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Preimplantation embryo discovery rate (FDR q value < 0.05). Gene Set Enrichment Analysis
Epigenetics (GSEA) was also performed to identify biological pathways
Acetylation significantly modulated by DMSO. Raw and processed RNA-seq

data were deposited and made publicly available on the Gene
Expression Omnibus (GEO; GSE124598). The data presented in this
article are related to the research paper entitled “DMSO impairs
the transcriptional program for maternal-to-embryonic transition

by altering histone acetylation”, available in Biomaterials [1].
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Specifications Table

Subject Developmental Biology

Specific subject area Molecular biology of mouse embryos; Epigenetics; Genomic activation

Type of data Figures, Table

How data were acquired High-throughput sequencing using Illumina HiSeq2500 and computational working in R
software.

Data format - Raw data in repository: mapped reads data (.bedgraph) and calculated TPM values for

each gene (.txt).
- Statistically analysed and filtered differentially expressed genes (DEGs), gene
ontology (GO), and pathways (supplementary data;.xls).

Parameters for data collection Two groups of 2-cell embryos were used. One group is treated with 2% DMSO and
another group is control.
Description of data collection We cultured 18 hours post hCG zygotes in KSOM media supplemented with or without

2% DMSO for 24 hours and then fifty numbers of developed 2-cell embryos in each group
were subjected to low-put RNA sequencing. Raw FASTQ files were mapped and
quantified using Kallisto tool and differentially expressed genes (DEGs) were analyzed
by DESeq2 package in R. Also, enrichment tests based on KEGG and REACTOME
pathways for DEGs were conducted using ClueGO and CluePedia plug-in in Cytoscape
3.6 software.
Data source location Konkuk University, Seoul, South Korea
Data accessibility Repository name: Gene Expression Omnibus (GEO)
Data identification number: GSE124598
Direct URL to data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124598
Related research article Author's name: Min-Hee Kang, Seong-Yeob You, Kwonho Hong, and Jin-Hoi Kim
Title: DMSO impairs the transcriptional program for maternal-to-embryonic transition
by altering histone acetylation
Journal: Biomaterials
https://doi.org/10.1016/j.biomaterials.2019.119604

Value of the Data

o The network data analysis such as gene ontology (GO), molecular pathways, and transcriptomic analysis of 2-cell embryos
treated with DMSO could provide novel insights about the differential responses between maternal and embryonic clock.

e Mapped reads data and TPM values in raw data could be useful to predict developmental arrest of early embryos via
incomplete epigenetic reprogramming and cellular stress induced by DMSO.

o RNA-seq analysis offer researchers to test whether DMSO is associated with possible toxicity and/or a range of serious side
effects in cellular function and growth.

e Mouse preimplantation embryo-based assays can provide timely alerts about widespread applications of DMSO as a
positive control or drug solvent agent.

1. Data

Datasets presented here were employed in the main work “DMSO impairs the transcriptional
program for maternal-to-embryonic transition by altering histone acetylation” Kang et al., 2020 [1].
Fig. 1 illustrates the experimental procedure. RNA-seq analysis was performed in 2-cell mouse embryos
cultured after supplementation of 2% DMSO. The raw data generated from Illumina sequencing were
deposited on the Gene Expression Omnibus (GEO) with the reference number GSE124598 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124598).

RNA-seq analysis was performed in the 2-cell embryos with/without DMSO supplementation. In
total, 3,742, which is ~20.29% of the total valid genes, genes were differentially expressed in DMSO-
treated embryo compared with control embryo with criteria of FDR < 0.05. Of these differentially
expressed genes, 1,415 genes were up-regulated, whereas 1,758 genes were down-regulated in DMSO-
treated embryo (Fig. 2). DEGs were significantly enriched in total 72 KEGG and REACTOME pathways
terms (adjusted p-value < 0.01) and the terms were mainly clustered into 4 characterized groups
(Fig. 3).

Next, we interpreted potential interactive pathways among DEGs associated with epigenetic gene
expression, histone modifications (acetylation and methylation) in DMSO treated group using cerebral
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Fig. 1. Pipeline of RNA-Seq analysis for DMSO-treated 2-cells. Based on gene-level expression estimation, 19,556 genes were
expressed in common in both control and treated groups.

layout (Fig. 4). Most of DEGs for histone modifications and binding events are significantly depressed at
specific and highly characteristic genomic elements and locations in DMSO-treated groups, indicating
that DMSO exhibits specific regulatory mechanisms related to regulation of transcription factors,
compared with control embryos.

