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Deep Learning Based Noise Reduction for Brain  
MR Imaging: Tests on Phantoms and Healthy Volunteers

Masafumi Kidoh1†, Kensuke Shinoda2†, Mika Kitajima1*, Kenzo Isogawa3,  
Masahito Nambu2, Hiroyuki Uetani1, Kosuke Morita4, Takeshi Nakaura1,  

Machiko Tateishi1, Yuichi Yamashita2, and Yasuyuki Yamashita1

Purpose: To test whether our proposed denoising approach with deep learning-based reconstruction 
(dDLR) can effectively denoise brain MR images.
Methods: In an initial experimental study, we obtained brain images from five volunteers and added different 
artificial noise levels. Denoising was applied to the modified images using a denoising convolutional neural 
network (DnCNN), a shrinkage convolutional neural network (SCNN), and dDLR. Using these brain MR 
images, we compared the structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR) between 
the three denoising methods. Two neuroradiologists assessed the image quality of the three types of images. In 
the clinical study, we evaluated the denoising effect of dDLR in brain images with different levels of actual noise 
such as thermal noise. Specifically, we obtained 2D-T2-weighted image, 2D-fluid-attenuated inversion recovery 
(FLAIR) and 3D-magnetization-prepared rapid acquisition with gradient echo (MPRAGE) from 15 healthy 
volunteers at two different settings for the number of image acquisitions (NAQ): NAQ2 and NAQ5. We recon-
structed dDLR-processed NAQ2 from NAQ2, then compared with SSIM and PSNR. Two neuroradiologists 
separately assessed the image quality of NAQ5, NAQ2 and dDLR-NAQ2. Statistical analysis was performed in 
the experimental and clinical study. In the clinical study, the inter-observer agreement was also assessed.
Results: In the experimental study, PSNR and SSIM for dDLR were statistically higher than those of 
DnCNN and SCNN (P < 0.001). The image quality of dDLR was also superior to DnCNN and SCNN. In the 
clinical study, dDLR-NAQ2 was significantly better than NAQ2 images for SSIM and PSNR in all three 
sequences (P < 0.05), except for PSNR in FLAIR. For all qualitative items, dDLR-NAQ2 had equivalent or 
better image quality than NAQ5, and superior quality to that of NAQ2 (P < 0.05), for all criteria except 
artifact. The inter-observer agreement ranged from substantial to near perfect.
Conclusion: dDLR reduces image noise while preserving image quality on brain MR images.
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Introduction
High-resolution MR images with high SNR enable better 
visualization of precise anatomical structures, improving 

diagnostic accuracy and facilitating early-stage diagnosis of 
various central nervous system diseases.1–3 However, SNR 
decreases when high-resolution images are acquired in a 
short acquisition time. To obtain high-resolution MR images 
with high-SNR, there are several options, such as changing 
the acquisition bandwidth, using a high magnetic field 
strength, and increasing the number of image acquisition 
(NAQ). In the clinical setting, increasing NAQ is a common 
choice. However, an increase of NAQ results in a longer 
acquisition time. To improve the image quality in low SNR 
images, several denoising techniques have been used.4–6 
Recently, deep learning approaches for image noise reduc-
tion have been reported.7–9

We have previously presented a MR image denoising 
method called the shrinkage convolutional neural network 
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(SCNN),10,11 based on the denoising CNN (DnCNN)8 
approach. Unlike the DnCNN, the SCNN can be tuned to 
the noise power of the input image. This is achieved by 
using a CNN with soft-shrinkage activation functions. 
With this technique, the output is proportional to the input 
noise power. Therefore, setting an appropriate noise level 
for each target image in SCNN allows the use of a single 
network for a large variety of noise levels without training 
separate CNNs that are specific to each noise level. Such a 
noise-adaptive network is especially useful in MRI, where 
scans with different contrast, such as T1-weighted imaging 
(T1WI), T2-weighted imaging (T2WI), and proton-density-
weighted imaging (PDWI), are often acquired in the same 
examination.

Based on SCNN, we have developed a denoising 
approach using deep learning-based reconstruction (dDLR) 
with a CNN. dDLR performs denoising by learning noise 
thresholds in the high frequency components extracted from 
images by a discrete cosine transform (DCT), whereas 
SCNN11 performs denoising directly in the image domain.

The purpose of this study was to test whether our pro-
posed dDLR technique can denoise thin-slice brain MR 
images effectively in experimental and clinical settings. In 
the experimental study, we compared the denoising perfor-
mance of DnCNN, SCNN, and dDLR using artificially 
noise-added brain images with different noise levels. In the 
clinical study, we evaluated the denoising effect of dDLR 
using brain images acquired with different NAQ values that 
provided different noise levels.

Materials and Methods
Our experimental and clinical studies were separately approved 
by the Institutional Review Board at two different institu-
tions. Informed consent was obtained from all volunteers.

