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In order to investigate the effect of the number of projections on digital tomosyn-
thesis  image quality, images were acquired over a 40 degree arc and sampled into 
sets of 2 to 41 projections used as input to three different reconstruction algorithms: 
the shift-and-add, the Feldkamp-Davis-Kress filtered back projection algorithms, 
and the simultaneous algebraic reconstruction technique. The variation of several 
image characteristics, such as in-plane resolution, contrast to noise ratio, artifact 
spread, volumetric accuracy, and dose, are investigated based on the reconstruction 
algorithms used and also the number of projections used as source data. The results 
suggest that only 11 projections are required since the various parameters checked 
do not improve much past that number. As a reconstruction algorithm, SART did 
best but took much longer to reconstruct images. Thus, if reconstruction time is a 
determining factor, filtered back-projection looks like a better compromise.   
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I.	 Introduction

With the advent of Intensity Modulated Radiation Therapy (IMRT) and the ability to produce 
dose distributions that are highly conformal to the tumor volume, correct patient position-
ing becomes of prime importance. Solutions to this problem range from invasive techniques 
where markers or radio frequency beacons are directly placed inside the tumor, to non-invasive 
techniques using ionizing radiation as is the case with computed tomography (CT) or using 
non-ionizing radiation as exemplified by the use of ultrasound imaging.(1) The increasing use 
of imaging techniques for the purpose of positioning the patient prior to radiation delivery has 
given rise to the field of Image Guided Radiotherapy (IGRT).(2-6) With the recent developments 
in electronic portal imaging devices (EPIDs), there has been much work recently published in 
the field of cone beam CT(7-10) using either the actual treatment beam or a kilovoltage (kV) beam 
from an X-ray tube attached to the gantry. While a lot of work has been done with modified 
linear accelerators or high efficiency receptors to obtain all the projection images required for 
a complete CT reconstruction,(10) the implementation of this technique depends on specialized 
equipment, which can involve relatively high costs. For a clinic with a conventional linear 
accelerator not optimized for imaging purposes, the operation of the machine in clinical mode 
only offers the possibility of programming one monitor unit (MU) or more. Thus, in these cases, 
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each image can be acquired using the minimum of one MU. It is true that various groups(9,11) 
have shown that images can be acquired with very low doses, but the machine used by these 
authors had specialized imaging equipment solutions, optimized for imaging at low doses. 
The present work uses a linear accelerator without such specialized equipment. If one MU is 
needed for each image, the dose that would be given to the patient for the acquisition of the 
approximately 100-200 projection images required for a full CT reconstruction becomes too 
large to be acceptable. The aim of this work is to explore the use of a reconstructed image set 
which will mimic a CT dataset while only requiring a fraction of the images needed for CT 
reconstruction. 

The technique of tomosynthesis was first introduced in 1932 by Ziedses des Plantes.(12) Its 
main advantage is that it uses only a subset of the projections required for CT reconstruction 
to retroactively produce any number of tomograms. Since only a subset of images is required, 
the imaging dose given to the patient is a fraction of what is given during imaging for CT re-
construction. Also, the images can be acquired faster, which usually means there is less chance 
for motion artifacts to be included in the final tomosynthesis image set. It is only recently that 
the technique has been applied to patient localization in radiotherapy.(13-15) However, most of 
this effort concentrates on using data from a kV beam, and only a recent few publications(16,17) 
look at the use of mega-voltage (MV) images for the purposes of digital tomosynthesis. The 
use of the treatment beam and existing digital receptors to image the patient offers the main 
advantage that there is no need for further equipment purchase, as would be the case when 
using kV images that need a kV unit and an additional image receptor. While the two recent 
publications on MV-based digital tomosynthesis looked at only one reconstruction algorithm 
– namely, filtered back-projection based on the Feldkamp-Davis-Kress(FDK) methodology(18) 
– this project investigates the effect of three different reconstruction algorithms on the spatial 
resolution, contrast to noise ratio, extent of spread of artifacts, and the volumetric accuracy of 
reconstructed objects from datasets reconstructed using the technique of megavoltage cone beam 
digital tomosynthesis (MV-CBDT). The three techniques investigated are: (a) the shift-and-add 
(SAA) algorithm,(19) (b) the simultaneous algebraic reconstruction technique (SART),(20) and 
(c) the FDK algorithm. Although such comparisons have been done previously(21,22) for kV 
images, the inherent low contrast of MV images warrants this investigation since the results 
may change due to the quality of the source images. Whereas the present work repeats a small 
part of the investigation by Descovich et al.,(16) it also investigates three algorithms and looks 
at the effect of the number of projections used for a given tomosynthesis angle (40°) on the 
quality of the data sets produced by each algorithm. 

