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Background
3D shapes of the human body are digital representations of physiological and pathologi-
cal anatomical structures, acting as a bridge between virtual and physical worlds. There 
are three primary 3D shape file types, polygon mesh, point cloud, and 3D voxelised 
object, of which a mesh is the most common form [1, 2]. As virtual representations of 
the human body, 3D shapes enable non-invasive exploration of its components and 

Abstract 

Background: Predicting morphological changes to anatomical structures from 3D 
shapes such as blood vessels or appearance of the face is a growing interest to clini-
cians. Machine learning (ML) has had great success driving predictions in 2D, however, 
methods suitable for 3D shapes are unclear and the use cases unknown.

Objective and methods: This systematic review aims to identify the clinical imple-
mentation of 3D shape prediction and ML workflows. Ovid-MEDLINE, Embase, Scopus 
and Web of Science were searched until 28th March 2022.

Results: 13,754 articles were identified, with 12 studies meeting final inclusion criteria. 
These studies involved prediction of the face, head, aorta, forearm, and breast, with 
most aiming to visualize shape changes after surgical interventions. ML algorithms 
identified were regressions (67%), artificial neural networks (25%), and principal com-
ponent analysis (8%). Meta-analysis was not feasible due to the heterogeneity of the 
outcomes.

Conclusion: 3D shape prediction is a nascent but growing area of research in medi-
cine. This review revealed the feasibility of predicting 3D shapes using ML clinically, 
which could play an important role for clinician-patient visualization and communica-
tion. However, all studies were early phase and there were inconsistent language and 
reporting. Future work could develop guidelines for publication and promote open 
sharing of source code.
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potential automation of clinical solutions to design tissue scaffolds and medical devices 
[3].

3D surface scanning is the most common method of capturing external body mor-
phologies, while medical images such as computed tomography (CT) and magnetic res-
onance imaging (MRI) are used to explore internal 3D body shapes. 3D surface scanned 
shapes can be less costly and more accessible than medical imaging and arguably more 
informative for representing the body’s external appearance. Viewing 3D shapes of the 
body, either from surface scans or rendered from medical imaging, enables a more intui-
tive understanding of the relationship between anatomical features [4]. Machine learn-
ing (ML) is a field of artificial intelligence that designs algorithms for teaching machines 
to achieve tasks such as pattern detection, thus building an autonomous learning model 
[5]. ML is regularly applied to 2D images, and real-life 3D objects (such as vehicles and 
furniture) for purposes of classification and reconstruction [1, 6]. 3D shapes have also 
been employed as initial input data of the neural network-based ML model which was 
developed as shape autoencoder and decoder for predicting body shape deformation 
[7]. However, 3D shape prediction in medical domain has not been clearly defined and 
the definition of 3D shape prediction can vary. Thereafter, the concept can be defined as 
follows: 3D shape prediction is to reconstruct 3D anatomical structures from estimated 
morphological changes (e.g., before and after a procedure). Here, the input to the algo-
rithm is a representation of 3D shape. In this case, workflow is referred as the overall 
process required to predict, while the ML model is the specific network architecture 
used. The term 3D shape includes 3D volume, 3D mesh, 3D point cloud and other 3D 
representations, and the before-after (pre-post) operation cohorts can act as paired data.

Most work to date has focused on 2D data obtained from MRI or CT images and 
relates to object detection, segmentation, and disease classification [8, 9]. The applica-
tion of ML driven 3D shape prediction in a clinical setting is currently lacking and an 
area ripe for investigation. As a relatively new area that sits at the intersection between 
computer science and clinical research, the current state of the art for 3D body shape 
prediction is unknown. Therefore, the aim of this systematic review was to identify and 
appraise ML methods for predicting 3D shapes focusing on clinical applications, predic-
tion workflows, and prediction performance.

Results
Summary of the included studies

A total of 13,754 articles were identified, leaving 7749 after removing duplicates (Fig. 1). 
Following abstract and title screening, 7664 articles were removed, leaving 85 articles 
for full-text screening.12 articles met the inclusion criteria [10–21] including one identi-
fied through hand searching [14]. All 12 articles were published between 2015 to 2022. 
Six studies were identified as unspecific cohort studies [10, 11, 15, 18, 19, 21], five were 
retrospective cohort studies [12, 14, 16, 17, 20], and one was a case study [13]. 10 stud-
ies described approval from a relevant human ethics committee, however this was not 
mentioned in two articles [10, 15]. These studies predicted 3D shapes of a wide range 
of body regions, including the face [11, 14, 18–20], brain [10, 15], head [16, 21], forearm 
[12], aorta [13] and breast [17]. Sample sizes ranged from n = 7 to 209. Datasets with less 
than 50 samples occurred in 50% of studies, and none of the studies conducted a formal 
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sample size calculation. The prediction models were developed with regression (67%), 
artificial neural networks (25%), and principal component analysis (8%). All methods 
were designed for development purposes without any external validation. The pro-
gramming language was mentioned by 58% of the included papers. Python [14, 18, 20], 
C++ [11, 16, 19], and MATLAB [11, 18, 20, 21] were three languages used for building 
and running programs, with MATLAB the most prevalent. However, none of the arti-
cles published source code which would bring difficulties to open science and method 
replication.