Experimental study
Volunteers
Six healthy volunteers (6 men; mean age, 42.8 years; age 
range, 29–51 years) were enrolled to acquire training and 
validation data sets. Testing data sets were acquired on a dif-
ferent group of five healthy volunteers (5 men; mean age, 
28.4 years; age range, 24–38 years).

Deep-CNN architecture of dDLR
The CNN architectures of DnCNN, SCNN and dDLR used in 
this study are illustrated in Fig. 1. DnCNN and SCNN make 
use of residual learning and batch-normalization in hidden 
layers. In SCNN, the soft shrinkage function is used as an 
activation function, but it is not used in DnCNN. dDLR is 
based on a “plain” CNN without the skip connections fea-
tured in residual neural networks. dDLR does not have batch-
normalization processing in any layers. As is the case with 
SCNN, the use of a soft-shrinkage activation function pro-
vides adaptive denoising at various noise levels using a single 
CNN without a requirement to train a unique CNN for each 
noise level.10,11 Soft shrinkage has a threshold T which is cal-
culated by multiplying the noise level σ of the input noisy 
image and a coefficient a which is one of the training 

Fig. 1  Convolutional neural network (CNN) architecture of (a) denoising convolutional neural network (DnCNN), (b) shrinkage con-
volutional neural network (SCNN) and (c) deep learning-based reconstruction (dDLR). (a) DnCNN is a conventional denoising method 
featuring residual learning and batch normalization in hidden layers. (b) SCNN differs from DnCNN in that the activation function is a 
soft-shrinkage function. (c) dDLR is a plain CNN, not a residual neural network. dDLR uses discrete cosine transform (DCT) convolution 
to divide the data into a zero-frequency component path and a path with 48 high frequency components for denoising. A soft-shrinkage 
activation function is applied in both SCNN and dDLR to provide adaptive denoising at various noise levels using a single CNN without a 
requirement to train a unique CNN at each level. IDCT, inverse discrete cosine transform; ReLU, Rectified Linear Unit.

a b c
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parameters (Fig. 2). In the feature extraction layer, both 
SCNN and dDLR use convolution and the soft-shrinkage 
activation function. SCNN generates 64-channel feature 
maps with 64 3 × 3 convolution kernels, which are training 
parameters. dDLR derives 49 components with a fixed 7 × 7 
DCT basis. Like wavelet shrinkage,12 noise reduction is per-
formed using the high frequency components of the image 
rather than the zero-frequency component that represents the 
mean gray-level value of the image. The zero-frequency 
component of DCT goes through a separate collateral path, 
while the other 48 high frequency components are processed 
as feature maps in the subsequent feature conversion layers. 
The zero-frequency component of a 7 × 7 DCT is equivalent 
to a 7 × 7 unweighted moving average filter. Separation of 
this zero-frequency component from the feature extraction 
layer allows the process to maintain the image contrast 
regardless of the scan type, such as T1W, T2W, etc. In con-
trast, the use of a 7 × 7 moving average filter loses the edges 
of detailed structure. Because the detailed structure informa-
tion and noise are mainly in the high frequency components 
passing through the path of feature conversion layers, dDLR 
with a separated path of high frequency components can learn 
CNN parameters to remove noise and restore the lost detailed 
structure. In the feature conversion layers, convolution and 
the soft-shrinkage activation function are repeatedly applied 
to the feature maps. The kernel size of convolution layers is  
3 × 3 in both SCNN and dDLR. The number of feature con-
version layers is 15 in SCNN10 and 22 in dDLR. In dDLR, the 
CNN has more layers but fewer channels, and fewer total 
learning parameters than DnCNN and SCNN. Finally, in the 
image generation layer, the denoised image is generated by 
deconvolution with a 7 × 7 inverse DCT kernel followed by 
addition of the zero-frequency component from the other 

path in dDLR. To summarize, there are two kinds of learned 
parameters in the dDLR CNN: one kind is the 3 × 3 convolu-
tion kernels in the feature conversion layers, and the other is 
the coefficient of the soft-shrinkage activation function in the 
one feature extraction layer and the 22 feature conversion 
layers. The objective of the training process is to optimize the 
threshold coefficient (α) in the soft-shrinkage activation func-
tion in the feature extraction layer and the feature conversion 
layers, and the 3 × 3 convolution kernels in the feature con-
version layers. These parameters are determined by mini-
mizing a loss function based on the mean-square-error 
between ground-truth images and denoised images. To solve 
the loss function optimization problem, the Adam iterative 
stochastic optimization method13 is used as an optimizer with 
a step size of 0.0001. To evaluate our proposed method, a 
deep-CNN with the Chainer14 neural network framework was 
implemented. We trained the CNN over 400 epochs.