 
II.	 Materials and Methods

A. 	 SAA algorithm
This algorithm works by using geometry to line up projection images taken at different angles 
such that objects on the plane of reconstruction become more prominent while out-of-plane 
objects are smeared out. Objects at different heights above and below the isocenter will cast 
shadows at different parts of the detector, depending on what angle is used for image acquisition. 
Therefore, with prior knowledge of the angle at which the projection is taken, and depending 
on the height of the reconstruction plane relative to the isocenter location, each pixel is shifted 
by an appropriate amount. This is diagrammatically represented in Fig. 1. 

As shown on the top row of images, the simple addition of the three acquired images pro-
duces an overlay of structures. However, once the appropriate shifts have been applied to each 
image, addition of the resulting images give rise to tomogram showing objects present at that 
level in high contrast whereas the out-of-plane objects, while still present, show up with much 
lower contrast. 
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The algorithm developed by Kolitsi et al.(19) (1992) is a two-step process. First, each image 
is transformed into a plane that is parallel to the plane of reconstruction (for our case, this is a 
horizontal plane). This is done by applying Eq. (1):

			 
	  	 (1)

where h is the distance of the particular pixel from the origin (at the center of the image) in 
the reconstructed plane, i is the distance from the origin in the receptor plane, d is the source-
to-image receptor distance, and α is the angle at which the projection is obtained. The second 
step shifts each pixel by an amount

			 
	  	 (2)

where a is the distance of the level of reconstruction above the isocenter and b is the source to 
isocenter distance. 

Once all images have been shifted, they are added and normalized to give the final tomo-
gram at level a. 

Fig. 1.  Illustration of the shift and add process.
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B. 	 FDK algorithm
This is one version of the filtered back projection algorithm that is widely used for CT recon-
struction. The algorithm was originally proposed by Feldkamp, Davis and Kress(18) in 1984 
and has been widely adopted for cone beam reconstructions, even though the algorithm pro-
duces an approximate solution. Only the central slice of the reconstructed object has an exact 
solution, based on a fan beam reconstruction. However, for small to moderate cone angles, the 
approximation works well. The general equation for reconstruction is 

			 
	  	 (3)

where g(x,y,z) is the value of the object at location (x,y,z), β is the angle relative to the z-axis, D 
is the source to isocenter distance, R(p,ζ,β) is the projection data acquired at angle β, t = xcos 
β + ysin β, s= ycos β – xsin β, and (p,ζ) represents the coordinate system of the detector.  

The algorithm works in three steps: 

1.	 First, the projection data is scaled as if it were measured at the plane containing 
isocenter.  

2.	 Second, each row of each projection is individually filtered. Typically, a ramp filter (in 
frequency domain) is used to remove the radial blurring that occurs during the back pro-
jection process. The filtering is usually done in the frequency domain where the process 
involves multiplication of two functions rather than the computationally expensive convolu-
tion process that would be required in the Cartesian domain. For this project, a Hamming 
window was used to filter the images.

3.	 Finally, the filtered and weighted data is back-projected over a grid to reconstruct the 
object. 

For a complete mathematical description of the algorithm, refer to Feldkamp, Davis and 
Kress.(18)   

C. 	 SART algorithm
This is a member of the family of algebraic reconstruction techniques which uses an iterative 
method to solve a large system of linear equations. The simultaneous algebraic reconstruction 
technique is one that updates the value of each voxel one projection at a time. Each voxel of the 
object to be reconstructed is assigned an initial value (zero in our case). A forward projection 
is performed and each voxel’s value is proportional to the weighted difference between calcu-
lated and measured values of all pixels to which that particular voxel contributes. The general 
equation for the algorithm is 

