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Abstract

Human listeners can focus on one speech stream out of several concurrent ones. The pres-

ent study aimed to assess the whole-brain functional networks underlying a) the process of

focusing attention on a single speech stream vs. dividing attention between two streams

and 2) speech processing on different time-scales and depth. Two spoken narratives were

presented simultaneously while listeners were instructed to a) track and memorize the con-

tents of a speech stream and b) detect the presence of numerals or syntactic violations in

the same (“focused attended condition”) or in the parallel stream (“divided attended condi-

tion”). Speech content tracking was found to be associated with stronger connectivity in

lower frequency bands (delta band- 0,5–4 Hz), whereas the detection tasks were linked with

networks operating in the faster alpha (8–10 Hz) and beta (13–30 Hz) bands. These results

suggest that the oscillation frequencies of the dominant brain networks during speech pro-

cessing may be related to the duration of the time window within which information is inte-

grated. We also found that focusing attention on a single speaker compared to dividing

attention between two concurrent speakers was predominantly associated with connections

involving the frontal cortices in the delta (0.5–4 Hz), alpha (8–10 Hz), and beta bands (13–

30 Hz), whereas dividing attention between two parallel speech streams was linked with

stronger connectivity involving the parietal cortices in the delta and beta frequency bands.

Overall, connections strengthened by focused attention may reflect control over information

selection, whereas connections strengthened by divided attention may reflect the need for

maintaining two streams in parallel and the related control processes necessary for perform-

ing the tasks.
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Introduction

Although in everyday life we can reliably follow one speech stream in a noisy multi-talker envi-

ronment [1], understanding the brain’s machinery underlying this feat is one of the major

challenges of auditory neuroscience. This is due to the fact that solving this problem involves

complex functions, such as auditory scene analysis [2], speech processing on multiple time-

scales [3], and selective attention [4–8]. Previous neuroimaging data showed a distributed net-

work of brain regions subserving the above functions (e.g.[9–13]) and there is also

electrophysiological data on the temporal mechanisms of speech processing (for a review, see

[14,15]). However, investigating the dynamic communication between brain regions (termed

functional connectivity—FC) may provide a tool to join these two views describing the func-

tioning of these anatomically distributed brain activity on several timescales [16,17]. By

recording electroencephalographic (EEG) signals in a realistic multi-talker setup the goal of

the present study was to assess the whole-brain functional networks underlying a) the process

of focusing attention on a single speech stream to improve information extraction from this

stream and 2) speech processing on different time-scales and depth.

Dynamic aspects of brain activity during auditory attention and speech

processing

Speech perception proceeds in parallel on different timescales from speech segmentation into

units such as phonemes or syllables to the integration of phrases to sentences and sentences to

the context ([18]. A growing body of EEG/MEG evidence suggests that analyzing neural oscil-

latory activity operating on different timescales provides information about a wider set of

brain processes than the event-related brain potential methods ([18–20]. Neural oscillations in

the delta (0.5–4 Hz), theta (4–8 Hz), and beta/gamma (30–70 Hz) frequency bands have been

shown to be synchronized/entrained to different levels of the temporal structure of speech

[21–26]. Specifically, gamma band oscillation shows alignment with phonemes [15,18], theta

band oscillations synchronize with syllables, and delta band oscillation with intonational

phrase boundaries and the speech envelope [22,24,27–32]. Because neural rhythms in these

frequencies cover the temporal structure of the major speech units it has been proposed that

temporal alignment might serve to align neural excitability to linguistically distinctive spectral

information. Oscillations in different frequency ranges may serve functions such as neural seg-

mentation and identification of various speech units [15,18,21,33,34].

Neural oscillations may also support higher-level functions of speech perception. Atten-

tional modulation of the delta- and theta-band EEG signal (below *7 Hz) has been suggested

to reflect a general mechanism of sensory information selection, which is based on temporal

expectations[35–37]. Some recent studies delivering continuous quasi-naturalistic speech sti-

muli to listeners provided evidence suggesting that slow oscillatory phase-entrainment mecha-

nisms may be responsible for both the selection and suppression of speech streams in the brain

[4–8]. For instance, delta-theta responses in the posterior temporal lobe are enhanced for the

attended but suppressed for the unattended speaker [5]. Others have found the significant but

weaker speech-brain correlation for attended vs. unattended speech [7]. Horton and colleagues

found that one of the ICA sources form the temporal cortices strongly encoded the envelope of

attended speech at 200-ms delay while also encoding the inverse of the unattended speech’s

envelope with the same delay. In summary both types of results show that the attended and

unattended speech is distinguished in the temporal lobe. A recent study demonstrated that

speech-brain correlation was modulated by attention only for natural but not for vocoded
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speech indicating that attention may affect higher level linguistic, rather than lower level sen-

sory speech processing [8]. Concordantly in higher-order brain regions, selective representa-

tion of the attended speech was observed with no detectable tracking of ignored speech [6], a

contrast to the findings in lower-level auditory cortical structures. These results suggest that

selectively attending to a speaker increases the gain of the attended speech stream and/or

reduce the gain of the competing stream by phase entrainment mechanisms in the delta-theta

oscillation range [38].

Enhancement of alpha-band (8–13 Hz) activity is assumed to reflect the disengagement of

cortical areas not involved in the given task[39,40]. With respect to speech processing, it has

been shown that the brain regions involved in speech processing exhibit lower alpha power

during listening to speech in a quiet environment than in a noisy one. The observed higher

alpha activity when speech is presented together with maskers has been assumed to represent

inhibition of the processing of noise, thereby protecting the processing of the task-relevant

speech signal from interference [41,42]. Further, alpha power in auditory cortical areas was

found to be higher contralateral to the side of noise delivery and lower contralateral to the side

of speech delivery, which can be interpreted as indicating suppression of the unattended audi-

tory input [43].

Although the exact role of beta-band activity in auditory attention has not yet been clarified,

it was suggested that beta-band modulations may reflect control processes [44,45]. For exam-

ple, tasks requiring enhanced top-down processing are accompanied by enhanced beta activity

[46]. Studies on primates and cats have also shown sustained beta synchronization during

stimulus expectation [9,46,47]. Further, voluntary engagement of auditory spatial attention

has been associated with sustained high frequency (beta/gamma-band) fronto-parietal and

temporal activity, which was predictive of overt task performance [48]. A more specific role of

beta oscillation in expectation during speech processing has been recently suggested: beta

band oscillations may mediate contextual semantic prediction of individual words based on

the prior context [15,49].

The functional anatomy and connectivity of auditory attention to speech

Neuroimaging studies investigating the functional anatomy of auditory attention revealed the

involvement of distributed fronto-temporal (ventral stream) and fronto-parietal (dorsal

stream) networks in dichotic listening [9–13]. The activation of the ventral pathway, primarily

consisting of superior temporal and inferior frontal areas, has been shown to respond to the

stimulus-driven allocation of attention [12,50]. In contrast, the dorsal fronto-parietal pathway

(involving precentral areas, the medial prefrontal cortex, and the superior parietal gyrus)

respond to voluntary attentional control, such as the resolution of interference from concur-

rent speech or noise signals [9,10,13,51].

The analysis of FC (measured as neural oscillatory phase synchronization) can potentially

reveal the interplay between speech processing and attentional control functions [52] because

oscillatory synchrony among cortical regions is assumed to facilitate neuronal communication

[53–55]. So far, only two electrophysiological studies have investigated FC while listeners lis-

tened to speech in the presence of another active sound source [56,57]. Comparing FC

between a dichotic listening condition delivering stimuli with high spectral overlap and a

sham dichotic listening condition including stimuli with low spectral overlap resulted in an

increase of alpha-band coherence between left auditory and Wernicke’s areas and decreased

interhemispheric coherence between auditory areas [56]. Keitel and colleagues [57] presented

speech stimuli embedded in noise. They have demonstrated that 1) speech tracking existing on

several linguistically relevant timescales (timescales of phrases (0.6±1.3 Hz), words (1.8±3 Hz),
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syllables (2.8±4.8 Hz), and phonemes (8±12.4 Hz); 2) and stronger that speech tracking

responses for perceptually correct (comprehended) trials was only evident in the temporal

lobe and motor cortex. Further, motoric cortical speech tracking was evident at the phrasal

level corresponding to the delta beta band phase amplitude coupling indicating top-down tem-

poral prediction in ongoing speech perception. In a study using connectivity measures for

speech perception without concurrent sounds Park and colleagues [58] found that frontal top-

down signals increased the coupling between auditory low-frequency oscillations and continu-

ous speech: the entertainment of auditory cortical oscillations to speech (speech-brain cou-

pling) increased with higher speech intelligibility and stronger low-frequency connectivity has

been observed between the frontal and auditory cortices during intelligible than unintelligible

speech, which also correlated with the strength of speech-brain coupling. These results are

compatible with the notion that delta-theta brain oscillations play a role in implementing pre-

dictive control of the frontal cortex over the processing of continuous speech. An fMRI based

FC study compared the effects of voluntary (top-down) and involuntary shifts of attention to

sound events [59]. It was found that voluntary attention shifts were associated with stronger

FC in the dorsal fronto-parietal network while stimulus (novelty) driven effects were accompa-

nied by stronger FC in the ventral fronto-parietal pathway. Another fMRI study [60] reported

that stronger FC between higher order cortical areas (such as the medial-lateral prefrontal cor-

tices) facilitated comprehension of words with low semantic predictability when the intelligi-

bility of speech was reduced. These results suggest that large-scale connectivity in higher-order

brain areas may be involved in controlling auditory cortex during speech perception.