Clinical applications

3D shape prediction was used to assist with outcome visualization [10, 11, 15, 16, 18, 
19], customized surgical planning [11, 14, 18–20], communication [12, 14, 18], diagnosis 
[10, 15], decision-making processes [13, 16] and implant generation [21]. We found most 
studies were exploring the use of 3D shape prediction as a tool for surgical planning and 
visualizing the aesthetic outcome. Use cases included simulating facial or breast changes 
after a procedure, predicting post-operated bone shape following orthopedic surgeries, 
soft tissue changes following denture implantation and implant design for cranioplasty.

Fig. 1 PRISMA flowchart. The inclusion and exclusion criteria are applied to the abstract-title screening and 
full-text screening process. Studies from citation searching were also identified and went through screening 
process
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All studies aimed to predict morphologies of different body regions from 3D shapes 
which were paired before and after an intervention or linked along timepoints. Six stud-
ies used 3D scanning to capture their shapes [11, 14, 17–20], of which two studies speci-
fied 3D scanning protocols such as head position and facial expression [18, 19]. Seven 
used medical imaging (MRI [10, 15] and CT [12, 13, 16, 18, 21]), while one study utilized 
both 3D shapes from 3D scanning and cone-beam CT scans as the inputs [18].

Prediction workflow

Based on the studies retrieved, a common workflow for 3D shape prediction was iden-
tified: data pre-processing, 3D shape predictive model development (learning and pre-
dicting phases), and performance testing. Specifically, we divided the predictive model 
into two phases: relationships of morphological changes were derived in learning phase, 
while the prediction phase can be described as automatic generating new 3D shapes 
based on the learnt relationships. More details can be found in Table 1.

Data pre-processing for studies using medical imaging (MRI or CT) as input involved 
image segmentation, 3D shape registration and reconstruction using commercial (e.g., 
Materialise Mimics) or opensource software (e.g., Free3D and 3D slicer). Six articles 
highlighted 3D shapes reconstruction from medical images as one step of data pre-pro-
cessing [10, 12, 13, 15, 16, 21], which were then used as inputs for the learning model. 
The iterative closest point method was the most common tool for 3D shape registration 
[11, 12, 19], while one employed coherent point drift algorithm [18]. A template shape 
with landmarks was employed as the reference for registration in two studies [11, 13].

The features used for prediction, ‘predictors’, had different types and numbers across 
12 studies. Five studies introduced feature points/vertices with customized numbers and 
definitions [11, 16, 18–20], while two used shape or volume descriptors such as Fourier 
Spherical Harmonics coefficients [17]. Rekik et al. employed current and varifold met-
rics as predictors derived from customized mathematical equations [13, 18], and Do et 
al. developed the implicit surface that could define an object in space by mapping coor-
dinates of points onto a scalar value [13]. 3D shapes of the radius and ulna, defined and 
cut according to identified anatomical landmarks, were employed as the predictor by 
Oura [12], while Knoops et al. did not specify the use of any form of predictors in their 
study [14]. Wu et al. mentioned 3D encoder-predictor network, whereas no predictor 
was clearly defined [21]. In addition, one study considered BMI as a confounding factor 
for 3D breast shape prediction [17].