			 
	  	 (4)

where j represents the index of the voxel v under consideration, k is the iteration number, ωij is 
the contribution of voxel j to pixel i, and λ is a constant of proportionality called the relaxation 
parameter, usually chosen to be between 0 and 1, with most studies choosing it to be closer 
to zero than unity. In this study, the relaxation parameter was set to 0.2. For this project, one 
iteration was defined to be complete when all projected images acquired had been processed, 
with the object updated at each step. Thus, iterations were stopped after a preset number of 
iterations, rather than quantifying the difference between projected data and measured data and 
stopping once that difference became less than a preset value.
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D. 	 Image acquisition and processing
For all experiments using portal images, the images were acquired using an add-on CCD camera 
EPID (Theraview Inc., Leusden, The Netherlands) mounted on a Varian clinac 600 C/D (Varian 
Oncology, Palo Alto, CA). According to the manufacturer’s technical specifications, the images 
are acquired in a 512 × 512 matrix with 12 bit precision. The CCD camera is reported to have 
a dynamic range of 60 dB and a contrast detectability of at least 1%. For the purposes of this 
project, the following naming convention is used to denote gantry angles: the zero position (0°) 
is when the gantry is positioned for an anterior-posterior field. Positive numbers are used for 
angles measured clockwise from the zero position, while negative numbers are used for angles 
measured counterclockwise from the zero position. 

Based on the investigation of various tomosynthesis angles reported before in literature, 
a middle value of 40 degrees was chosen for this study. A total of 41 projection images were 
acquired every degree from -20° to 20°. With this acquisition geometry, the detector followed 
a circular path such that the distance between the source and imager was constant.  

The images obtained were sampled such that anywhere from 2 to all 41 projections acquired 
were used as input to the three reconstruction algorithms. Table 1 summarizes which angles 
were used for each experiment. 

Each algorithm was used to reconstruct the same number of slices (50) with a nominal slice 
separation of 5 mm. The in-plane voxel dimension was set to 1 mm for the datasets reconstructed 
with the FDK algorithm and SART. The SAA technique uses the native pixel dimension of 
the EPID, which was 0.64 mm in this case. All source images were acquired with the EPID 
positioned 50 cm below the isocenter level. However, the images were resampled to obtain a 
1 mm in-plane voxel dimension for fair comparison with the other datasets reconstructed using 
the higher dimension.

Table 1. Image numbers used for each experiment.
		

# Images Used	 Angles used for reconstruction

	 2	 -20°, 20°
	 3	 Every 20 degrees from -20° to 20°
	 4	 -20°,-7°,7°,20°
	 5	 Every 10 degrees from -20° to 20°
	 6	 Every 8 degrees from -20° to 20°
	 7	 -20°,-14°,-7°,0°,7°,14°,20°
	 9	 Every 5 degrees from -20° to 20°
	 11	 Every 4 degrees from -20° to 20°
	 14	 Every 3 degrees from -20° to 19°
	 21	 Every 2 degrees from -20° to 20°
	 41	 Every degree from -20° to 20°

  
E. 	 Spatial resolution	
An in-house phantom was developed to visually assess the spatial resolution. Small sections 
(2.5 cm × 5 cm) of aluminum and nylon sheets were used to create individual patterns represent-
ing patterns with one line pair every 2 mm, 4 mm, 6 mm, 8 mm and 10 mm. Five individual 
bar patterns were created, each containing four aluminum ‘bars’ separated by nylon ‘bars’ to 
create 3.5 line pairs per set. These blocks were placed on a block of Styrofoam and positioned 
in a water-filled container and the phantom was positioned such that isocenter was at the center 
of the bar patterns as show in Fig. 2(a). EPID images were acquired as described above and 
CBDT datasets were reconstructed. These datasets were imported using ImageJ (National 
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Institute of Health, Bethesda, MD) and the slice through isocenter was visually compared for 
each experiment. 