Hypotheses

The stimulus paradigm of the current study allowed us to assess the whole brain functional

networks involved in focusing one’s attention on a single speech stream in the presence of a

second speech stream in contrast to following two concurrent speech streams. We fully crossed

this manipulation with a task manipulation, which required integration of speech information

along three different levels/time-scales: lexical detection (word level integration), syntactic vio-

lation detection (grammatical phrase– 2-3-word level integration), and content tracking (inte-

gration across multiple sentences). This unique experimental design allowed us to assess the

brain networks underlying speech processing on different time-scales/depth and their interac-

tions with the allocation of attentional resources. Please, note that the present study focused on

the analysis on functional brain networks as opposed to speech-brain coupling.

Listeners were presented with two concurrent continuous speech streams while EEG and

NIRS were simultaneously recorded. Because the present paper primarily focused on role of

neural oscillations in different frequency ranges accompanying selective listening the NIRS

data is reported only in supplementary material (S5, S6 and S8 Files, S6 Table, S2 and S3 Figs).

Two types of tasks were employed in parallel: 1) the “tracking task", in which participants were

instructed to follow the contents of one or both speech streams and 2) the “detection task” in

which participants were to press a response key whenever they noted a numeral or a syntactic

violation within the target speech stream. The target stream of the tracking task was either the

same as that of the detection task (“focused attention condition”) or the opposite stream

(“divided attention condition”). The attention and task type conditions were fully crossed.

Based on the results of previous studies, we hypothesized higher FC strength in the dorsal

fronto-parietal attention control network during the focused than the divided attention condi-

tion in the delta/theta [6,43], alpha [43], and possibly even in the beta band [48]. Unfortu-

nately, little is known about functional networks during attention divided between speech

streams. We assumed that processing information from two concurrent speech streams would
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result in higher demands on low-level speech processing steps and their attentional control.

This would be evidenced by an increase of FC strength in a distributed network involving the

posterior temporo-parietal cortex.

As described above, performing the three different tasks required integration of informa-

tion from different units of speech having different time windows (from a few hundred milli-

seconds to several seconds). As these timescales correspond to different EEG bands, we

hypothesized that the different tasks will activate networks operating in the bands correspond-

ing to the length of the time windows within which information is integrated. That is, we

expected to find stronger FCs for brain regions involved in speech comprehension in rather

slow EEG bands (corresponding to information integration over long time windows) during

the tracking task, while stronger FCs in the frequency bands (corresponding to integration of

information within shorter time windows) in regions supporting lexical and syntactic process-

ing during the detection tasks. (Ideally, one could even separate the two detection tasks this

way, but in the current study, detecting syntactic violations required integration of maximum

three short words (S1 File), which may not be separable from the single-word window in

terms of EEG bands.)

Materials and methods

Participants

26 healthy young native Hungarian speaker adults (12 male, 14 female, mean age: 21.88 years,

SD: 2.05; 24 right-handed) participated in the study for modest financial compensation. None

of them had a history of psychiatric or neurological symptoms. All participants had pure-tone

thresholds was ranging from 250 Hz to 4 kHz: <25 dB and<10 dB difference between ears.

Informed consent was signed by all participants after the aims and methods of the study were

explained to them. The study was conducted in full accordance with the World Medical Asso-

ciation Helsinki Declaration and all applicable national laws; it was approved by the institu-

tional review board, the United Ethical Review Committee for Research in Psychology

(EPKEB). One participant’s data were excluded from the EEG analysis due to>2 malfunction-

ing EEG channels.

Stimuli

Participants listened to two concurrent streams of continuous Hungarian speech of ca. 6 min-

utes duration, each (mean duration: 352.15 s, SD: 9.34; mean word count: 636.41, SD: 84.87;

mean number phonemes per word: 6.48, SD: 0.29) presented from two loudspeakers posi-

tioned symmetrically at 30˚ left and right from the frontal midline, 200 cm from the partici-

pant. The speech material was selected from a collection of news articles, which were reviewed

by a dramaturge for correct grammar, natural text flow, and to prevent garden-path sentences.

The information from which the articles were created was found on Hungarian news websites.

The articles contained emotionally neutral, unfamiliar information. They were recorded from

two male native Hungarian actors (20 articles, each) and edited by a professional radio techni-

cian. The soundtracks were recorded at 48 kHz with 32-bit resolution and presented by Matlab

R2014a software (Mathworks Inc.) on an Intel Core i5 PC with ESI Julia 24-bit 192 kHz sound

card connected to Mackie MR5 mk3 Powered Studio Monitor loudspeakers. The speech seg-

ments were recorded in the same room where the experiment took place and they were deliv-

ered from approximately the same location where the actor sat during the recording session

(i.e., the loudspeaker was placed at the approximate location of the actor’s head). This con-

founded the location (side) of the loudspeaker and the identity of the speaker because all arti-

cles from the same actor were recorded at the same location. EEG recordings were
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synchronized to a beep sound preceding speech onset by 1 s. Each article contained 45–57

numerals (M = 50.7, SD = 2.7) consisting of 2–4 syllables. 32 of the 40 articles also included

19–26 (M = 20.5, SD = 1.4) syntactic violations. The distance between the mismatching words

Fig 1. Schematic illustration of the six experimental conditions. Participants were listening to two concurrent speech streams under six experimental

conditions: 1) Focused attention—only tracking (baseline) 2) Divided attention—only tracking (baseline) 3) Focused attention—numeral detection task 4)

Divided attention—numeral detection task 5) Focused attention–syntactic violation detection task 6) Divided attention—syntactic violation detection task (see

main text for the definition of the conditions). The gist of the task instructions specifying the target events for the detection task and the location of the target

speech streams for each task are shown separately below each condition. The red “wave” pictograms indicate the target speech stream of the tracking task. Red

“loudspeaker” pictograms and the “button-press” pictograms indicate the target speech stream of the detection task. Events like the targets of the detection task,

when appearing in the non-target speech stream, served as distractors (non-target events).

https://doi.org/10.1371/journal.pone.0212754.g001
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(subject-predicate or object-predicate) never exceeded 4 syllables (maximum two words). For

a more detailed description of the syntactic violations, see S1 File).

The average timescales for phonemes syllables, words, phrases were quantified by first label-

ing them with WEBMAUS automatic segmentation tool [61] and hand-correcting in Praat

[62]. Due to the limitations of WEBMAUS, only word, syllable, and phoneme segmentations

were processed automatically; phrase segments were marked by expert inspection. Beyond the

structure of the Hungarian language, average durations also reflect the speakers’ speech rate.

The average duration of phrases for the first speaker was 3019 ms (standard deviation 1108

ms) and for the second speaker 3316 ms (std. 1440). The average duration of the words was

424 ms (std. 247 ms) for the first speaker 430,2 ms (std. 252 ms) and for the second speaker

418 ms (std. 241 ms). The average duration of syllables for the first speaker was 247 (std 160)

and the second speaker 239 (std 154). The average length of phonemes was for the first speaker

106 ms (std. 37ms) and the second speaker 71 ms (std. 36ms).

Procedure

Listeners were tested in an acoustically attenuated, electrically shielded, dimly lit room at the

Research Centre for Natural Sciences, MTA, Budapest, Hungary. A 19” monitor was placed

directly in front of the listener at a distance of 195 cm. Participants were instructed to keep eye

blinks and all other motor activity to a minimum during the stimulus blocks by focusing on a

fixation cross (the “+” sign) that was continuously present at the center of the monitor. For

each stimulus block, two different articles (one for each speaker) were randomly selected for

simultaneous presentation. Thus, participants were listening to two concurrent speech streams

produced by two different speakers from two spatial locations.