Training and validation data sets
The training data sets comprised training image pairs of a 
high-SNR ground-truth image and a noisy input image, both 
acquired at the same anatomical location with the same 
imaging sequence. The high-SNR ground-truth images of 
brain and knee were acquired in eight examinations using 
T1WI, T2WI, fluid-attenuated inversion recovery (FLAIR) 
and PDWI (Fig. 3). Each sequence was acquired with 10 
averaged repetitions (NAQ = 10). A scan with 10 averages 
requires a long acquisition time and is unrealistic in clinical 
situations. Then we obtained 10 images with one repetition 
(NAQ1) separately at the same anatomical location, and the 
resulting 10 images were registered using an in-plane rigid-
body image registration method followed by averaging to 
generate the desired high-SNR ground-truth images. The 
noisy input images were generated from the ground-truth 
images by adding Gaussian noise with amplitude between 
0% and 20% of the maximum intensity of the ground-truth 
image. Training data was augmented through horizontal and 
vertical flipping of the training image pairs. Finally, each 
training image pair was divided into nine patches, each of 
256 × 256 matrix size, to obtain 32400 training image pairs. 
Validation loss was computed during training on six exami-
nations that contained 660 training image pairs. The valida-
tion data sets were six examinations comprised of T1WI, 
T2WI, PDWI, FLAIR, and time-of-flight MRA of the brain, 
plus PDWI of the knee (Fig. 3). After noise addition, 660 
validation pairs were obtained to validate the generalization 
capability of our proposed method: that it can be applied 
regardless of the type of MR contrast or the pulse sequence. 
In this study, the three deep learning-based denoising 
methods, DnCNN, SCNN and dDLR, were trained with 
these same training and validation data sets.

Test data sets
Test data sets were brain T1WI, T2WI and FLAIR oblique-
coronal images oriented perpendicular to the hippocampus, 

Fig. 2  Activation function using soft-shrinkage. T is the threshold 
of the soft-shrinkage activation function. T is calculated by multi-
plying the noise level s of the input noisy image and a coefficient 
a which is one of training parameters in our convolutional neural 
network. ReLU, Rectified Linear Unit.
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obtained from five healthy volunteers (Fig. 3). The scan 
parameters are shown in Table 1. The 10-NAQ-like ground-
truth images were created by averaging and in-plane registra-
tion. Noisy input images were generated by adding Gaussian 
noise levels at 1–10% of the maximum ground-truth image 
intensity.

Evaluation of denoising performance
Denoising convolutional neural network and shrinkage con-
volutional neural network were compared with dDLR on the 
same noise-added images. Denoised images processed with 
the different techniques were obtained at each different noise 
level. No post-processing was applied to the images denoised 
by each method shown in Fig. 1. Two quantitative metrics, 
peak signal-to-noise ratio (PSNR) and structure similarity 
(SSIM) index, were computed for images denoised with 
each technique compared with the ground-truth images. 
These metrics were used to evaluate the denoising perfor-
mance. The PSNR shows pixel-wise differences between the 
ground-truth image and the denoised image. The SSIM 
shows the similarity of signal intensity, contrast, and struc-
ture for each local region, but not pixel-wise. When the 
denoising method works well, the denoised image will be 
similar to the ground-truth image. Thus, it is expected that 
PSNR and SSIM would increase. For each imaged volume, 
PSNR and SSIM were calculated as a mean across all slices 
for each type of contrast, e.g., T1WI, T2WI and FLAIR, with 
the 10-NAQ-like ground-truth images as reference. To assess 
subjective image quality, two board-certified neuroradiolo-
gists (M.K. with 28 years and H.U. with 12 years of neuro-
imaging experience), who were blinded to the type of 
denoising technique, assessed the image quality of the initial 
images without any denoising applied, as well as images 
processed with DnCNN, SCNN and dDLR. The two readers 
evaluated images from the five volunteers at each noise level 
(Gaussian noise levels at 1–10% of the maximum ground-
truth image intensity) for T1WI, T2WI and FLAIR, and 
determined the upper limit of the noise level at which the 
images were acceptable for clinical evaluation. Specifically, 

Fig. 3  Training, validation, and test data sets. (a) Training data sets were generated from eight examinations (T1WI, T2WI, PDWI, etc.) from 
the brain and knee of five of the volunteers. After noise addition and data augmentation, 32400 patches of training pairs were obtained. 
(b) Validation data sets were created from six examinations such as T1WI, T2WI, PDWI, etc. of the brain and knee from four of the volun-
teers. After noise addition, 660 validation pairs were obtained. (c) Test data sets were obtained from three examinations of five volunteers. 
Oblique-coronal T1WI, T2WI and FLAIR images were acquired. Fat Sat., fat saturation; Brain ToF, time-of-flight images from brain MR angi-
ography; FLAIR, fluid-attenuated inversion recovery; PDW, proton-density-weighted; T1WI, T1-weighted image; T2WI, T2-weighted image.