Since the visual inspection is highly subjective, a second experiment was performed to 
measure the modulation transfer function (MTF) for each reconstructed dataset. The phantom 
in this case was a 6 mm-thick slab of lead used to create a straight edge in the reconstructed 
datasets. The MTF was calculated as the Fourier transform of the gradient of a line profile 
taken through the edge.(23) A total of five profiles were taken at different positions along the 
reconstructed image. Each profile was used to calculate an individual MTF curve and a sixth 
order polynomial function was fit to the data using Excel’s curve fitting tool (Version 2007, 
Microsoft Corp, Redmond, WA). For the purposes of comparing the resolution for each dataset, 
the limiting spatial frequency was defined as that which creates an MTF of 0.2. The size of each 
bar in a pattern representing this spatial frequency was calculated and reported. 

F. 	C ontrast
Two cylindrical inserts (Gammex RMI, Middleton, WI) with relative electron densities of 
0.28 g/cm3 and 1.69 g/cm3 were positioned in a water-filled container such that their long axis 
was parallel to the gantry’s rotational axis. The phantom was positioned such that the isocenter 
was between the two cylinders as shown in Fig. 2(b). Images were acquired according to the 
protocol described before. 

Datasets were reconstructed using all three algorithms and imported into ImageJ. A macro 
was created to use a 15 × 15 mm2 region of interest (ROI) to sample the same region in the same 
slice for each dataset. For each cylindrical insert, the mean signal strength was extracted from 
the ROI placed in the middle of the cylinder. For water measurements, the ROI was placed in 
a region away from the cylinder location on the isocenter slice. The contrast was characterized 
by the signal difference to noise ratio (SDNR) defined as

			 
	  	 (5)

where µobject is the mean signal in the ROI within the cylinder being considered, µwater is the 
mean ROI value in the water region immediately adjacent to that cylinder and σwater is the 
standard deviation of the ROI in that water region. 

Fig. 2.  Phantoms used for various experiments. Fig. 2(a) spatial resolution test: (L – R) 5 mm to 1 mm patterns created 
by sandwiching appropriate number of 1 mm-thick pieces of nylon ribbon between pieces of aluminum sheets of the ap-
propriate thickness; (b) contrast resolution test: two cylinders of material with relative densities of 0.28 g/cm3 (bottom) 
and 1.69 g/cm3 (top) are positioned inside a water filled container with phantom set such that the cylinder’s long axes 
are parallel to the gantry rotation axis and the isocenter lies between the two cylinders; (c) artifact spread investigation: a 
quarter suspended in water container so that isocenter is at the center of the coin. 
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G. 	 Artifact spread
Due to the use of projection images acquired over a limited angle, all CBDT reconstructions 
contain ghosting artifacts which are more pronounced in the reconstructed slices immediately 
adjacent to the plane on which the object is present. Wu et al.(21) proposed the artifact spread 
function (ASF) as a metric to measure this effect. They defined the ASF as

			 
	  	 (6)

where z0 is the depth of the actual feature, z is the depth of an out-of-focus plane containing 
the artifact,  and are, respectively, the mean pixel value within the feature 
and in the background at depth z0, and and are, respectively, the mean pixel 
value within the ghost image and background at depth z. 

To test for the variation in ASF with depth, a quarter was suspended inside a water-filled 
container which was positioned on the couch so that the coin was at isocenter level as shown 
in Fig. 2(c). Portal images were acquired and sampled as described before and objects were 
reconstructed using all three algorithms. The resulting datasets were imported into ImageJ 
and, since the signal due to ghost images appear at different locations on the different slices, a 
large area around the location of where the coin’s ghost images are expected to lie was chosen 
as the ROI. The maximum pixel value within this ROI was chosen to be representative of the 
ghost image. This was repeated for five slices above and below the isocenter slice to determine 
the four parameters required to calculate ASF. A region well away from the coin was used to 
sample background and the median signal was chosen to represent the background signal. In 
this case, the maximum signal was not used since it would make the measurement sensitive 
to noise in the area. 

H. 	 Volumetric accuracy
In order to check for volumetric accuracy, a 100 × 100 × 100 mm3 virtual water phantom 
was created using MatLab (Version 8, The Mathworks Inc, Natick, MA), with voxel size of   
1 × 1 × 1 mm3. Within this phantom, a virtual cube, sphere, and cylinder of bony material 
were inserted. The phantom was imported into the Pinnacle treatment planning system (Phil-
lips Medical Systems, Bothell, WA) as a CT set and the forward projection capabilities of the 
system was used to export digitally reconstructed radiographs (DRRs) every degree for gantry 
positions from -20° to 20°. The mean energy used for the DRR calculation was set to 2 MeV to 
ensure MV-quality images. These DRRs were sampled as shown in Table 1 and datasets were 
reconstructed using the three algorithms. The reconstructed datasets were then imported back 
into Pinnacle and the contouring tool was used to contour each slice and determine the volume 
of each of the three inserted objects. The true volume was obtained by using the auto-contour 
option on the virtual phantom itself. 