In this study, we proved our hypothesis by RNA-seq analysis to monitor the early embryonic impacts
after exposure to DMSO and identified previously unknown underlying molecular mechanisms that
explain the DMSO-induced embryonic toxicity, embryo loss, and infertility. Our study suggests for the
first time that DMSO exposure induces a significant alteration in gene expression and the functionality
of preimplantation embryos via alternations in epigenetic reprogramming. Thus, our findings
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Fig. 2. Up- and Down-regulated differentially expressed genes (DEGs) by DMSO in 2-cell embryos. (A) Each DEG is plotted with
logged p-value and fold change values as scatter plot. Up- and down-regulated genes are represented as red and green dots,
respectively (|fold change| >2; p-value < 0.05). (B) Significantly changed DEGs (n = 3,173) were hierarchically clustered
with heatmap based on logged TPM value. Detailed DEGs and TPM values are listed in supplementary data and data repository
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124598).
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Fig. 3. Interactive string network of KEGG and REACTOME pathways for DEGs. Enriched KEGG and REACTOME pathways for
DEGs are mainly clustered as Group 1—4 using ClueGO plug-in in Cytoscape 3.6. Detailed genes on each pathway node are listed in
Table 1 and Supplementary Data.

emphasize that the use of DMSO as a standard control test or solvent requires far more cautious
consideration, because DMSO can alter cell function by acting as a proteasome or HDAC inhibitor as
well as inducing cell toxicity.

2. Experimental design, materials, and methods
2.1. Animals and embryo collection

BDF1 (C57BL/6 x DBA/2; F1; Orient Bio Co. Ltd) mice (8—12 weeks olds) were used for analysis
according to guidelines approved by the committee on animal care and use at Konkuk University
(IACUC approval number: KU18199). Intraperitoneally injection was carried out in female mice were
with pregnant mare's serum gonadotropin (PMSG; G4527, Sigma Aldrich; 5IU) followed human
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Fig. 4. Interrelation network among enriched DEGs for epigenetic gene expression and histone modification. Based on GO
enrichment test by ClueGO, heat maps and pathway-like visualizations for DEGs that associated with epigenetic gene expression (A),
histone methylation (B) and histone acetylation (C) were created using CluePedia plug-in in Cytoscape 3.6 software. Functional
relations between DEGs were drawn by colored lines, which represent activation (green), catalysis (purple), inhibition (red), protein
modification (light purple) and reaction (black).

chorionic gonadotropin (hCG; CG10, Sigma Aldrich; 5IU) 48 h later, then mated with male mice.
Fertilized oocytes with two pronuclei were collected from oviduct at 18—20 h of post hCG injection and
each 10 zygotes was cultured in 20ul KSOM (95mM NaCl, 2.5mM KCl, 0.35mM KH3PO4, 0.2mM MgSO4,
10mM Sodium Lactate, 0.2mM Glucose, 0.2mM Sodium pyruvate, 25mM NaHCOs, 1mM Glutamine,
0.01mM Ethylenediaminetetraacetic acid, 5mg/ml Bovine albumine serum) supplemented with 2%
DMSO (D2650, Sigma Aldrich) or without. BDF1 embryos with second polar body were collected and
cultured in KSOM with/without 2% DMSO for further analysis.

2.2. Library preparation and RNA-seq

Fifty 2-cell embryos from each control and DMSO-treated group were directly subjected to cDNA
synthesis using SMARTer® Ultra® Low Input RNA Kit (634940, Clonetech) according to the manu-
facturer's instructions. RNA quality was determined using the Agilent Bioanalyzer High Sensitivity DNA
kit (5067-4626, Agilent). The synthesized cDNAs with 150-200bp size were used for the preparation of
sequencing library using Low Input DNA Library Prep Kit (634946, Clonetech) according to the man-
ufacturer's instructions, and subjected to size selection, followed paired-end reads data were obtained
by performing 50 bp sequencing using HiSeq2500 (Illumina).