Table 1  MR scan parameters

T1WI* T2WI FLAIR MPRAGE**

Sequence 2D FSE 2D FSE 2D FSE 3D FFE

TR (ms) 2050 4000 10000 10.3

TE (ms) 15 92 136 3.4

TI (ms) - 2700 900

Echo train 
lengths

6 13 29 -

Echo space 
(ms)

7.5 11.5 8.5 -

Flip angle 
(°)

90/140 90/180 90/150 13

Matrix 320 × 320 512 × 512 256 × 256 384 × 384

FOV (mm) 200 × 200 200 × 200 200 × 200 200 × 200

Thick/gap 
(mm)

2.5/2.5 2.5/2.5 2.5/2.5 1/0

No. of 
slices

10 10 10 30

Bandwidth 
(Hz)

325.5 195.3 244.1 177.5

Parallel 
imaging 
factor: 
(SPEEDER)

2 2 1.5 1.6

(NAQ)# 1 1, 2, 5 1, 2, 5 1, 2, 5

Total scan 
time (s)#

  NAQ2# 164 130 122

  NAQ5# 404 310 204

*T1WI was used in the experimental study. **MPRAGE was used in 
the clinical study. #NAQ1 images were used for the experimental 
study to generate the ground-truth images. NAQ2 and NAQ5 images 
were acquired in the clinical study. FLAIR, fluid-attenuated inversion 
recovery; NAQ, number of image acquisition.

a b c
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the readers determined the noise level in consideration of 
excessive image noise, blurring of anatomical structural 
boundaries, and artificial texture of the images.

Statistical analysis
Statistical analysis of the difference in PSNR and SSIM 
values between DnCNN, SCNN and dDLR was performed 
using one-way analysis of variance (ANOVA) and Bonfer-
roni correction for multiple comparisons. Differences with  
P < 0.05 were considered statistically significant. BellCurve 
for Excel version 2.15 (Social Survey Research Information 
Co., Ltd., Tokyo Japan) was used for the statistical analysis.

For the qualitative assessment, we did not perform statis-
tical analysis because of the small number of evaluated 
images. The mean and standard deviation (SD) of the upper 
limit noise level at which the images were acceptable for 
clinical evaluation were calculated.

Clinical study
Volunteers
For the clinical study, from December 2017 to January 2018, 
we recruited 15 healthy volunteers (13 men and two women; 
mean age, 32.1 years; age range, 24–55 years).

MR image acquisition and image reconstruction  
using dDLR
All volunteers underwent MRI on a 3T MRI scanner (Van-
tage Galan 3T, Canon Medical Systems, Tochigi, Japan) with 
a 32-channel head coil. In the clinical study, we evaluated the 
performance of dDLR not only for denoising but also for 
delineation of brain anatomical structures, particularly in the 
hippocampus on T2WI, FLAIR and 3D-magnetization-
prepared rapid acquisition with gradient echo (MPRAGE) 
images. To evaluate the denoising effect of dDLR, we 
acquired images with different NAQ values and hence dif-
ferent noise levels, using those with two numbers of image 
acquisition (NAQ2) for comparison data and those with five 
numbers of image acquisition (NAQ5) for ground-truth data. 
NAQ5 was chosen because the resulting acquisition time for 

T2WI images was approximately 7 min, which we consid-
ered an upper limit for minimizing unwanted subject motion. 
We also decided that using NAQ2 images for comparison 
data was appropriate in evaluating dDLR performance, 
because the SNR of NAQ2 images is approximately 60% 
compared with NAQ5 images. Two-dimensional fast spin 
echo (FSE) T2WI, 2D-FLAIR and 3D-MPRAGE oblique 
coronal thin-slice images perpendicular to the hippocampus 
were acquired at the two NAQ settings (NAQ2 and 5). The 
scan parameters are described in Table 1. We then recon-
structed images using dDLR processing on the NAQ2 data 
for each sequence (dDLR-NAQ2 images).

Three datasets for each sequence were used for image anal-
ysis: NAQ2, NAQ5 and dDLR-NAQ2 images. The denoising 
level was determined using the five volunteers’ images for each 
sequence. Specifically, one radiologist (M.K. with 10 years of 
experience in MRI) who was not involved in the performance 
evaluation of dDLR assessed dDLR-NAQ2 images processed 
with various denoising levels, and determined the maximum 
denoising level at which the delineation of the basal ganglia and 
the contrast between the cerebral cortex and white matter were 
sufficiently preserved. The same denoising level was applied 
across volunteers.

Performance evaluation of dDLR for thin-slice brain 
MR images
PSNR and SSIM were used for quantitative image analysis. 
These metrics were computed for both NAQ2 and dDLR-
NAQ2 images compared with the ground-truth (NAQ5 
images) to show the performance of the proposed dDLR 
technique. Before the quantitative image analysis, one radi-
ologist (M.K. with 10 years of experience in MRI) confirmed 
no inter-scan motion between the ground-truth and NAQ2 
images.