I. 	C alculation time
All calculations were performed on a dual-core AMD Turion machine with a nominal proces-
sor speed of 1.9 GHz and 2 GB of RAM. All algorithms were programmed in-house using 
Visual C++ (Version 5.0, Microsoft Corp, Redmond, WA). Table 2 shows the time required to 
calculate each dataset. 
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Table  2. Variation of reconstruction times with number of projections and algorithms.

	 SAA	 FDK	 SART  
			   (5 iterations) 

2 Projections	 < 1 min	 < 1 min	 20 min

3 Projections	 < 1 min	 < 1 min	 26 min

4 Projections	 < 1 min	 < 1 min	 34 min

5 Projections	 < 1 min	 < 1 min	 42 min

6 Projections	 < 1 min	 < 1 min	 51 min

7 Projections	 < 1 min	 < 1 min	 66 min

9 Projections	 < 1 min	 < 1 min	 86 min

11 Projections	 < 1 min	 < 1 min	 106 min

14 Projections	 < 1 min	 < 1 min	 133 min

21 Projections	 < 1 min	  1 min	 211 min

41 Projections	 < 1 min	 1.5 min	 426 min

J. 	D ose measurements and calculations
To determine the dose delivered to different points during image acquisition, 3 mm × 3 mm × 
1 mm lithium fluoride (LiF) thermoluminescent dosimeters (TLDs) chips were positioned at 
different points within the Rando pelvic phantom (The Phantom Laboratory, Salem, NY). The 
TLDS were batched with responses within ± 5 %. The calibration was done by exposing one 
packet of TLDs to a known dose at the depth of maximum dose in solid water and then using 
that calibration factor to obtain the doses from the other packets used in the experiment. 

Three points within the phantom were identified as locations of the bladder, prostate, and 
rectum. One packet of three TLDs was positioned at each point and images were acquired for 
7, 11, and 14 projections over the 40° span. The minimum of 1 MU per image was used to 
acquire each projection. A CT study of the Rando phantom was also obtained and imported into 
Pinnacle3. The expected doses were calculated for the same three points using the treatment 
planning software and compared to the measured doses when these were available.

 
III.	Res ults 

A. 	 Spatial resolution
Figure 3 shows comparisons of a slice showing the bar pattern for a select few of the datasets 
generated. When two projections were used, only the 5 mm pattern was fully resolved, while 
three projections were enough to resolve all patterns except for the 1 mm model (which was 
not resolved even when all 41 projections were used). Figure 4 graphically shows the variation 
of object size for an MTF of 0.2 with reconstruction algorithm and number of projections used. 
The MTF values all confirm what was visually observed.
 



163    Sarkar et al.: Study of number of projections and algorithm on tomosynthesis data	 163

Journal of Applied Clinical Medical Physics, Vol. 10, No. 3, Summer 2009

Fig. 3.  Tomosynthesis images depicting the isocenter slice through the resolution phantom. 

Fig. 4.  Variation of size of an object to create an MTF of 0.2 with reconstruction algorithm for different numbers of 
projection images used.
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B. 	C ontrast
Figure 5 shows the variation of SDNR with number of projections used and reconstruction 
algorithm for bone and lung. Since higher SDNR values correlate to higher contrast, the re-
sults show that the FDK algorithm does the worst for both cases, while the SAA algorithm 
produces either the best contrast or values comparable to the best. For all cases, the SDNR 
value increases when the number of projections used to generate the data is increased, until a 
plateau is reached. 