2.3. RNA-seq data analysis

Reads were pseudomapped using kallisto [2] with default parameters by transcriptome index from
FASTA formatted transcriptomes files (GRCm38.re179) of ENSEMBL transcript database (mm10).
Transcript abundance of each gene was quantified with the parameters (quant -t -b 100) as transcripts
per kilobase million (TPM) using kallisto. Gene-scaled TPM values for each gene transcript were
summed by tximport [3] in R/Bioconductor. Differentially expressed gene (DEG) were analyzed by
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Table 1
KEGG and REACTOME pathway analysis in DMSO-treated 2-cell embryos.
Pathway ID Pathway Term adj_pvalue No. of Genes % Genes
1 R-MMU:2262752 Cellular responses to stress 0.00107233 92 24.02
2 R-MMU:72702 Ribosomal scanning and start codon 0.00109672 23 41.07
recognition
3 R-MMU:1234176 Oxygen-dependent proline 0.00115378 24 40.00
hydroxylation of Hyposia-inducible
factor alpha
4 R-MMU:72689 Formation of a pool of free 40S subunits 0.00117991 20 44.44
5 R-MMU:8948751 Regulation of PTEN stability and activity 0.00118317 25 39.06
6 R-MMU:373076 Class A/1 (Rhodopsin-like receptors) 0.00134226 20 6.25
7 R-MMU:4641258 Degradation of DVL 0.00147675 22 41.51
8 R-MMU:74158 RNA Polymerase Il Transcription 0.00154192 17 48.57
9 R-MMU:76046 RNA Polymerase Il Transcription 0.00154192 17 48.57
Initiation
10 R-MMU:6807505 RNA polymerase II transcribes snRNA 0.00160451 27 36.99
genes
11 R-MMU:69275 G2/M Transition 0.00170795 50 28.57
12 R-MMU:212436 Generic Transcription Pathway 0.00209786 135 21.63
13 R-MMU:453274 Mitotic G2-G2/M phases 0.00214072 50 28.25
14 R-MMU:4608870 Asymmetric localization of PCP proteins 0.00222022 23 39.66
15 R-MMU:5689603 UCH proteinases 0.00278995 32 33.33
16 R-MMU:174113 SCF-beta-TrCP mediated degradation of 0.00288664 21 41.18
Emil
17 R-MMU:8854050 FBXL7 down-regulates AURKA during 0.00288664 21 41.18
mitotic entry and in early mitosis
18 R-MMU:5687128 MAPK6/MAPK4 signaling 0.00300873 26 36.62
19 R-MMU:174154 APC/C:Cdc20 mediated degradation of 0.00312854 24 38.10
Securin
20 R-MMU:5621481 C-type lectin receptors (CLRs) 0.003421 35 31.82
21 R-MMU:73863 RNA Polymerase I Transcription 0.00380234 15 50.00
Termination
22 R-MMU:1236978 Cross-presentation of soluble 0.00388676 20 41.67
exogenous antigens (endosomes)
23 R-MMU:174178 APC/C:Cdh1 mediated degradation of 0.00417739 25 36.76
Cdc20 and other APC/C:Cdh1 targeted
proteins in late mitosis/early G1
24 R-MMU:174184 Cdc20:Phospho-APC/C mediated 0.00417739 25 36.76
degradation of Cyclin A
25 R-MMU:351202 Metabolism of polyamines 0.0042154 29 34.52
26 R-MMU:68882 Mitotic Anaphase 0.00531307 52 27.08
27 KEGG:03008 Ribosome biogenesis in eukaryotes 0.00545287 36 31.03
28 R-MMU:179419 APC:Cdc20 mediated degradation of cell 0.00560289 25 36.23
cycle proteins prior to satisfaction of the
cell cycle checkpoint
29 R-MMU:1234174 Regulation of Hypoxia-inducible Factor 0.00579829 24 36.92
(HIF) by oxygen
30 R-MMU:2262749 Cellular response to hypoxia 0.00579829 24 36.92
31 R-MMU:5610780 Degradation of GLI1 by the proteasome 0.00584049 21 39.62
32 R-MMU:72086 mRNA Capping 0.00770714 14 50.00
33 R-MMU:112382 Formation of RNA Pol II elongation 0.00820743 21 38.89
complex
34 R-MMU:75955 RNA Polymerase Il Transcription 0.00820743 21 38.89
Elongation
35 R-MMU:2555396 Mitotic Metaphase and Anaphase 0.00834028 52 26.94
36 R-MMU:6807070 PTEN Regulation 0.00889033 34 31.48
37 R-MMU:3858494 Beta-catenin independent WNT 0.01005271 37 30.08
signaling
38 R-MMU:2871837 FCERI mediated NF-kB activation 0.01119674 26 35.14
39 R-MMU:5358346 Hedgehog ligand biogenesis 0.01121237 22 37.29
40 R-MMU:5607761 Dectin-1 mediated noncanonical NF-kB 0.01133035 21 38.18

signaling
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Pathway ID Pathway Term adj_pvalue No. of Genes % Genes