To assess subjective quality, two board-certified neurora-
diologists (M.K. and H.U with 28 and 12 years of neuroim-
aging experience, respectively) separately and blindly rated 
NAQ5, NAQ2 and dDLR-NAQ2 images for T2WI, FLAIR 
and 3D-MPRAGE. The window level and width values  

Table 2  Scoring of criteria used for evaluation of conventional and deep learning-based reconstruction (dDLR) images

Sore
Perceived signal-to-
noise ratio

Image contrast* Image 
sharpness

Identification 
of hippocampal 
layer structure

Artifacts 
disturbing 
evaluation

Overall 
image 
quality

1 Too noisy
One of the structures is not 
separated.

Poor Obscure Severe Poor

2
Noise has an adverse 
effect on interpretation

All of the structures are separated, 
but the contrast is weak.

Fair Partially identified Moderate Fair

3
No adverse effect for 
interpretation

All of the structures are mostly 
separated.

Good Mostly identified Mild Good

4
Little or no noticeable 
noise

All of the structures are clearly 
separated.

Excellent Entirely identified Little or none Excellent

*Differentiation between cerebral spinal fluid (CSF), cerebral cortex, white matter, and basal ganglia.
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were chosen to best demonstrate the anatomy of interest.  
The readers assessed perceived SNR, image contrast, image 
sharpness, artifacts and overall image quality with a 4-point 
Scale (1 = poor; 2 = fair; 3 = good; 4 = excellent). Scoring 
criteria are shown in Table 2. Inter-reader disagreements 
were resolved by consensus during a joint reading to deter-
mine the final score.

Statistical analysis
All values are expressed as the mean ± SD. Differences with 
a P < 0.05 were considered statistically significant. The 
Wilcoxon signed-rank test was used for quantitative values. 
Friedman’s test was used for multiple comparisons of quali-
tative values. If a significant difference was found, pairwise 
comparisons were performed with the Scheffe’s test. The 
degree of inter-observer agreement for each qualitative 
assessment was determined by calculating Cohen’s κ coeffi-
cient; the scale for k coefficients for inter-observer agree-
ment was as follows: <0.20 = poor, 0.21–0.40 = fair, 
0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–1.00 
= near perfect. MedCalc version 17.9.2 (MedCalc Software, 

Ostend, Belgium) and BellCurve for Excel version 2.15 were 
used for the statistical analyses.

Results
Experimental study
The PSNR and SSIM values for dDLR were statistically 
higher than those of DnCNN and SCNN across all noise 
levels from 1–10% (P < 0.001) (Fig. 4). Table 3 shows the 
mean and SD of the upper limit of clinically-acceptable noise 
level determined by two radiologists in the assessment of 
subjective quality. In all cases, the upper limit noise levels 
increased as follows: unprocessed noisy images <DnCNN < 
SCNN < dDLR. A visual comparison of noise reduction per-
formance for DnCNN, SCNN and dDLR appears in Fig. 5.

Clinical study
Quantitative and qualitative metrics are summarized in Table 4 
and Fig. 6, respectively. The SSIM of dDLR-NAQ2 images 
was significantly higher than that of NAQ2 images in all 
sequences (P < 0.05). The PSNR of dDLR-NAQ2 images 

Fig. 4  Peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) index values at different noise levels (1–10%) for DnCNN, SCNN, 
and dDLR on (a) T1WI, (b) T2WI, and (c) fluid-attenuated inversion recovery (FLAIR) images. Across all noise levels for all three types of 
images, dDLR was superior to DnCNN and SCNN with regard to both PSNR and SSIM (P < 0.01). dDLR, deep learning-based reconstruc-
tion; DnCNN, denoising convolutional neural network; SCNN, shrinkage convolutional neural network.

a b c

Table 3  Mean upper limit of the noise level at which images were acceptable for clinical evaluation in non-denoised images and images 
denoised with DnCNN, SCNN and dDLR in five volunteers

Reader A Reader B

Noisy DnCNN SCNN dDLR Noisy DnCNN SCNN dDLR

T1WI 3.8% (0.7) 5.0% (0.6) 5.4% (0.5) 6.2% (0.4) 3.2% (0.7) 4.2% (0.7) 4.8% (0.7) 5.4% (0.5)

T2WI 4.4% (0.5) 6.8% (0.7) 7.4% (0.8) 8.6% (0.8) 4.2% (0.7) 6.6% (0.8) 7.4% (0.8) 8.6% (0.8)

FLAIR 3.0% (0.6) 4.0% (0.9) 4.4% (0.5) 4.8% (0.7) 2.8% (0.7) 3.6% (0.8) 4.6% (0.5) 4.8% (0.7)