Six experimental conditions were delivered (see Fig 1) in which combinations of three dif-

ferent tasks were employed. For the “tracking/memory task”, listeners were informed that at

the end of the stimulus block, they will be asked 5 questions regarding the contents of one or

both of the speech streams. When only one of the speech streams was task-relevant, it was

identified by the side from which it was presented. The other two tasks (“detection task”)

required real-time responses from the listener. They were asked to press a hand-held response

key with their right thumb as soon as they detected the presence of a numeral target (“numeral

detection task”) or a syntactic violation (“syntactic violation detection task”). Only numerals

indicating the quantity of something within the context of the text were valid targets, words

including a numeral as a part were not. The instruction for the syntactic violation detection

task emphasized that the button should be pressed as soon as the listener detects that the sen-

tence is grammatically incorrect. The assignment of the side of the detection tasks was constant

within each listener, and it was counterbalanced across listeners. The tracking task was

employed in each condition. There was either no other task (“only tracking”) or one of the

detection tasks was employed. In the only tracking task conditions, the articles contained no

syntactic violations. The target speech stream of the tracking task was either the same as that of

the detection task (“focused attention condition”) or the opposite (“divided attention condi-

tion”). For the baseline of the divided attention condition, the speech streams from both sides

were asked to be tracked (i.e., questions were asked about the contents of both streams). As a

result, the following six task conditions were employed in the study (Fig 1): 1) Focused atten-

tion—only tracking task, 2) Divided attention—only tracking task, 3) Focused attention—

numeral detection task, 4) Divided attention—numeral detection task, 5) Focused attention–

syntactic violation detection task, 6) Divided attention—syntactic violation detection task.

Note that in this arrangement, there is one target event (numeral or syntactic violation appear-

ing in the stream designated for the detection task) and three types of non-target events. For

Functional brain networks activated in a multi-speaker environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0212754 February 28, 2019 7 / 31

https://doi.org/10.1371/journal.pone.0212754


disambiguation, we term the target events appearing in the concurrent stream as distractors.

The other two non-target events are termed task-irrelevant events: syntactic violations appear-

ing during the numeral detection task and numerals appearing during the syntactic violation

detection task. Task-irrelevant events have been delivered both within the stream designated

for the detection task as well as within the concurrent stream.

The two only tracking task conditions received 2 stimulus blocks, each, the other four con-

ditions received 4 blocks, each. Thus, the experimental session consisted of 20 blocks, with one

mandatory break after the 10th block and occasional shorter breaks between blocks as

requested by the participant. The blocks for the focused attention only tracking task condition

were presented at the 1st and the 20th position, those for the divided attention only tracking

task condition at the 2nd and 19th position. The rest of the stimulus blocks were divided into

two halves, each containing two blocks of each condition and they were delivered in a pseudor-

andomized order with the constraint eliminating consecutive stimulus blocks of the same con-

dition. The articles with no syntactic violations were randomly assigned for each participant to

one of the baseline conditions (separately for the two speakers) and similarly, the articles with

syntactic violations were randomly assigned to one of the other task conditions (again, sepa-

rately for each speaker).

After each stimulus block, a recognition memory test was performed (the test for the track-

ing task). The test consisted of 5 multiple-choice questions with 4 possible answers, each. Each

question corresponded to one piece of information that appeared within the text assigned to

the tracking task. The experimenter read the question and the 4 possible answers and the lis-

teners were asked to verbally indicate the correct answer. The experimenter noted the partici-

pant’s choice and followed up with a request for confidence judgement with four possible

options: “I don’t remember I was just guessing”, “I am not sure, but the option I chose sounded

familiar; I think I heard it during the last block”, “I am sure; I remember hearing it during the

last block”, “I know the answer from some other source”. The confidence judgment was then

recorded by the experimenter.

Data analysis

Behavioral responses.

Detection task performance. Hits were initially searched for within a window of 0–5000 ms

from the onset of the target events: onset of the numeral word or the onset of the word at

which the syntactic violation could be detected. In order to exclude responses, which were

unlikely to have corresponded to the given event, separately for the two detection tasks,

responses were rejected if they were longer than 95% (>1885 ms for numerals and>2214 ms

for syntactic violations) or shorter than 5% (<453 ms for numerals and <513 ms for syntactic

violations) of all responses (collapsed across the divided attention conditions and participants).

From the remaining responses, mean reaction times were calculated separately for each partic-

ipant, detection task (numeral vs. syntactic violation), and attention condition (focused vs.

divided). Next d‘ values (the standard measure for detection sensitivity; [63]) were calculated

from the accepted responses („hits”) and the number of target events with no valid response

(„misses”). For „false alarms” and „correct rejections” time windows identical to the ones used

for detecting hits were set for each distractor event (i.e., events of the same type occurring in

the concurrent speech stream). The distractor effect was separately characterized by the ratio

between the false alarms (i.e., responses to distractors) and all non-target responses (i.e.,

responses neither categorized as hits nor as false alarms), separately for each condition.

Tracking task performance. Recognition performance was separately calculated for each

participant and condition. In order to increase the sensitivity of this measure, items
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(questions) with an overall correct response rate (collapsed across conditions and participants)

above 95% or below 30% (25% representing chance level) were excluded from the analyses. No

items needed to be dropped due to>95% correct response rate; 7 items with <30% response

rate were discarded from the total of 160 items. Note that due to the random assignment of the

texts across the different conditions, the same text (and thus the same questions) could have

appeared in different attention/detection-task conditions for different participants. Further,

responses with the confidence judgment “I know the answer from some other source” were

excluded from the calculation of recognition performance measure for the given participant.

Recognition performance was then calculated as the percentage of correct responses pooled

across the stimulus blocks, separately for the four experimental conditions and participants.

EEG recording and preprocessing. EEG was continuously recorded during the presenta-

tion of the two concurrent speech streams with a BrainAmp DC 64-channel EEG system with

actiCAP active electrodes. Electrodes were placed according to the International 10/20 system

Fig 2. Schematic illustration of the data analysis. A) EEG preprocessing. Following primary filtering and ICA based artefact removal data was

segmented. Epoch including target or non-target events or responses were excluded. Next, secondary artifact rejection (using threshold of 100 μV) was

performed; B) EEG source localization. A minimum norm estimates model (sLORETA) for source-reconstruction was used together with forward

boundary element head model (based on default anatomy and EEG locations); Current source density source activity was reconstructed for each voxel

defined by the standardized parcellation scheme introduced by Klein & Tourville (2012). Finally, time-varying source signals was spatially down- sampled

to the selected 36 ROIs; C) EEG functional connectivity measurement. Data were filtered for five frequency bands (from delta to gamma) and the phase

lag index (PLI) was calculated as a measure of phase synchronization between each ROIs time series yielding 36 × 36 functional connectivity matrices for

each individual, condition, and frequency band; D) EEG Network construction—Network-based statistic (NBS). An F test of each experimental contrast

was run for each connection, and above-threshold connections selected for an F range between 3 and 10. The algorithm then searched for the largest fully

connected network on each threshold level. Distribution of network size was pulled from the permutation of condition assignments (N = 10000). Family-

wise error corrected p values of each network were obtained by comparing the network to the distribution derived from the random networks. Finally, the

significant network on the highest F threshold level with only significant edges was selected (the maximum number of edges was set to 50); These networks

were divided into two subnetworks according to the direction of the contrast effect. E) Correlation between EEG network-connectivity and behavioral

measures. The average connectivity of the significant network emerging from each statistical contrast was correlated with the average behavioral indices (d,

RT, recognition performance) of the corresponding condition. Family-wise error was controlled for each behavioral variable by estimating the distribution

of the correlation coefficients via permuting the values of the network strengths 10,000 times.

https://doi.org/10.1371/journal.pone.0212754.g002
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with the addition of one electrode placed on the tip of the nose. For EOG monitoring, one

additional electrode was placed lateral to the outer canthus of the right eye and another below

the left eye. Electrode impedances were kept below 15 kΩ. During the recording, the FCz lead

served as the reference electrode. The sampling rate was 1 kHz, and a 100 Hz online low-pass

filter was applied. Note that NIRS signals were recorded in parallel with the EEG. NIRS-related

methods (recording and analysis) and results are presented in S5, S6 and S8 Files, S6 Table, S2

and S3 Figs.

