochrome b and Complex IV (table 3).

Given that no clear link with environmental redox condi-
tions is known for Lower Devonian gastropods, this may find a
taxonomic explanation in the radiation of Gastropoda, instead
of a palaeochemical/palaeoecological one as in bivalves:
indeed, we found most signal of gastropod—especially het-
erobranch— radiation exactly in the Devonian period (fig. 1
and see supplementary Additional file S7, Supplementary
Material online), which is in broad agreement with current
knowledge on gastropod evolution (see, f.i., Dinapoli and
Klussmann-Kolb 2010; and references therein). The sudden
increase in oxygen availability (Glasspool and Scott 2008) may

Table 3

Kolmogorov-Smirnov Test Among Classes

Dataset P-Value
a 5.87E-03**
clil 4.31E-01
cv 1.12E-01

v 0.00E+00***
Total 2.57E-01

Tested are the differences in the distribution of all time lapses with dN/dS > 1
over the entire history (* <0.05; ** <0.01; *** < 0.005).

well have triggered the evolutionary burst of crawling, motile
metazoans like gastropods.

Further adaptation to low-oxygen environments may have
been achieved through more efficient respiratory substrates in
bivalves. The in vivo biochemical detection of various quinone
molecules—mainly RQ—is well beyond the scopes of the pre-
sent paper; however, we investigated (fig. 3) all the residues
that are part of the Q reacting chamber and were previously
found to be correlated with the presence of RQ (Degli Esposti
2015).

The amine group increases the number of potential H
bonds that RQ can form with interacting enzymes: the substi-
tution of T204 with Lys in cytochrome b sequence is a change
that also increases the number of potential H bonds and was
found to be typical of RQ-containing species, including bi-
valves like Mytilus edulis and Ostrea edulis (Degli Esposti
2015). Although T204 is highly conserved in metazoans, it is
much more variable in bivalves, and 15 bivalve mtDNAs
showed a Lys instead, confirming those findings. Notably,
this tendence is even stronger in the gastropod dataset,
where as many as 50 species showed a Lys: thus, we suggest
that a low conservation of T204 was an earlier synapomorphy
of Conchifera, and may well have been exapted by bivalves to
exploit the potential of RQ in low-oxygen conditions.

Similarly, a conserved G52 in the nad? gene was found to
be the rule for all metazoans (including gastropods); however,
it is substituted in about half the bivalve sequences; often (37
times) it is replaced with a H-bond forming amino acid, Ser,
again confirming previous findings on M. edulis and
Crassostrea anqulata (Degli Esposti 2015). We also confirmed
the previously noted variability of bivalve residue 43 of the
same gene (Degli Esposti 2015; fig. 3), which is also part of
the Q reacting chamber (Baradaran et al. 2013).

Summarizing, we were able to detect amino acid trends
that constitute strong clues of the presence of RQ as a possible
substrate for mitochondrial Complex | (fig. 3). Most interest-
ingly, some of these trends appear to be shared at least with
gastropods (K204 in the cytb gene; nonconservativity of M42
in the nad7 gene), while other appear to be bivalve-specific
(S52 and nonconservativity of Q43 in the nad7 gene). Beside
gathering direct evidence of the respiratory substrates ex-
ploited by bivalves, we note that it may be very interesting
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in the future to investigate the same sites in other molluscan
classes (like cephalopods, or polyplacophorans), to identify
plesiomorphies of molluscs/conchiferans and spot out bivalve
autapomorphies related to the adaptation to hypoxia, which
were gained through the intense selective pressure that was
described above.

Concluding, the major driving force in bivalve history
(Ordovician infaunalization) seems to be deeply connected
with a period of intense directional selection on mitochondrial
Complex I, which, on the other side, looks totally absent from
gastropod data. There are other metazoans group that share
with bivalves the infaunal life and the ability to turn off
Complexes I, 1ll, and IV during anoxic events, like some flat-
worms, annelids, and peanut worms (Muller et al. 2012). It
would be very stimulating to confirm or disprove the same
pattern of selection on mtDNA by applying the present pipe-
line to these diverse metazoan taxa, as well as to analyze
whether the same pattern of selection is mirrored or not in
the genes for the other subunits of the respiratory chain com-
plexes, which are coded by the nucleus and poorly studied for
bivalves.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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