Data in parentheses are standard deviations. FLAIR, fluid-attenuated inversion recovery; DnCNN, denoising convolutional neural network; 
SCNN, shrinkage convolutional neural network; dDLR, deep learning-based reconstruction; T1WI, T1-weighted image; T2WI, T2-weighted image.
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Fig. 5  Visual comparison of noise reduction perfor-
mance between DnCNN, SCNN and dDLR in a 38-year 
old male volunteer. Top-left is a ground-truth (10-number 
of image acquisition [NAQ]-like) image, and the oth-
ers are magnified images of the rectangular annotated 
area in the ground-truth image. Top-center: magnified 
ground-truth image, top-right: magnified noise-added 
image without denoising, bottom-left: magnified image  
denoised with DnCNN, bottom-center: denoised with  
SCNN, and bottom-right: denoised with dDLR. Denois
ing was applied to the artificially noise-added images as 
follows: (a) T1WI with 3% noise, (b) T2WI with 4% noise, 
and (c) fluid-attenuated inversion recovery (FLAIR) with 
2% noise. dDLR unambiguously reduced image noise 
while preserving intrinsic structures and structural 
boundaries (arrows) compared with DnCNN and SCNN 
images. dDLR, deep learning-based reconstruction; 
DnCNN, denoising convolutional neural network; 
SCNN, shrinkage convolutional neural network; T1WI, 
T1-weighted image; T2WI, T2-weighted image.

a

b

c

was significantly higher than that of NAQ2 images in all 
sequences (P < 0.05), except in FLAIR (P = 0.08).

Perceived SNR of dDLR-NAQ2 and NAQ5 images was 
significantly higher than that of NAQ2 images in T2WI  
(P < 0.05); however, there was no significant difference of 
perceived SNR between dDLR-NAQ2 and NAQ5 images  

(P = 0.17) (Figs. 6a and 7a). In FLAIR and MPRAGE, per-
ceived SNR values for dDLR-NAQ2 images were signifi-
cantly higher than those of both NAQ5 and NAQ2 images 
(both P < 0.05) (Figs. 6a, 7b and 7c). Image contrast and 
sharpness were significantly higher for dDLR-NAQ2 and 
NAQ5 images than for NAQ2 images in all sequences  
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Table 4  Results of quantitative assessments

NAQ 2  
(mean ± SD)

dDLR-NAQ 2 
(mean ± SD)

P

SSIM

T2WI 0.977 ± 0.012 0.981 ± 0.012 <0.05

FLAIR 0.982 ± 0.010 0.984 ± 0.009 <0.05

MPRAGE 0.992 ± 0.004 0.993 ± 0.004 <0.05

PSNR 
(dB)

T2WI 28.867 ± 2.875 29.628 ± 3.194 <0.05

FLAIR 30.839 ± 2.635 31.026 ± 2.874   0.08

MPRAGE 33.158 ± 1.684 33.736 ± 1.858 <0.05

SSIM, structural similarity index; PSNR, peak signal-to-noise ratio; 
SD, standard deviation; FLAIR, fluid-attenuated inversion recovery; 
MPRAGE, magnetization-prepared rapid acquisition with gradient echo; 
NAQ, number of image acquisitions.

(P < 0.05), but there was no significant difference between 
dDLR-NAQ2 and NAQ5 images (T2WI: P = 0.95 for image 
contrast, P = 0.95 for image sharpness; FLAIR: P = 0.64 for 
image contrast, P = 0.79 for image sharpness; MPRAGE:  
P = 0.95 for image contrast, P = 0.64 for image sharpness) 
(Figs. 6a and 7). For identification of hippocampal layer struc-
ture, dDLR-NAQ2 and NAQ5 images were superior to NAQ2 
images in all sequences (P < 0.05), but there was no signifi-
cant difference between dDLR-NAQ2 and NAQ5 images 
(T2WI: P = 0.94; FLAIR: P = 0.38; MPRAGE: P = 0.91) 
(Figs. 6b and 7). There were no significant differences for arti-
fact between NAQ5, NAQ2 and dDLR-NAQ2 images in all 
sequences (T2WI: P = 0.20; FLAIR: P = 0.47; MPRAGE:  
P = 0.37). For overall image quality, dDLR-NAQ2 and NAQ5 
images were superior to NAQ2 in all sequences (P < 0.05), 
and again, there was no significant difference between dDLR-
NAQ2 and NAQ5 images (T2WI: P = 1.00; FLAIR: P = 0.72; 
MPRAGE: P = 0.94) (Figs. 6b and 7). The inter-observer 
agreement ranged from substantial (k = 0.61) to near perfect 
(k = 1.00).