An overview of the EEG data analysis pipeline is shown on Fig 2. EEG data analysis was per-

formed using Matlab 2013a. The continuous EEG signal was off-line band-pass filtered

between 0.5 and 45 Hz by a finite impulse response (FIR) filter (Kaiser windowed, Kaiser β =

5.65, filter length 4530 points) by the EEGlab 11.0.3.1.b toolbox (Delmore et. al., 2007). Maxi-

mum two bad EEG channels per participant were interpolated using the spline interpolation

algorithm implemented in EEGlab. The Infomax algorithm of Independent Component Anal-

ysis (ICA) implemented in EEGlab was employed for artifact removal [64]. ICA components

constituting blink artifacts were removed via visual inspection of their topographical distribu-

tion and frequency contents of the components.

Epochs of 2048 ms duration were extracted from the continuous EEG record as an epoch

length of 2 sec affords optimal trade-off between the number of epochs with event and artifact-

free trials (min 95 epochs per participant/condition). Based on previous studies, this epoch

length is sufficient for assessing even low-frequency oscillatory activity [65,66]. Although lon-

ger epoch length generally results in lower connectivity values [66,67], this should not affect

the contrasts tested in the study. Epochs including detection task targets or a button press were

rejected from further analysis (note that the event-related brain potentials are reported sepa-

rately: [68]. Epochs with an amplitude change exceeding 100 μV at any electrode were also

rejected (Fig 2A). As a result, the dataset analyzed consisted of a minimum number of 95

epochs per participant/condition (mean: 161.8, SD = 26.2). The number of artifact-free epochs,

separately for each condition, were: 132.24 in the baseline-focused attention task, 124.28 in the

baseline-divided attention task (only two stimulus blocks, each), 174.6 in the focused atten-

tion-numeral detection task, 177.4 in the divided attention-numeral detection task, 181.88 in

the focused attention-syntactic violation detection task, and 180.28 in the divided attention-

syntactic violation detection task. Because stable and robust pattern of functional connectivity

measure can be achieved from altogether 100 s of recording [69], therefore, regardless of the

difference between the number of epochs contributing to the different conditions, the maxi-

mum number of epoch were included in the analysis for achieving the best possible signal to

noise ratio.

EEG source localization. For source reconstruction (Fig 2B), a minimum norm estimate

model (sLORETA developed by [70]) was applied by using the Brainstorm toolbox ([71]) with

the protocol based on previous studies [72–77]. The MNI anatomical brain template was seg-

mented using the default setting, as suggested by the Brainstorm tutorial [71]: 15002 voxels

located in grey matter with a resolution of 1x1x1 mm. The default electrode locations were

entered into the forward boundary element head model provided by the openMEEG algorithm

[78]; the head model was based on a default anatomy derived from theMNI/Colin27 brain

[79]. The time-varying source signals were modeled in all cortical voxels where the dipole had

a component perpendicular to the cortical surface. By averaging dipole strengths across voxels,

mean neuronal activity (current density) was obtained for the 62 cortical regions described by

the standardized parcellation scheme introduced by [80]. 22 left- and 22 right-hemispheric

cortical regions were selected for further analysis (occipital cortical areas were excluded from

the further analysis; for list of the selected cortical regions with their abbreviations, see S1

Table). Because using the default anatomical template and electrode locations neglects inter-
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individual differences in head shape and electrode placement, source localization errors were

evaluated for each cortical region of interest (ROI). The error assessment protocol and the

results are reported in the S2 File (see, also S1 Fig and S2 Table). In summary, there are only

few pairs of neighboring ROIs for which the reconstructed source activity could be ambiguous

(5 pairs using 15 mm estimated error and 17 with using 20 mm estimate). The most affected

regions are the Heschl or pars orbitalis, pars-triangularis and rostral and caudal anterior cingu-

late gyrus. We, therefore, do not draw conclusions basing on FCs including these regions.

EEG functional connectivity (FC) analysis. Phase synchronization strength as measured

by the phase lag index (PLI; see [81] was calculated between each pair of EEG source region in

five frequency bands (delta: 0.5–4 Hz; theta: 4–8 Hz, lower alpha: 8–10 Hz, upper alpha: 10–12

Hz, beta: 13–30 Hz, gamma 30–45 Hz following the band limits defined by [81]), separately for

each EEG epoch (Fig 2C). It can be expressed in the following way:

PLI ¼ jhsign½DφðtkÞ�ij

where Δφ(tk) refers to the time series of phase differences (t) calculated over all k = 1. . .N time

points of a trial, sign refers to the signum function, ‹› refers to the mean value, and ││ denotes

the absolute value. PLI is expressed as a value between 0 (random phase difference: minimum

strength of FC) and 1 (constant phase difference: maximum strength of functional connectiv-

ity). In the current study, PLI (using default settings, gain = 1) was calculated by using the

BrainWave software (version 0.9.151.5). Thus 44×44 weighted adjacency FC matrices were

obtained for each epoch. FC matrices were then averaged separately for each participant, con-

dition, and frequency band. Visualization of FCs on circular graph plots was performed by a

Matlab function developed by Paul Kassebaum (available at http://www.mathworks.com/

matlabcentral/fileexchange/48576-circulargraph). Visualization of the results of the FC analy-

sis over the cortical surface was performed by the BrainNet Viewer toolbox [82]. For visualiza-

tion of cortical surface, the BrainMesh_ICBM152 surface template was applied to the nodes

representing the cortical gyri, which were located by their standard MNI coordinates.

Statistical analysis

Behavioral data. Separately for d‘, RT, distractor effect, and the recognition index,

repeated-measures ANOVAs were performed with the factors of DETECTION TASK

(numeral vs. syntactic violation detection) × ATTENTION (focused vs. divided attention) ×
LOCATION (left vs. right detection task target stream), where Detection Task and Attention

were within-subject, whereas Location between-subject factors. Statistical analysis was per-

formed using the Statistics and Machine Learning Toolbox 10.1 of Matlab 2015b. The p-values

of post-hoc pair-wise comparisons were adjusted using Bonferroni’s correction. All significant

effects are described together with the ηp
2 effect sizes.

Functional connectivity data. The Network-based statistic (NBS) software package,

developed for testing hypotheses about the human connectome [83] was used for statistical

analysis. The NBS method exploits the tendency for experimental effects involving brain con-

nectivity to exhibit specific topological characteristics that could not occur by chance in the

absence of an effect (see Fig 2D;–for more details of the NBS analysis, see S3 File). The follow-

ing effects of the experimental manipulations on FC strength were tested by pairwise NBS

based statistical contrasts: 1) the effect of the TASK TYPE: whether baseline (only tracking)

and detection task (detection + tracking) FC networks are different—for this contrast, FC

strength data were pooled for the two only tracking task and separately for all detection task

conditions; 2) the effect of ATTENTION: whether focused and divided attention condition FC

networks are different—for this contrast, FC strength data were pooled for the focused and

Functional brain networks activated in a multi-speaker environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0212754 February 28, 2019 11 / 31

http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
https://doi.org/10.1371/journal.pone.0212754


separately for the divided attention conditions. Two further contrasts were employed to test

the effect of 1) the DETECTION TASK TYPE (whether the numeral and the syntactic detec-

tion task are different) and 2) the LOCATION (effect of location of the the task-relevant

speech stream). The results of these analyses are reported in the S9 and S10 Files and S3 Table.

The robustness of the observed network differences was assessed by calculating the effect size

Cohen d’ separately for each identified network effects (S4 File).

Correlation between behavioral and EEG FC measures. In order to determine whether

the processes indexed by FC are related to the inter-individual variance in task performance,

correlations were calculated between the average connectivity strength values of the significant

networks emerging from each statistical contrast and the average behavioral indices measured

for each condition (see Fig 2E). FC strength for this analysis was calculated as the average of

the strength values of the edges comprising the significant network selected through the NBS

statistic. These average network strength values were then separetaly correlated with each cor-

responding behavioral variable (d’, RT, and recognition performance values) by Pearson’s cor-

relation. The variables met all statistical prerequisites for performing permutation-based

correlations. The family-wise error was controlled for each behavioral variable, separately, esti-

mating the distribution of the correlation coefficients by permuting the network strengths val-

ues 10,000 times. From each permutation, the highest (absolute) correlation coefficient was

extracted and the p-value was established as the proportion of these correlation coefficients

that were higher than or equal to the observed coefficient. The list of correlations and their cor-

responding families are given in S3 Table. For the TASK-TYPE contrast-based correlation

analyses, only recognition memory performance variables were correlated with the corre-

sponding network strength variables, because recognition memory is the only behavioral vari-

able that can be measured in both the only tracking and the detection task conditions (e.g.,

recognition memory performance after the divided attention detection task condition was cor-

related with the average strength of those divided attention condition networks, the edges of

which were stronger for the divided attention detection task than for the tracking-only

condition).