A variety of ML algorithms were established across the 12 articles for learning phase 
of predictive model development. In total 14 ML algorithms were used, of which one 
was reinforcement learning [11], three was unsupervised learning [18–20], and all others 
were supervised learning [10, 12–17, 20, 21]. The ML model was reported inconsistently 
in one article, where principal component analysis was described in the methods while 
the rest of the article referred to back propagation network [19]. Knoops et al. tested 
four algorithms in their study: linear regression, ridge regression, least-angle regres-
sion, and least absolute shrinkage and selection operator regression [14]. Sampathku-
mar et al. investigated least square regression and random forest regression [17]. Partial 
least square regression was used by two different studies [12, 16]. Two articles from the 
same authors used a similar 4D (spatiotemporal) surface regression method, with the 
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key differences in the mathematical surface representation: current (based on Faraday’s 
law from Physics) and varifolds [10, 15]. Neural networks, including back-propagation 
neural network and autoencoder-inspired neural network, were used by Cheng and ter 
Horst [11, 18]. Tanikawa et al. mentioned regression using customized deep neural net-
work [20], while a V-net was used by Wu et al [21]. Principal components analysis and 
spatiotemporal Gaussian regression with Expectation-Maximization Kalman filter were 
identified in another two studies [13, 19]. Algorithm architecture and features such as 
the number of hidden layers of neural networks and parameter settings can be seen in 
Table 2. The relationships learned by the regression models allow them to predict new 
3D shapes external from the training dataset. In addition, Knoops et al. mentioned over-
fitting occurred in linear regression as a limitation but without a solution [14], however 
Tanikawa et al. mentioned the use of Dropout layers for reducing the chance of overfit-
ting in neural network [20]. No other papers mentioned prevention of overfitting.

Regarding to the predicting phase, two articles distinguished it from the learning 
phase, in which specific algorithms were provided [10, 15]. Shape post-processing were 
also found after prediction using different computing methods. Two articles highlighted 
the application of the Laplacian deformation technique for generating predicted shape 
[11, 19]. Moreover, one study had proposed a post-prediction process of generating a 
3D skull with high resolution from a coarse deformed skull via three steps: registration, 
initial deformation, and refinement deformation [16]. Two study used a post-prediction 
process to generate post-operative shape by applying predicted displacement onto the 
pre-operative shape using MATLAB, however no further details were provided [18, 20].

No studies reported any differences between the training, testing, and validation 
datasets for each prediction model in inclusion criteria, model outcome, or predictors. 
Moreover, all studies had built prediction models for only early-stage development that 
used internal validation alone. Three out of 12 papers used leave-one-out validation [12, 
14, 15], whereas ten-fold cross-validation was employed by Nguyen [16], and 11-fold by 
Tanikawa [20]. Others indicated customized methods, for instance ter Horst et al. [18] 
validated their deep-learning based prediction against mass-tensor-model prediction. 
However, no validation method were mentioned by Wu [21].

Prediction performance

Different methods were employed to evaluate performance of the prediction among 
included articles, which limited the ability to compare between studies. Seven articles 
displayed results with both figures of 3D shapes and heatmaps to indicate the predicted 
shapes and accuracy [10, 11, 14–16, 18, 20]. Three articles showed 3D shapes only [13, 
17, 21], and two reported neither figures nor heatmaps [12, 19]. All studies reported 
acceptable prediction error ranging from 0.69 to 19.68 mm, although one had conflict-
ing accuracy presented between result (average error 0.94 mm for surgery group) and 
abstract (average error 0.89  mm for surgery group) [20], and another one only high-
lighted accuracy of the designed cranial implant shape rather than predicted skull shape 
[21] (see Table 1). The prediction accuracy was assessed by comparing the predicted 3D 
anatomical structures and ground truth using either Hausdorff distance or Euclidean 
distance. Due to the differences of investigated body regions and methods for calculat-
ing the accuracy, we were unable to conduct a meta-analysis. In addition, four articles 
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highlighted training/testing duration, two of which reported less than 10 s [11, 19], one 
was 9 min 4 ± 10 s [16], whilst Wu specified 58.4 h. for training and 8.6 s for testing [21]. 
No studies reported any calibration measures of the performance.

Quality assessment

All papers were rated as having an overall high risk of bias using the Quality In Prognosis 
Studies (QUIPS). The rating of each domain can be seen in Table 3, where color inten-
sity distinguishes high, moderate, low risk of bias, and grey indicates a domain that was 
considered irrelevant. Unclear descriptions and limited information led to low scores in 
quality assessment. A few papers failed to report participant information, inclusion, and 
exclusion criteria, which led to a high risk of bias in the domain of study participants. 
The main reason for the moderate rating for prediction factor and outcome measure-
ment domains was the lack of a reliability test for measurement methods. Four out of 12 
studies mentioned their models for statistical analysis [12, 18–20], whereas three rated 
high since no model for statistical analysis was mentioned and the predicted 3D shapes 
were reported with bias [10, 17, 21].

Discussion
This systematic review found 3D shape prediction using ML has potential for post-
operational anatomy visualization, however all studies were in preliminary phases. All 
included studies focused on the upper body, with more than half predicting shapes from 
the head area. Neural network-based methods become more popular in studies since 
2021 compared to other methods, such as regression. Although all studies claimed 
promising results, some drawbacks can be identified such as the inadequate information 
for model validation with accuracy and unreliable reporting of methods. Critically, none 
of the included studies shared source codes, which limits reproducibility. Other deficien-
cies such as undefined standard of reporting, terminology consistency and evaluation 
were also recognized and should be discussed.