C. 	 Artifact spread
Figure 6 shows the variation of ASF with number of projection used for each algorithm, 
while Fig. 7 shows the variation of ASF with the algorithm used when a particular number of 
projections were used. Since the object used in the study has thickness much smaller than the 
reconstruction slice separation, the ideal ASF curve would be a delta function showing that the 
signal from a particular object is only present on one slice. However, since only a limited scan 
angle is used in DTS, there are always some ghost signals that are present on some adjacent 
slices, making the ASF curves broaden. From the tests in the study it was concluded that, in 
general, SAA performs the worst; for lower number of projections, FDK performs best. When 
more than 21 projections are used, SART performed best when run for 5 iterations. In general, 
increasing the number of projections used lead to a decrease in ASF.
 

Fig. 5.  Variation of SDNR with number of projections used for reconstruction. Left curve shows behavior for central 
slice through bone insert (with a density of 1.69 g/cm3); right curve shows behavior for central slice through lung insert 
(with a density of 0.28 g/cm3). 
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Fig. 6.  Representative graphs depicting the variation of ASF with number of projections used for each of the algorithms: 
(a) SAA algorithm; (b) FDK algorithm; (c) SART algorithm (1 iteration); (d) SART algorithm (5 iterations). 

Fig. 7.  Variation of ASF with algorithm used for various numbers of projections: (a) 2 projections; (b) 11 projections; (c) 
21 projections; (d) 41 projections. 
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D. 	 Volumetric accuracy
Figure 8 shows the variation of calculated volumes of the three embedded objects with number 
of projections used for each algorithm. The horizontal line denotes the “true” volume as deter-
mined using the auto-contour algorithm on the phantom. For all four algorithms, the calculated 
volume of the cube and cylinder quickly converges towards the actual value. For the sphere, the 
calculated value converges towards a value that is approximately twice that of the true value.

Fig. 8.  Variation of relative calculated volume with number of projection used for different algorithms: cube (top left 
curve); cylinder (top right curve); sphere (bottom curve). 
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E. 	D ose measurements and calculations 
Figure 9 shows a plot of the doses as measured using TLDs and calculated in Pinnacle3. The 
error bars on the TLD measurements reflect the 5% acceptance criterion used while batching 
our TLDs. Table 3 shows the doses at the three sites as calculated using Pinnacle3. 

Table  3. Variation of pinnacle calculated dose with number of projections used. 		

No. of Projections Used	 Bladder Dose (cGy)	 Prostate Dose (cGy)	 Rectal Dose (cGy)

	 2	 2.2	 1.7	 1.4 

	 3	 3.4	 2.6	 2.0 

	 4	 4.5	 3.4	 2.7 

	 5	 5.6	 4.3	 3.4 

	 6	 6.7	 5.1	 4.1

	 7	 7.9	 6.0	 4.8 

	 9	 10.1	 7.7	 6.2 

	 11	 12.4	 9.5	 7.6 

	 14	 15.8	 12.1	 9.7 

	 21	 23.5	 17.9	 14.3 

	 41	 45.9	 35.0	 28.0 

	 Portfilma	 12.5	 11.2	 7.3

a �“Portfilm” doses were calculated using the protocol clinically used to acquire weekly portfilms at the clinic for 
prostate cases; 6 MU are used to acquire an AP projection and 8 MU are used to acquire the lateral projection, for a 
total of 14 MU per image set. 

IV.	D ISCUSSION

The spatial resolution experiment shows that the limiting resolving power of 2 mm is achieved 
almost immediately regardless of the algorithm used for reconstruction. It should be made 
clear that all of these resolution measurements are for the in-plane measurements, since the 
out-of-plane resolution is expected to be worse for a limited-angle scan. If only these results 
were considered, it seems like there is no advantage of any one algorithm over another once 
the minimum of three projections is met. However, combining the contrast to noise test, some 

Fig. 9.  Comparison of dose measurements from TLDs and Pinnacle. 
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algorithms start to stand out. From Fig. 3, it is clear that the FDK reconstructions are noisier 
than any of the other datasets. Also, it should be noted that the FDK algorithm basically acts 
as a high-pass filter for in-plane structures when used in limited-angle scans (as is the case 
here). While this causes edges to be sharper and increases their visibility (see Fig. 3), it also 
leads to a large drop in contrast.(24) It therefore comes as no surprise that the SDNR for FDK 
datasets are consistently lower than those produced by the other algorithms. Since the SAA 
algorithm works by shifting the EPID images directly, the noise level of the datasets produced 
using that method is related to the amount of noise in the portals themselves. SAA also is the 
worst at removing artifacts, as shown by the ASF measurements. This makes the noise levels 
even lower due to the smearing from out-of-plane structures. As expected, the SAA algorithm 
produced high SDNR values throughout, which may lead to the wrong assumptions that this 
is the optimal reconstruction algorithm. However, the values are not due to higher contrast but 
are actually due to much lower noise levels. In fact, the SAA images have some of the worst 
contrast of all the reconstructions. 