Fig 3. Group average (N = 25) performance in the detection (indexed by RT and d’; panels A and B, respectively), the ratio of detection task FAs (responses

elicited by distractors) to the total of the non-target responses (i.e., responses neither categorized as hits nor as false alarms; panel C), and performance in the

tracking task (recognition memory performance; panel D), separately for the numeral (dark grey bars) and the syntactic violation task (light grey bars) and for the

focused (left) and divided attention condition (right). Line bars represent standard errors.

https://doi.org/10.1371/journal.pone.0212754.g003
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Fig 4. FC networks significantly affected by TASK TYPE: stronger for the tracking than for the detection task

(Tracking Task Specific Networks: delta band panel A) and stronger for the detection than for the tracking task

(Detection Task Specific Networks: EEG low alpha and beta bands panel B). The left column of panels A) and B)

separately shows the regional distribution of the functional connections (color scale right from each panel). 100%

refers to the sum of the connections comprising the significant network. The relative distributions of the connections

are calculated for frontal, cingular, temporal and parietal cortices pooling the two hemispheres data. Values are plotted

only above the diagonal. The right column of panels A) and B) separately shows a visualization of the significant

networks on a plot of the cortical surface (top, left, and right view). Dots represent the spatial locations of the EEG

sources reconstructed for cortical regions (nodes) in MNI space. The colors of the nodes indicate the cortical lobe:

red–frontal; yellow–cingular; green–temporal; blue–parietal cortex. The size of the node represents the degree

(number of connections within the network) of each node (see S5 Table).

https://doi.org/10.1371/journal.pone.0212754.g004
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Results

Behavioral responses

Fig 3 shows a summary of the behavioral measures. The behavioral results have also been

described in the paper reporting the ERP effects [68]. For the effects of stream location on the

performance measures, see S7 File.

Detection task performance. Analysis of d’ revealed significant main effects of DETEC-

TION TASK (F1,24 = 9.235; p = 0.005, ηp
2 = 0.277) and ATTENTION (F1,24 = 18.951;

p<0.001, ηp
2 = 0.441). Listeners performed significantly better with the numeral than the syn-

tactic violation detection task and in the focused than the divided condition. The distractor

effect was significantly larger with numeral than syntactic violation detection (main effect of

the DETECTION TASK: F1,24 = 158.009; p<0.001, ηp
2 = 0.868). For RTs, the significant main

effect of DETECTION TASK (F1,24 = 198.095; p<0.001, ηp
2 = 0.892) was due to listeners

responding faster when detecting numerals than syntactic violations. However, because RTs

were calculated from word onset, the RT difference between the two tasks may be biased by

different delays from word onset for recognizing numerals compared to detecting a syntactic

violation.

Tracking task performance. For the proportion of the correct answers to the questions

asking about information related in the news articles, significant main effects of ATTENTION

(F1,24 = 97.153; p<0.001 ηp
2 = 0.802) and DETECTION TASK (F1,24 = 11.258; p<0.005, ηp

2

= 0.319) were found. More details of the speech stream were remembered by listeners in the

focused than the divided attention condition, and with the numeral than the syntactic violation

detection task. The proportion of the correct responses in the tracking task only condition

(not included in the above ANOVA) was higher for the focused attention (mean = 77.5;

SD = 12.5) relative to the divided attention condition (mean = 64.9; SD = 14.2). No significant

memory performance difference was found between the tracking task only and the detection

task conditions.

Functional networks

The statistical contrast yielded EEG functional networks significantly affected by ATTEN-

TION (focused vs divided attended) as well as ones significantly affected by TASK TYPE (only

tracking task vs. detection task) in two slow (delta: 0.5–4 Hz, and lower alpha 8–10 Hz), and

one fast band of oscillations (beta: 13–30 Hz). These results will be detailed in the next two sec-

tions. According to the post-hoc analyses the effect of ATTENTION and TASK conditions on

connectivity were ranging from medium to large (see S4 Table). S5 Table shows the summary

of the EEG node degrees (the number of connections within networks showing a significant

ATTENTION or TASK TYPE effect), separately for each ROI. Nodes with the highest degree

could be identified as centers (termed as hubs) of interregional communication. The networks

characteristically differ from each other by the hub locations and the relative contribution of

the different lobes.

The effect of task type on functional connectivity. Fig 4 shows the significant effects of

the TASK TYPE manipulation for the delta, low alpha, and beta frequency bands. Regional dis-

tribution of the significant connections is depicted on the matrix panels, while a visualization

of the significant networks is shown on a plot of the cortical surface.

Delta band.—Fig 4A, top. In the delta band all edges (N = 6; connecting 7 nodes) showed

significantly (p<0.05) stronger connectivity during the tracking task relative to the detection

task (TASK TYPE effect; K = 9.7, the threshold used in the F statistics–see S3 File; p = 0.048).

The connections are predominantly within the frontal cortices and between frontal and
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temporal regions. Nodes with the highest number of connections (degree) within this network

(S5 Table) were the MFG (caudal and rostral), and the medial temporal cortices (STG and

MTG).

Low alpha band.—Fig 4B, top. All edges showed significantly (p<0.05, all) stronger connec-

tivity during the detection task relative to the tracking task (TASK TYPE effect; K = 10.0;

p = 0.004). The distribution predominantly involves the parietal cortices on both sides with

some fronto-temporal connections. Nodes with the highest degree (S5 Table) were distributed

across the frontal (MFG, OFG) temporal (HES, STG, MTG) and parietal (SMG, PoCG)

cortices.

Beta band.—Fig 4B, bottom. All edges showed significantly (p<0.05, all) stronger connec-

tivity during the detection task relative to the tracking task (TASK TYPE (K = 6.4; p = 0.047).

The network can be characterized as comprising mainly fronto-temporal pathways mediated

by the cingular cortices, as well as temporo-parietal and intra-parietal links. Nodes with the

Fig 5. FC networks significantly affected by ATTENTION: stronger for focused than for divided attention (Focused Attention Specific Networks: EEG delta,

low alpha, and beta bands; left: A) and stronger for divided than for focused attention (Divided Attention Specific Networks: EEG delta and beta bands; right:

B). The left column of panels A) and B), separately shows the regional distribution of the functional connections (color scale right from each panel). 100%

refers to the sum of the connections comprising the significant network. The relative distributions of the connections are calculated for frontal, cingular,

temporal and parietal cortices pooling the two hemispheres’ data. For the sake of simplicity, the values are plotted only above the diagonal. The right column

of panels A) and B), separately shows a visualization of the significant networks on a plot of the cortical surface (top, left, and right view). Dots represent the

spatial locations of the EEG sources reconstructed for cortical regions (nodes) in MNI space. The colors of the nodes indicate the cortical lobe: red–frontal,

yellow–cingular, green–temporal, blue–parietal cortex. The size of the node represents the degree (number of connections within the network) of each node

(see S5 Table).

https://doi.org/10.1371/journal.pone.0212754.g005
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highest degree (S5 Table) were distributed across all four of the cortical areas assessed: cingular

(ACC, PCG), frontal (PreCG, MFG), temporal (ITG, FFG), and parietal (IPG, PoCG).

The effect of focused vs. divided attention on EEG functional connectivity. Fig 5 shows

the significant effects of the ATTENTION manipulation, separately for the two possible direc-

tions of the effects (focused > divided attention and vice versa) in the delta, low alpha, and

beta frequency bands. Regional distribution of the significant connections is depicted on the

matrix panels, while a visualization of the significant networks is shown on a plot of the corti-

cal surface.

Delta band.- Fig 5A, top shows those connections (N = 25 edges connecting 29 nodes)

which were significantly (p<0.05, all) stronger during focused relative to divided attention

(ATTENTION effect; K = 3.6; p = 0.047). Hub nodes were the IFG (N = 12) and the MFG

(N = 11, see S5 Table). This network features functional connections within the frontal cortex

(both within and across hemispheres) together with a few longer range fronto-temporal links.