Discussion
In the experimental study, dDLR outperformed DnCNN and 
SCNN for image denoising. dDLR removes image noise by 
learning various noise characteristics using training pairs of 
different noise level images and the respective ground-truth 
images. Similar to SCNN, soft-shrinkage seems to enable 
more adaptive noise removal than DnCNN. In addition, 
denoising of the high frequency components using the DCT 
layer, which separates the high frequency components from 
the zero-frequency component, may allow for more efficient 
noise reduction than is possible with DnCNN or SCNN.

Our clinical results showed that the dDLR approach 
drastically decreased image noise and generated thin-slice 
MR brain images with sufficient image quality to precisely 
evaluate fine anatomic details in a relatively short acquisition 
time. dDLR-NAQ2 images yielded equivalent or better 
image quality compared with NAQ5 images despite the 
shortened acquisition time (reduced by approximately 60% 

in all sequences). For evaluation of small anatomical struc-
tures such as the hippocampus, high-spatial-resolution 
images with high-SNR are required. To address this need, 
there are two methods. One is to increase the NAQs: image 
signal is added up, whereas the increase in noise is less than 
that of the image signal because of the randomness of noise. 
As a result, SNR increases. The other is denoising by noise 
removal from acquired data, and this technique can be 
achieved with deep learning. Our results indicate that our 
denoising method using deep learning works effectively 
even in images with small anatomical structures such as the 
hippocampus. In the qualitative evaluation for FLAIR, dDLR-
NAQ2 images was superior to NAQ5 images in perceived 
SNR; however, there was no significant difference between 
dDLR-NAQ2 and NAQ5 images in identification of hip-
pocampal layer structure. FLAIR imaging produces FSE 
T2W cerebral spinal fluid-nulled images by adding inversion 
pulses to the sequence followed by long inversion times. 
This type of sequence can potentially decrease SNR due to 
partial suppression of tissue signal. In images with insuffi-
cient image quality and/or SNR, dDLR may not work effec-
tively. Therefore, optimization of pre-dDLR image quality as 
well as the level of dDLR denoising according to the type of 
imaging sequence used and the anatomical targets of interest 
is required when using dDLR, especially in the evaluation of 
precise anatomical regions.

Adaptation of deep learning methods to improve disease 
detection and MR image analysis in neuroimaging has been 
shown to have a significant impact on medical imaging.15–19 
Despite the popularity of deep learning methods, there have 
been only a small number of studies on CNN-based MR 
image reconstruction7,20,21; hence, the applicability of deep 
learning methods to neuroimaging has yet to be fully explored.

In clinical neuroimaging, disease-specific anatomical 
evaluation is required. The hippocampus has been implicated 
in a variety of disorders, including hippocampal sclerosis and 
Alzheimer’s disease.3,22,23 Hippocampal sclerosis is a dis-
order characterized by hippocampal neuronal loss that causes 
medial temporal lobe epilepsy.3 Atrophy and/or signal change 
of the hippocampus on T2WI and FLAIR images are charac-
teristic findings. In addition, partial loss of hippocampal 
striation on high-resolution T2WI images is a useful marker 
for diagnosis of hippocampal sclerosis.24 In a recent report,22 
combined volumetry and quantitative high-resolution FLAIR 
signal analysis clearly identified the specific histologic types 
of hippocampal sclerosis. Quantitative assessment of the hip-
pocampus and adjacent structures using 3D-T1WI techniques 
such as the MPRAGE sequence is also vital for early diag-
nosis of Alzheimer’s disease and accurate tracking of disease 
progression.23 Even with images obtained in a relatively 
short acquisition time, use of optimized dDLR may improve 
the diagnostic accuracy of hippocampal abnormality. Fur-
thermore, noiseless high-resolution 3D images can provide 
more accurate information compared with conventional 
images for brain volumetric analysis.
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Fig. 6  (a) Results of qualitative assess-
ments: perceived SNR, image contrast 
and image sharpness. Perceived SNR of 
dDLR-NAQ2 was significantly higher 
than that of NAQ2 in all sequences  
(P < 0.05). Perceived SNR of NAQ5 was 
significantly higher than that of NAQ2 in 
T2WI (P < 0.05). In FLAIR and MPRAGE, 
perceived SNR of dDLR-NAQ2 was 
significantly higher than that of NAQ5 
(both P < 0.05). Image contrast for both 
dDLR-NAQ2 and NAQ5 was signifi-
cantly higher than that of NAQ2 in all 
sequences (P < 0.05), and there was no 
significant difference between dDLR-
NAQ2 and NAQ5 (T2WI: P = 0.95; 
FLAIR: P = 0.64; MPRAGE: P = 0.95). 
For image sharpness, dDLR-NAQ2 
and NAQ5 were both significantly 
superior to NAQ2 in all sequences  
(P < 0.05), and there was no signifi-
cant difference between dDLR-NAQ2 
and NAQ5 (T2WI: P = 0.95; FLAIR:  
P = 0.79; MPRAGE: P = 0.64). (b) Results 
of qualitative assessments: identification 
of hippocampal layer structure, artifact 
and overall image quality. For identifi-
cation of hippocampal layer structure, 
dDLR-NAQ2 and NAQ5 were both 
significantly superior to NAQ2 in all 
sequences (P < 0.05), and there was no 
significant difference between dDLR-
NAQ2 and NAQ5 (T2WI: P = 0.94; 
FLAIR: P = 0.38; MPRAGE: P = 0.91). 
There were no significant differences 
in artifacts between NAQ5, NAQ2 
and dDLR-NAQ2 (T2WI: P = 0.20; 
FLAIR: P = 0.47; MPRAGE: P = 0.37). 
For overall image quality, dDLR-NAQ2 
and NAQ5 were both significantly 
superior to NAQ2 for all sequences 
(P < 0.05), and there was no signifi-
cant difference between dDLR-NAQ2 
and NAQ5 (T2WI: P = 1.00; FLAIR:  
P = 0.72; MPRAGE: P = 0.94). FLAIR, 
fluid-attenuated inversion recovery; 
dDLR, deep learning-based reconstruc-
tion; NAQ, number of image acquisition; 
MPRAGE, magnetization-prepared rapid 
acquisition with gradient echo; T2WI, 
T2-weighted image.