Prediction of 2D images has progressed dramatically and has many proposed appli-
cations in diagnostics, prognostics, and clinical decision aid tools [8, 9]. CT and MRI 
modalities are also commonly used to train convolutional neural networks as 2D data 
sets [22]. However, there may be additional benefits for ML driven predictions of 3D 
datasets in clinical settings. The ability to predict 3D shapes enables intuitive visualiza-
tion of outcomes, which is useful for research focused on anatomical shapes such as the 
studies on the skull, radius and cortex included in this systematic review [10, 12, 16]. In 
some clinical scenarios, an external 3D surface scan of the body is preferred over other 
imaging modalities for understanding changes in the body’s appearance, for example, 
the ability to visualize post-operative facial soft tissue deformation via 3D shape predic-
tion [11, 18, 19]. Reducing the reliance on CT scanning for external features by using 3D 
surface scanning also has the potential to reduce radiation exposure for patients [11, 16]. 
Furthermore, some applications can only be conducted using 3D surface scanning, such 
as those require soft tissues in a particular conformation that are difficult or impossible 
to capture in conventional CT or MRI. These may include standing or weight-bearing 
views, which are important in orthotics and prosthetics, such as for prosthetic socket 
design [23]. The ability to apply ML and prediction algorithms to 3D shapes is essential 
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Table 3 Risk of bias as assessed by Quality In Prognosis Studies (QUIPS)
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for these applications. However, implementing ML approaches for 3D shape prediction 
into a clinical setting may be challenging. Obtaining regulatory approval will prove diffi-
cult and finding a leading indication will be important. Other obstacles will likely include 
a lack of infrastructure and resources to support large databases for validation and com-
puting power, data security and privacy, difficulty integrating into existing workflows, 
and overcoming clinicians’ distrust [24].

The methodologies of included studies shared common approaches and deficien-
cies. We summarized the 3D shape prediction workflow from the included studies into 
three phases: data preparation, predictive model development, and 3D shape prediction 
(Fig. 2).

Data pre-processing procedures were often scant on details such as re-mesh meth-
ods, registration parameters, and 3D shape properties in terms of the number of ver-
tices and their simplicity methods. A possible reason could be that most studies used 
software to process the 3D shapes, and the unknown algorithms applied behind a 
"click and go" approach means the pre-processing occurs inside a black box. Although 
some studies have defined the number of vertices on their 3D shapes, there was usu-
ally no evidence to justify their selection and why it was appropriate for their stud-
ies. This review revealed a broad range of ML models used for 3D shape prediction, 
of which the most popular were neural networks followed by partial least squares 
regression, while papers published since 2021 all used deep learning neural networks. 
The advantages of artificial neural networks are that they can fit complex nonlin-
ear models and deal with high-dimensional data [25], which is suitable for 3D shape 
prediction. However, the architecture of neural networks can be complex to design, 
usually requires a large database for training, and can be subject to overfitting [25]. 
Other regression algorithms, such as linear regression, are simpler to understand and 
implement, however they might result in low accuracy and overfitting. Further, learn-
ing and predicting phases were usually not clearly defined and reported in the study. 
For example, some studies partially reported pre-set parameters while others did not 

Fig. 2 General workflow of 3D shape prediction summarized into three phases. Phase one: Data preparation 
including segmentation, reconstruction, and registration. Phase two: predictive model development 
including two phases: learning and predicting. Phase three: 3D shape prediction based on the predictive 
model developed and optimized in phase two
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report any information on parameter settings [11, 17], which can lead to reproduc-
ibility issues. The satisfactory results of prediction accuracy could also be concern-
ing as only one study had mentioned clinically acceptable accuracy in the article [18]. 
Unfortunately, study quality did not improve over time, thus there is an urgent need 
for establishing standards for terminology and reporting guidelines.

The inconsistent language used around 3D shape prediction was one of the biggest 
challenges for searching and screening articles. Some studies mentioned prediction 
in the title or abstract, despite the content relating to other topics such as pure shape 
generation, and vice-versa. Others used alternative keywords such as transformation 
and virtual simulation when these studies related to prediction. Moreover, the incon-
sistent usage of terminologies for model development was identified such as the word 
‘validation’ and ‘testing’ for performance evaluation [12, 17]. The mixed understand-
ing of the two words has introduced significant inconsistencies across the studies. The 
field would benefit from the introduction of best practice guidelines specific to the 3D 
domain, as has been done for biomedical 2D image analysis with recommended ter-
minologies and reporting guidelines [26].