Fig 5B top shows those connections (N = 22 connecting 23 nodes), which were significantly

(p<0.05, all) stronger during divided relative to focused attention. These connections were pri-

marily observed within temporal areas (both within and across hemispheres) and between

frontal and parietal and frontal and temporal areas, mainly mediated through the frontal

PreCG and IFG and the parietal IPG and PreCUN nodes (see S5 Table).

Low alpha band- Fig5A, middle shows those connections, which were significantly

(p<0.05, all) stronger during focused relative to divided attention (ATTENTION effect:

K = 4.3; p = 0.047; all but the connection between the right SFG and right HES). This network

comprised 25 edges connecting 24 nodes. Nodes with the highest degree (S5 Table) were dis-

tributed across the frontal (MFG), temporal (ITG), and parietal (IPG) lobes. Characteristic

connections included long-range fronto-parietal and local frontal connections.

Beta band.—Fig 5A, bottom shows those connections, which were significantly (p<0.05,

all) stronger during focused relative to divided attention (ATTENTION effect: K = 0.1;

p = 0.042). This network comprises 25 edges connecting 23 nodes. It mainly features func-

tional connections (S5 Table) between the frontal and cingular cortices with relatively few

local frontal and long-range fronto-parietal links (i.e. between SMG and MFG).

Fig 5B, bottom shows those connections, which were significantly (p<0.05, all) stronger

during divided relative to focused attention. This network comprises 25 edges connecting 18

nodes and it mainly consists of fronto-temporal (frontal nodes of IFG and MFG with temporal

nodes, such as MTG and FFG) and a few temporo-parietal connections (e.g., HES-IPG).

Correlation between behavioral and EEG FC measures. TASK-TYPE contrast based

analyses: The average memory performance score in the divided attention only tracking task

condition was significantly positively correlated with the average connection strength of the

tracking task specific network in the delta band (r(25) = .530, pfwe = .025). The average mem-

ory performance score in the divided attention detection task condition was significantly posi-

tively correlated with the detection task specific network connectivity strength in the lower

alpha band (r(25) = .496, pfwe = .043).

ATTENTION contrast based analyses: The average memory performance score of the

divided attention conditions was significantly positively correlated with the strength of the

beta band focused attention specific network (r(25) = .505, pfwe = .041).

Discussion

Functional connectivity estimates were utilized for extracting whole brain functional networks

operating on different timescales while listeners attended to one or two continuous simulta-

neously delivered speech streams. Brain networks in delta, low alpha, and beta frequency
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bands were differentially activated when listeners either focused on a single speech stream ver-

sus when they divided their attention between the two streams. The connectivity strength of

brain networks also varied as a function of the duration of the time window within which

information was integrated for successfully performing the task. Moreover, the strength of FC

within these networks was associated with the task-performance measures. Thus, these net-

works may operate in parallel performing specialized functions. In the following, we separately

address the observed effects on functional brain networks.

Dynamic functional networks sensitive to the requirements of the listening

task

We found that the tracking task induced stronger coupling within brain regions involved in

speech comprehension in the slow delta frequency band of EEG (corresponding to informa-

tion integration over long time windows of ca. 500–2000 ms duration) while the detection

tasks were associated with stronger connectivity between regions supporting lexical and syn-

tactic processing in the relatively faster alpha and beta bands (corresponding to integration of

information within shorter time windows of ca. 33–125 ms duration). We also found that the

tracking task relative to the detection task-induced stronger coupling of the slow hemody-

namic and the EEG delta frequency bands in anterior brain regions (for a description of the

recording, processing, and results of the NIRS data, see (S5, S6 and S8 Files, S6 Table, S2 and

S3 Figs).). Our tracking task facilitated listeners to integrate longer periods of the speech seg-

ments (phrases lasting for ca. 3 seconds and longer) while encoding their information in

Fig 6. A schematic depiction of the potential roles of functional networks in sensitive to the TASK TYPE contrast

as a function of the NIRS/EEG frequency bands and a schematic brain functional hierarchy. (Recording, analysis,

and results for the NIRS data can be found in S5, S6 and S8 Files, S6 Table, S2 and S3 Figs). The NIRS/ EEG frequency

scale is represented on the x-axis, whereas the functional hierarchy on the y-axis. The networks with stronger

connectivity during the detection task are predominantly located in sensory/perceptual areas and operate on higher

oscillatory frequencies, whereas the networks with stronger connectivity during the tracking task are located in

perceptual/cognitive-control areas and operate on lower oscillatory frequencies.

https://doi.org/10.1371/journal.pone.0212754.g006
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longer-term memory. In contrast, the detection task promoted listeners to focus their attention

on a shorter time scale, because the target events could be detected without reference to the

longer context (i.e., by lexical analysis or analysis of grammatical structures involving 2–3 suc-

cessive words, the numeral and the syntactic violation detection task, respectively) and an

immediate response was required to them. The average word duration was ca. 425 ms; thus,

2–3 words were 850–1275 ms long. Thus, the relationship between phrase durations and the

length of the delta cycles and that between 1–3 words and the alpha cycles is similar: 2–4 cycles

of these oscillations would cover the period of the corresponding speech segments. We also

note that with decreasing oscillation frequencies, the focal points of these networks appear to

progress from areas responsible for sensory processing towards areas regarded as supporting

high-level cognitive processes, such as contextual processing and cognitive control. Therefore,

we tentatively suggest that the different oscillation frequency ranges may reflect differences in

the length of the speech segments, whose information is integrated (e.g., in working memory)

for performing the task. No FC difference was observed between numeral and syntactic-viola-

tion detection (see S9 File). This may have been due to the fact that detecting syntactic viola-

tions required integration of maximum three short words, which is not be separable from the

single-word window in terms of the traditional EEG bands (a limitation of the current meth-

ods). Further, the lack of differentiation between the two types of detection tasks may also indi-

cate that extracting and manipulating certain lexical and grammatical speech features may rely

on largely overlapping neural networks. However, event-related phasic neural activity usually

distinguishes these two aspects of speech [68,84,85] (. The networks showing significant effects

of task type in our study are represented along their timescales and neuro-anatomical charac-

teristics on Fig 6. A more detailed discussion of the networks sensitive to task type are given

below.

Neural network supporting speech comprehension over longer time-scales.

The cerebral blood flow based network (reported in S8 File): The network showing higher FC

during tracking as opposed to target detection is left-lateralized and fronto-parietal with supe-

rior and lateral parietal and superior-medial and inferior frontal hubs. These nodes were more

strongly coupled with each other and with medial temporal regions (medial and Heschl). The

observed network largely overlaps with those parietal and frontal areas, which have been

shown to support the integration of narrated stories over longer time scales [86,87]. In these

neuroimaging studies, the hierarchy of the temporal windows of language processing was

mapped in subjects listening to real life stories scrambled at the timescale of words, sentences,

or paragraphs. It was found that longer timescales involved a succession of brain regions from

low-level auditory to higher order language areas. Frontal regions appeared to accumulate

information over the longest time windows (from the sentence level to the entire story; for a

review see [88]). We therefore interpret the task-type sensitive network based on slow (0.009–

0.01Hz) deoxyhemoglobin fluctuations as reflecting the activation of higher-order areas with

long processing timescales (many seconds to minutes, which approximate the time course of a

coherent segment within the news piece-like text; Fig 6.), as these cortical circuits can accumu-

late information at the highest level of the hierarchy affected within the current study.

Delta band network (0.5–4 Hz): The core of this network comprised links within the frontal

and between frontal and temporal cortices. Stronger involvement of higher-level frontal areas

in the tracking task relative to detection task supports the notion that integrating information

from longer windows during tracking task may rely on higher-order areas. Given the temporal

spread of the delta waves, delta-band FC between frontal and temporal areas may support the

integration of words into sentences (at the time scale of ca. 2 s; Fig 6). This functional role of

the task-type sensitive low-frequency networks is also supported by the observed linear corre-

lation between the strength of delta band FC and memory performance in the tracking task.
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Specifically, stronger FC was linked with better memory performance in the only tracking task

condition. This suggests that these networks may reflect, at least in part, sustained memory-

related processes (semantic information retrieval, episodic encoding, etc.) and sustained allo-

cation of attention to the target speech stream. This idea is in line with the observation that

central nodes of the networks which show stronger coupling for the tracking task alone are

located in the frontal cortices in the MTG and parietal association cortices (SPG and SMG).

The MTG has been shown to participate in accessing lexical, semantic, and conceptual infor-

mation and the inferior and midline frontal cortices display extensive projections to the afore-

mentioned temporal and parietal nodes implicated in contextual integration [11,89].