It is not surprising that ASF is worst for lower number of projections used as input data. It 
was already stated that the out-of-plane objects are still partially present in every slice. The 
ghost signals are actually smeared along the planes not containing the object. When only two 
projections are used, then the ghosts actually form two distorted images, a doublet. The ghost 
intensity is shared between these two artifacts. As more and more projections are used, the 
intensity is actually smeared across a larger area. Since ASF looks at a ratio of ghost contrast 
to object contrast, the ASF gets smaller in magnitude when more projections are used since 
contrast of the ghosts gets smaller.

The volumetric accuracy test showed that the calculated volumes always trended towards a 
constant value with an increasing number of projections used for the dataset calculation. For 
the two objects that showed constant cross-sections in the DTS slices – namely the cube and 
cylinder – the calculated volumes got very close to the true value as the number of projections 
used increased. For objects with a varying cross-section, the calculated values were always 
overestimated and, while there was convergence in volume, it was towards a value that was more 
than twice the true volume. With prior knowledge of what the objects looked like, it was easy 
to determine how to contour objects which had a constant cross-section, and also to determine 
when the object was not actually present on a slice because the signal was only partially over-
lapping (see Fig. 10). For the datasets reconstructed using SART and FDK, a halo that appears 
immediately to the left and right of the high contrast objects greatly aided in the contouring. 

However, for the spherical object, the situation is more complex. Unlike an object with 
constant cross-section, incomplete overlap of signals does not mean absence of the object from 
the slice but, instead, may mean that the object is only partially present. Figure 11(a) shows 
the central slice through the sphere and represents the expected circular object. While one 
would expect to see smaller circles as one moves away from the central slice, what is instead 
observed are oval areas of overlap, as shown in Fig. 11(b). An explanation for this behavior 
is that projections were never taken at large angles. For example, if a projection was obtained 
at 90 degrees and showed a circular shape, the algorithms would then force the elongated 
region in off-center slices through the sphere to be made smaller and more closely represent 
a circle rather than an oval. This behavior is also clear from the central axial (Fig. 11(c)) and 
sagittal (Fig. 11(d)) slices through the reconstructed sphere. Instead of a sphere, the object 
reconstructed looks more like an ovoid. This partially explains why an object with a larger 
volume is contoured. In terms of variation with number of projections, it seems that as few as 
11 projections give rise to calculated volumes that are close to the ultimate volume obtained 
using all 41 projections. 

An effect also visible in all reconstructions using very few projections is that the ghost images 
sometimes actually appear as a ringing artifact. This effect is illustrated in Fig. 12 which depicts 
the same slice from different reconstructions of the cube with objects used in the volumetric 
accuracy test. In extreme cases, such as in Fig. 12(a) where only two projections were used, the 
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Fig. 10.  Slices through the SART reconstructed object showing: (a) absence of cube; (b) presence of cube; (c) absence 
of cylinder; (d) presence of cylinder. 

Fig. 11.  Slices through the SART reconstructed object: (a) coronal slice through center of sphere; (b) coronal slice through 
non-central part of sphere; (c) axial slice through center of sphere; (d) sagittal slice through center of sphere.

(a)

(a)

(c)

(c)

(b)

(b)

(d)

(d)
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ghost images appear as the doublet previously mentioned. This is apparent in the middle part 
of the subfigure, where the signal from the sphere has separated. As the number of projections 
is increased, the effect becomes more of a smearing but other objects may show edges that ap-
pear to show the ringing effect. For example, in Fig. 12(c), the region where the sphere should 
be shows a more uniform smear but the bottom right region, which is meant to represent the 
cylindrical insert, shows the ringing effect. This is due to a stair-step type of signal artifact that 
occurs as a result of the large angle between projections. This type of artifact is unfortunately 
something that cannot be filtered out, and users of CBDT image sets from under-sampled image 
scans will have to expect this artifact and learn how to work around it. 