41 R-MMU:5610785 GLI3 is processed to GLI3R by the 0.01133035 21 38.18
proteasome

42 R-MMU:5676590 NIK->noncanonical NF-KB signaling 0.01133035 21 38.18

43 R-MMU:68827 CDT1 association with the 0.01133035 21 38.18
CDC6:0RC:origin complex

44 R-MMU:73772 RNA Polymerase I Promoter Escape 0.01271169 14 48.28

45 KEGG:03013 RNA transport 0.01396122 46 27.54

46 R-MMU:2454202 Fc epsilon receptor (FCERI) signaling 0.01424613 36 30.00

47 R-MMU:5658442 Regulation of RAS by GAPs 0.01448249 23 35.94

48 R-MMU:68867 Assembly of the pre-replicative 0.01448249 23 35.94
complex

49 R-MMU:73762 RNA Polymerase I Transcription 0.01479977 18 40.91
Initiation

50 R-MMU:5205647 Mitophagy 0.01554993 13 50.00

51 R-MMU:77075 RNA Pol I CTD phosphorylation and 0.01554993 13 50.00
interaction with CE

52 R-MMU:176409 APC/C:Cdc20 mediated degradation of 0.01645248 25 35.21
mitotic proteins

53 R-MMU:176814 Activation of APC/C and APC/C:Cdc20 0.01850655 25 34.72
mediated degradation of mitotic
proteins

54 R-MMU:113418 Formation of the Early Elongation 0.0203327 14 46.67
Complex

55 R-MMU:9006925 Intracellular signaling by second 0.02051725 62 24.60
messengers

56 R-MMU:2467813 Separation of Sister Chromatids 0.02055007 48 26.52

57 R-MMU:176408 Regulation of APC/C activators between 0.02193502 26 33.33
G1/S and early anaphase

58 KEGG:05206 MicroRNAs in cancer 0.02406351 19 6.76

59 R-MMU:76061 RNA Polymerase Il Transcription 0.02559861 13 48.15
Initiation From Type 1 Promoter

60 R-MMU:76066 RNA Polymerase III Transcription 0.02559861 13 48.15
Initiation From Type 2 Promoter

61 R-MMU:202424 Downstream TCR signaling 0.02570574 28 32.56

62 R-MMU:72731 Recycling of elF2:GDP 0.02607639 7 77.78

63 R-MMU:71291 Metabolism of amino acids and 0.0304537 60 24.69
derivatives

64 R-MMU:76071 RNA Polymerase III Transcription 0.04105632 13 46.43
Initiation From Type 3 Promoter

65 R-MMU:202403 TCR signaling 0.04107335 31 30.10

66 R-MMU:174143 APC/C-mediated degradation of cell 0.04146255 27 32.14
cycle proteins

67 R-MMU:453276 Regulation of mitotic cell cycle 0.04146255 27 32.14

68 R-MMU:69304 Regulation of DNA replication 0.04440004 24 33.33

69 R-MMU:68949 Orc1 removal from chromatin 0.04507583 23 34.33

70 R-MMU:69052 Switching of origins to a post- 0.04507583 23 34.33
replicative state

71 R-MMU:1236975 Antigen processing-Cross presentation 0.04695947 27 31.76

72 R-MMU:4086400 PCP/CE pathway 0.04695947 27 31.76

DESeq2 [4] in R/Bioconductor with the parameters (baseMean counts >14; false discovery rate
(FDR) < 0.05).

2.4. Pathway enrichment test and in silico analysis

DEGs were tested for pathway enrichment score in KEGG and REACTOME pathways using ClueGO [5]
plug-in in Cytoscape 3.6 (http://www.cytoscape.org). To search potential associations among DEGs
specific gene ontology (GO) terms regarding epigenetic gene expression, histone acetylation and
histone methylation, ClueGO enrichment test were integrated into CluePedia [6] plug-in in Cytoscape 3.
6 and analyzed.
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