Neural network supporting linguistic analysis over shorter timescales. In contrast to

tracking task, the detection task induced stronger connectivity in the alpha and beta frequency

bands showing more distributed networks that included the sensory-perceptual brain regions:

the detection task specific networks consist of connections within the temporal cortex and

between temporal and parietal areas. Further, the low alpha band network strength correlated

with memory performance. However, unlike for the low-frequency networks, here connectiv-

ity strength was related to the memory index only when participants performed a detection

task (in addition to the tracking task). This indicates that faster oscillations may contribute to

detection-task related processes and enhance memory performance through reducing the

interference between the detection and the tracking task.

It is, however important to note that the functional role of alpha and beta oscillations in lis-

tening conditions are still controversial. Our interpretation that the frequency of the oscillation

is related to the duration of the task-relevant speech segments is compatible with the sugges-

tions that 1) beta-band activity is linked with top-down lexical semantic predictions such as

lexical-semantic prediction of an upcoming word based on prior context [15] and 2) alpha

oscillations are associated with the storage of syntactic phrases in verbal working memory for

the downstream establishment of dependencies with other phrases [15]. These functions are

central to the requirements of the detection task, whereas they are part of a larger set of func-

tions required in the tracking task. Further, these functions require integration of information

over shorter timescales compared to what is needed for successfully performing the tracking

task.

An alternative to this interpretation can be based on the assumption that the detection task

may require stronger auditory attentional control relative to the content tracking task, and

alpha and beta band networks represent neural inhibition of the ignored auditory stream for

better detecting targets in attended stream. In favor of this alternative, it was shown that 1)

alpha activity may reflect the listener attending versus ignoring some speech input, which

could be interpreted as protecting the processing of the attended speech signal from interfer-

ence by suppressing the unattended input [42,43,90,91]; 2) beta band activity is assumed to be

a good proxy of control processes in adverse listening conditions and auditory perceptual deci-

sion [44,46,92].

The functional networks underlying focusing or dividing auditory

attention

Listeners remembered more information from the speech segments in the focused than in the

divided attention conditions. These results are consistent with previous reports on dichotic lis-

tening [51,93]. One possible way of interpreting the attention effect is that focusing attention

on a single speaker allows deeper processing of the speech stream, while effectively suppressing

the concurrent stream reduces the amount of information to be processed. In contrast, divid-

ing attention across multiple speech streams results in shallower encoding and more
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information to be processed. The beneficial effects of focused attention could be due to

improving the signal-to-noise ratio for task-relevant information either by enhancing gain on

cortical activity related to the target and/or by suppressing the activity elicited by the task-irrel-

evant speech stream [4,5,7,8,94]. In contrast, dividing attention between two parallel speech

streams may require sharing processing resources across them. This requires that a larger

amount of data is processed in parallel, the maintenance/representation of two concurrent

stream representations together with more intensive (finer-grained) top-down control over

these processes.

In the present study we identified two separate sets of functional networks operating in par-

allel in multiple frequency bands, one associated with focused, the other with divided attention

in our multi-talker situation. Because, for this analysis, we contrasted the two attention condi-

tions, the networks emerging point out those parts of the attention system, which are specific

to one or the other attentional situation. While the two sets of networks overlap in oscillation

frequencies as well as in the main areas involved, the role of higher-order areas is prominent in

the focused attention specific networks, whereas in the networks associated with divided atten-

tion, sensory/perceptual areas play a more important role. A summary of these networks is

shown at Fig 7. Overall, connections strengthened by focused attention may reflect control

over information selection, whereas connections strengthened by divided attention may reflect

the need for maintaining two streams in parallel increased amount of speech processing and

Fig 7. A schematic depiction of the potential roles of functional networks in mediating focused vs. divided

attention during processing two concurrent speech streams. The y axis represents the functional level as well as the

main hub regions of the networks.

https://doi.org/10.1371/journal.pone.0212754.g007
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the related control processes necessary for performing the tasks. A more detailed description

of the observed networks follows.

Functional networks specific to focused auditory attention. Many of the frontal areas

involved in the networks showing stringer activation with focused in comparison with divided

attention have been previously implicated in attentional control [9,95,96] and working mem-

ory control functions ([97] 003). Thus these networks may be involved in voluntary control of

speech processing and information selection mediated by the dorsal fronto-parietal attentional

system in the low (delta, theta; e.g., [94]), alpha (e.g., [43]), and in the beta band (e.g., [48]).

Delta band network (0.5–4 Hz): This network is characterized by local frontal and fronto-

temporal connections. We suggest that this network may play a role in enhancing the process-

ing of task-relevant information because 1) regardless of the stimulus material, fronto-parietal

phase synchronization in the delta band has been shown during sustained attention and this

synchronization decreased with cognitive fatigue but increased during the orientation of atten-

tion [37,98] and 2) specifically, during speech perception, delta oscillations in auditory cortex

are modulated by functional connections from higher-order areas (frontal and motor) to pri-

mary auditory cortex, thereby changing/controlling the auditory cortical entrainment to the

speech input [35,38,43,58]. Therefore, the stronger coupling observed in the focused, as com-

pared with divided attention in the delta band may reflect mechanisms enhancing the respon-

siveness/entrainment to the task-relevant speech stream.

Alpha band network (8–10 Hz): We interpret our finding of stronger alpha-band FC

between the midline frontal and parietal cortices during focused compared to divided atten-

tion as the mechanism of suppressing the task-irrelevant speech stream under the control of

the MFG. Alpha-band activity has been previously associated with the suppression of task-

irrelevant information during working memory and selective attention tasks ([60,99–102]

with particular relevance in spatial auditory selective attention [42,43] and speech processing

in the presence of maskers [42,56,103]. Current alpha-band network also exhibited stronger

FCs within temporal cortices and projections from temporal to prefrontal and parietal cortices.

Similar results were obtained in a MEG study [56], which showed that during dichotic listen-

ing to speech, functional coupling of the alpha rhythm increased between left auditory and

Wernicke’s areas (Wernicke area is a part of SMG). This network calls into mind the well-

known topography of the dorsal (STG projects dorsal-posterior toward inferior parietal and

frontal lobe regions, such as premotor areas in PreCG) and the ventral (STG projections to

MTL and the IFG, from IFG to PreCG) language pathways [11,89]. Thus, the current alpha-

band network may also be related to the observation of posterior alpha activity while listeners

maintained information about lateralized sounds in working memory [104] as well as to the

higher inter-areal alpha-band phase synchronization found during demanding information

processing that involved working memory [41]. Taken together, these findings suggest that

selective attention may have enhanced both the ventral and the dorsal pathways for speech

encoding through increased alpha-band posterior connections.

Beta band network (13–30 Hz): The beta-band FC that were found to be stronger for

focused than divided attention included links from the cingular cortices (i.e. ACC) to the fron-

tal (PreCG, IFG, SFG, OFG) and posterior areas (SMG, PoCG, MTG). Also, we demonstrated

that stronger connectivity of this network was accompanied by better subsequent memory

accuracy. We interpret the observed beta-band network as possibly contributing to the pre-

frontal monitoring functions facilitating the local processing of task-relevant stimuli in poste-

rior sensory association areas [46,105]. Specifically, this function may operate via supporting

processing speech information through auditory sensory and motor areas. Further, the ante-

rior part of cingular cortices (ACC) is also presumed to serve as a relay station between frontal

speech producing regions (IFG) and it plays a critical role in the control of attention, and
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memory processes [106–108]. The involvement of the premotor region in the beta-band FC

networks is compatible with the view that articulatory movements mediated by beta–band

oscillations provide sensory-motor representation by internal motor simulation of the per-

ceived phonemes [104,109–113].

Functional networks specific to divided auditory attention.

Delta band network (0.5–4 Hz): This network has connections within the temporal cortex

and from the temporal cortex to the frontal and parietal cortices. This network largely

overlaps with the fronto-temporo-parietal network observed for speech perception, a

network that is known to be affected by the stimulus-driven allocation of auditory atten-

tion [10,59,96,114,115]. This may reflect that the increased the sensory information pro-

cessing load of memory storage and stream monitoring is accompanied by an increase of

FC strength in a distributed network involving the sensory/perceptual auditory areas

while requiring more nuanced control from frontal areas with information possibly flow-

ing both ways (top-down as well as bottom-up aspects of attention).