Distortions in the shape of objects are inherent with the technique of digital tomosynthesis 
due to the limitation of imaging only over a short arc and never seeing the whole object. This, 
in turn, means that DTS-based datasets may not be used for such tasks as treatment planning 
in their native form where a correct estimation of volumes is very important. However, the 
spatial accuracy of reconstructed images was also investigated. This was done by measuring 
the distance between the various bar patterns used in the spatial resolution phantom. When the 
image-based distances were compared against those physical measurements, all agreed within 
1 mm (or one pixel). This led to the conclusion that the reconstructions are accurate in terms 
of spatial accuracy. 

The dose measurements show the expected increase in dose to all three points considered with 
an increasing number of projections used. When compared with the doses each point gets from 
the current portal imaging protocol, it is clear that approximately the same dose is delivered to 
acquire the portal image set as would be given during the acquisition of 11 projections. 

 

Fig. 12.  Corresponding slices showing the appearance of ghost images from the same object when (a) 2 projections,  
(b) 4 projections, (c) 11 projections and (d) 41 projections are used as source data.  
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V.	C onclusions

The purpose of this project was to determine the effect that the number of projection images 
used to reconstruct MV-CBDT datasets had on various aspects of these reconstructions. The 
current imaging protocols for portal images gives the same amount of dose that would be given 
to acquire 11 projection images. Keeping this number of projections in mind, as far as the spatial 
resolution is concerned, all of the bar patterns are already resolved, except for the 1 mm pattern 
which never is. For all algorithms, the SDNR and reconstructed volume values seem to have 
already reached a plateau. ASF values will increase slightly when more projections are used. 
Since reconstruction times are linear with number of projections, the reconstruction times are on 
the order of less than 1 minute for SAA and FDK to 21 minutes for one iteration of SART. 

The authors recognize that this evaluation is purely qualitative but also feel that, when 
all the tests are evaluated together, 11 projections seem like a good number of projections to 
aim for, especially because some of the tests – specifically, the SNR and volumetric accuracy 
investigations – seem to converge once this number of projections has been reached. For the 
ASF evaluation, there is a very small improvement when more than 11 projections are used but, 
given the increased dose with more projections, the authors do not believe the gain is worth 
the risk from increased radiation. 

As it stands, the SAA algorithm does not look like a good candidate for reconstruction since 
artifact spread is so high compared to the other algorithms. While FDK produces noisy images, 
reconstruction times are much lower than SART, even for a single iteration. Both SART and 
FDK produce comparable artifact spread when 11 projections are used. The choice of algorithm 
between SART and FDK depends on the user. If this is to be clinically used, then the current 
reconstruction times for SART makes the algorithm impractical for the purposes of image 
reconstruction. Therefore, for clinical use, it would seem like FDK would be a better choice, 
if the end user is willing to live with the noisier images. The FDK images may be improved in 
certain cases where spatial resolution is not as important as contrast and a more aggressive filter 
is used for the purposes of noise removal. If, on the other hand, the problem of reconstruction 
times is solved either with better software implementation or with hardware acceleration, then 
SART would certainly be the algorithm of choice. 

It should be pointed out that this study’s conclusions are specific to digital tomosynthesis 
with projections acquired using a CCD-based camera and based on the phantom geometries 
investigated. Artifact spread is a known problem with digital tomosynthesis and the contrast 
and resolution of images will be affected by out-of-plane structures, something that will change 
between subjects. However, this is the first study, to the best of the authors’ knowledge, inves-
tigating the effect of number of projections and reconstruction algorithm on the final quality of 
images for megavoltage digital tomosynthesis. The authors are confident that the conclusions, 
demonstrating that MV-CBDT reconstruction does not require the use of projections acquired 
every degree, will remain valid for other phantom geometries and image acquisition equipment 
since most parameters end up reaching a plateau after a critical number of projections is used. 
Future work should repeat the current experiment while varying the tomosynthesis angle, and 
also investigate whether imagers with different sensitivities produce different results. 
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