a

b
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Fig. 7  A 38-year-old male healthy volunteer. Upper 
row: original magnification, lower row: magnified 
image. (a) T2-weighted image (T2WI): A NAQ2 has 
higher image noise than NAQ5 and dDLR-NAQ2. 
Identification of the hippocampal layer structure is 
superior in both NAQ5 and dDLR-NAQ2 compared 
with NAQ2 (arrows). (b) FLAIR: NAQ2 demonstrates 
higher image noise than NAQ5 and dDLR-NAQ2. 
Identification of the hippocampal layer structure is 
again superior in NAQ5 and dDLR-NAQ2 compared 
with NAQ2 (arrows). (c) magnetization-prepared rapid 
acquisition with gradient echo (MPRAGE) NAQ2 
demonstrates higher image noise than NAQ5 and 
dDLR-NAQ2. Identification of the hippocampal layer 
structure is superior in NAQ5 and dDLR-NAQ2 com-
pared with NAQ2 (arrows). Contrast between the left 
putamen and its surrounding white matter is also supe-
rior in NAQ5 and dDLR-NAQ2 compared with NAQ2 
(arrowheads). dDLR, deep learning-based reconstruc-
tion; NAQ, number of image acquisition.

a

b

c
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In the last decade, MRI technical improvements, including 
high-resolution imaging and high-field MRI, have yielded 
increased sensitivity in detecting subtle abnormalities.25–29 
However, a relatively long acquisition time is required for 
high-resolution images, which can be uncomfortable or incon-
venient for patients and result in blurred images caused by 
patient motion. To reduce motion artifacts associated with a 
long acquisition time, the most effective solution is shortening 
the image acquisition time. Several techniques for reduction of 
image acquisition time have been used, including parallel 
imaging and compressed sensing.30 While missing k-space 
data are interpolated based on a priori knowledge of coil sen-
sitivity profiles with parallel imaging, compressed sensing 
interpolates the missing data by imposing an a priori transform 
domain sparsity constraint to regularize the reconstruction 
problem.31 In contrast, dDLR is a novel approach that allows 
for decreased image acquisition time without degrading image 
quality because this method can drastically reduce the noise 
independent of any data omitted in MR acquisitions. For 
image noise reduction, several techniques have also been 
used.4–6 A frequently used approach is to recover the true 
intensity value of a voxel by averaging the intensity values of 
neighboring voxels.4 A Gaussian smoothing filter is a popular 
technique; however, this kind of local averaging will remove 
not only noise but also structural details such as anatomical 
boundaries. To address this issue, several advanced 
approaches5,6 have been investigated. In this experimental 
study, we compared the image quality of brain MR images 
processed with dDLR, DnCNN and SCNN. The results 
showed that dDLR was superior to both DnCNN and SCNN in 
preserving image quality. Image blurring was more obvious in 
DnCNN and SCNN compared with dDLR.

Our study had some limitations. First, it included a rela-
tively small number of volunteers. Moreover, the diagnostic 
accuracy of dDLR in clinical patients was not assessed. Second, 
we used dDLR for only T1WI, T2WI, FLAIR and MPRAGE 
images, although our dDLR technique can theoretically be 
applied as well to other MR sequences or even to CT. A multi-
institutional study with a larger number of patients with various 
neurologic diseases and using a wider range of MR sequences 
would be necessary to fully validate our dDLR technique.

Conclusion
Deep learning-based reconstruction significantly reduces 
image noise while preserving image quality for brain MR 
images obtained in a relatively short acquisition time. To 
verify the expected diagnostic benefit of the dDLR tech-
nique, large-scale clinical studies are needed.
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