Beta band network (13–30 Hz): This network connects sensory/perceptual areas of lan-

guage processing with fronto-temporal and temporo-parietal links. These results are con-

sistent with the reported involvement of IFG pars orbitalis (BA47) in semantic processing

[11,89]. We suggest that the higher processing load caused by processing multiple speech

streams during the divided attention conditions may be reflected by stronger coupling in

beta-band functional networks with hub regions that are located in lower level sensory

and perceptual areas (i.e. motor; inferior temporal; inferior parietal cortices) of the speech

processing networks [110].

Limitations

Although extracting phase synchronization (especially PLI), and the rigorous statistical tech-

niques used to test experimental contrasts are aimed to eliminate the spurious connections

resulting from volume conduction [116], EEG source localization still holds uncertainty

because distributed source models such as sLORETA provides spatially smoothed solution

based on probability estimation of the source distribution. Thus, neighborhood sources are

conditioned to assume similar current density field strengths (the Laplacian regularization

priors).

An additional limitation of the current study is the lack of individual’s structural anat-

omy by MRI or digitized EEG sensor locations [75]. According to reviews [74,77] LOR-

ETA is able to recover smoothly distributed sources with relatively low localization error.

The error has been estimated by dual fMRI-EEG to approx. 14.5-16mm of the MRI activa-

tion focus. Simulating an EEG inverse source reconstruction for testing the consequence

of using approximate head model [73] yielded a median localization error of 10.3 mm.

One study indicated that localization errors of a spatio-temporal dipole fit in the head vol-

ume with the sphere model are on the range of 6 to 20mm with high rates of residual vari-

ance in the data [72].

Finally, it is important to note that the length of the analyzed epoch may influence the con-

nectivity value. Here 2 sec long EEG segments were extracted that allowed us to maintain an

optimally high number of epochs that are free of artefacts and transient evets. In other words,

we aimed to keep the trade-off between the number of the epochs and the length of epochs

optimal. It has been reported that longer epoch lengths generally result in lower connectivity

values [66,67]. Although the different epoch lengths for EEG and NIRS may have influenced

the magnitude of connectivity, the effects of conditions observed on EEG and NIRS networks

would have to be independent of the connectivity magnitude.

Functional brain networks activated in a multi-speaker environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0212754 February 28, 2019 22 / 31

https://doi.org/10.1371/journal.pone.0212754


Summary

We found that 1) tracking the contents of long speech segments, which require information to

be integrated for several seconds (induced by speech tracking task) was allocated stronger con-

nectivity in lower frequencies (delta band), whereas linguistic analysis of speech in shorter

timescales (induced by detection task) was linked with the network in the faster alpha and beta

bands. Furthermore, the strength of network connectivity was found to be predictive for the

task-performance measures. Therefore, these networks may operate in parallel performing

specialized functions.

In the current study, we found that tracking the contents of long speech segments, which

requires information to be integrated over several seconds, was associated with increased con-

nectivity strength of EEG delta-band and even slower NIRS-signal based functional networks

connecting areas involved in speech comprehension. In contrast, detection numerals and syn-

tactic violations with maximum 4 syllables separating the grammatically linked words were

associated with stronger connectivity in networks operating in the relatively faster EEG alpha

and beta bands, connecting regions supporting lexical and syntactic processing. Furthermore,

connectivity strength of these networks correlated with task-performance measures. We sug-

gest that the frequency of these oscillatory networks may be related to the duration of the time

windows from which information is integrated. We also found EEG delta-, alpha-, and beta-

band functional networks with predominantly frontal hubs, which were associated with

focused as compared to divided attention and delta- and beta-band networks with hubs in

auditory sensory and perceptual areas linked with divided as compared to focused attention.

These networks may reflect the differences in task demands between focusing or dividing

one’s attention in a multi-talker situation (e.g., information selection vs. speech processing and

maintaining two streams in parallel).

Supporting information

S1 Fig. Results of the assessment of source localization accuracy. ROI pair distances above

the thresholds of 15 (top panel) and 20 mm (bottom panel) are plotted as lines connecting the

corresponding ROI centers. The threshold was defined as 50% indicating that more than half

of the ROI’s voxel’s source activity could be unreliably attributed to another ROI. The present

EEG source localization solution could result in a high degree of overlap for 5 pairs (15 mm

estimated error) or 17 pairs (20 mm estimated error) of ROIs.

(TIF)

S2 Fig. NIRS channel and EEG electrode montage. NIRS sources (red dots), detectors (blue

dots), and channels (green lines) with channel numbers printed over the line are shown for the

configuration used in the experiment. Blue circles represent standard EEG electrode positions.

Some of the NIRS optodes were slightly moved for reaching the optimal 3 cm distance between

each source-detector pair (not marked on this Fig). NIRS channels were spatially clustered

into the 11 left and 11 right-hemispheric cortical regions. The abbreviations of the NIRS corti-

cal regions (see S1 Table) are indicated within the shaded regions of the plot. The color of

shaded regions represents the large-scale brain areas with blue marking the parietal red the

frontal, green the temporal region ROIs selected for the analyses.

(TIF)

S3 Fig. NIRS FC networks significantly affected by TASK TYPE. Stronger for the tracking

than for the detection task (Tracking Task Specific Networks. The left column of panels A)

and B) separately shows the regional distribution of the functional connections (color scale

right from each panel). 100% refers to the sum of the connections comprising the significant

Functional brain networks activated in a multi-speaker environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0212754 February 28, 2019 23 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212754.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212754.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212754.s003
https://doi.org/10.1371/journal.pone.0212754


network. The relative distributions of the connections are calculated for frontal, cingular, tem-

poral and parietal cortices pooling the two hemispheres data. Values are plotted only above the

diagonal. The right column of panels A) and B) separately shows a visualization of the signifi-

cant networks on a plot of the cortical surface (top, left, and right view). Dots represent the

spatial locations of the EEG sources reconstructed for cortical regions (nodes) in MNI space.

The colors of the nodes indicate the cortical lobe: red–frontal; yellow–cingular; green–tempo-

ral; blue–parietal cortex. The size of the node represents the degree (number of connections

within the network) of each node (see S6 Table).

(TIF)

S4 Fig. Grand average spectral power. Spectral density is shown for all 64 channel channels

separately (colored lines). The scalp distribution of the power for 1 Hz, 10 Hz and 20 Hz are

plotted above the diagram.

(TIF)

S1 Table. Source regions and their abbreviation. Source regions and their abbreviation

(third column) for EEG (second column) and NIRS sources (fourth column) grouped accord-

ing to large-scale anatomical areas (first column).

(DOCX)

S2 Table. EEG source localization accuracy results. All ROIs pairs (listed region as A-B)

above the threshold degree of overlap reported separately for 15 and 20 mm localization error

distance values.

(DOCX)

S3 Table. Supplementary information on EEG FC and behavioral data correlation analysis.

(DOCX)

S4 Table. Results of the post hoc pairwise dependent sample t-tests performed on the aver-

age subnetwork connectivity strength values (Student’s t, degree of freedom, p, and

Cohen’s d effect size values).

(DOCX)

S5 Table. Summary of the number of connections within the subnetworks that showed sig-

nificant ATTENTION or TASK TYPE effects, separately for the three EEG bands (col-

umns). Each line represents a ROI (identified by its abbreviation as defined in S1 Table). ROIs

are grouped by brain lobes (Frontal, Cingular, Temporal, and Parietal). The sum of connec-

tions within each lobe and the percentage of connections relative to all connections within sub-

networks are also listed.

(DOCX)

S6 Table. Summary of the number of connections within the subnetworks showing a sig-

nificant TASK TYPE effect for the NIRS deoxygenated hemoglobin concentration. Each

line represents a ROI (identified by its abbreviation as defined in S1 Table). ROIs are grouped

by brain lobes (Frontal, Cingular, Temporal, and Parietal). The sum of connections within

each lobe and the percentage of connections relative to all connections within the subnetworks

are also listed.

(DOCX)

S1 File. Stimuli: Syntactic violation.

(DOCX)
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S2 File. Assessment of EEG source localization accuracy.

(DOCX)

S3 File. Statistical analysis: Extended description of the NBS statistics.

(DOCX)

S4 File. Effect size measure of FC statistics.

(DOCX)

S5 File. NIRS recording and preprocessing.

(DOCX)

S6 File. NIRS functional connectivity analysis.

(DOCX)

S7 File. Supplementary results: Behavioral responses–testing the effects of location.

(DOCX)

S8 File. Supplementary results: NIRS deoxygenated hemoglobin concentration.

(DOCX)

S9 File. Supplementary results: The effect of the DETECTION TASK TYPE on EEG FC.

(DOCX)

S10 File. Supplementary results: The effect of the LOCATION.
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