We conducted a systematic review, which is a broadly accepted approach in medi-
cal research, to identify and summarize studies of 3D shape prediction for clinical 
uses. The systematic review approach overviews the current existing knowledge on 
the given topic and identifies inconsistencies, gaps, and future directions. It is con-
ducted following an explicit protocol using PRISMA, which assures a comprehen-
sive search with clear inclusion and exclusion criteria. Well-established standards are 
also used to extracting information, reporting findings, and assessing study quality. 
For these reasons, the systematic review is a strong method of surveying current evi-
dence and to guide future research of a topic. However, our goal in this study was 
to identify any fields of medicine predicting 3D shapes, as such we did not use spe-
cific body region terms in our search. With the growth of 3D body shape prediction, 
future systematic reviews may benefit from specialty-oriented searches. This sys-
tematic review also used a language limitation, and studies conducted in languages 
other than English would likely be missed. Regarding the scope of this review, suit-
able methods applied in non-medical fields such as gaming and computer vision may 
have also been excluded. For example, in this systematic review studies in forensics 
were excluded since they were deemed to be out of the scope of this review [27–29]. 
Moreover, QUIPS checklist is not specifically developed for ML applications, how-
ever, it has been employed by other studies related to ML prediction models for clini-
cal applications [30, 31]. Other checklists has also been utilized to evaluate quality 
for prognostic studies within the same domains as QUIPS [32]. However, they do not 
include assessment about ML related biases. For example, an algorithmic bias could 
occur where a study may apply popular algorithms and adopt prevalent algorithmic 
design choices that are suited for certain dataset. A bias could also occur during the 
model evaluation process since no appropriate benchmarks for evaluating the appli-
cation were well defined.

There has been great progress in 3D shape prediction since the first study in our 
review was published in 2015. The most promising applications of 3D shape predic-
tion seem to focus on visualizing and communicating the physical changes following 
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surgery. However, several challenges need to be overcome before the field advances 
further. Here, we list some areas of focus and future research that could potentially 
improve study quality and support clinical translation.

1. Improved dataset size. A high-performance ML model requires a considerable 
amount of reliable training data [9]. Therefore, larger datasets or extensive published 
databases would benefit studies creating exploratory prediction models. Similar to 
adjacent fields, a community for sharing data for use in training and evaluation, such 
as The International Skin Imaging Collaboration [33], could be established.

2. More formalized evaluation protocol with separate training, validation, test phases/
datasets. It is crucial that training, validation, and testing datasets should never 
overlap and must be clearly defined before developing models. Training datasets are 
adapted for regression model to learn relationships; validation datasets are used for 
evaluation during development to tune model hyperparameters and to optimize the 
model, while testing datasets are for final estimating the developed model.

3. Development of a set of standard guidelines for comparability. A guideline for pub-
lishing studies on 3D shape prediction could be established to improve the structure, 
design, and reporting of studies, which is important if the goal is clinical implemen-
tation. Specifically, methods of evaluating prediction accuracy and clinically accept-
able accuracy should be assessed and discussed. An AI extension of the Transparent 
Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis 
(TRIPOD) is currently under development, and we recommend a further 3D shape 
specific version [34]. Some 3D shape specific items could include predictors, com-
puting hardware, software for AI model development, and a flowchart for demon-
strating the entire workflow.

4. Standardization of nomenclature. Unifying language through agreed definitions 
would enable greater consistency. For example, the use of ‘prediction’ as the general 
keyword for many articles that describe the forecasting of 3D shapes, while other 
terms were also employed such as ‘reconstruction’ or ‘simulation’.

5. Sharing Source code. Sharing of the source code publicly, such as an appendix or on 
an online repository, will promote open science, replication of the results, and sup-
port research collaboration.

Conclusion
ML has been used in 2D medical imaging analysis since the early 1990s and rapidly 
expanded since 2015, but it is only recently that 3D shape prediction has been applied 
to clinical research. In this study, we found 12 publications that predicted six different 
regions of human body using 14 ML algorithms. Most of these studies had the goal 
of simulating surgical outcomes, all were early-stage research and were some ways 
from clinical implementation. However, these studies lacked consistent keywords and 
reporting structures. The nascent but evolving field of 3D shape prediction has great 
potential to improve medical scenarios that involve understanding shape changes 
before and after an intervention.
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Methods
Search strategy and selection criteria

In this systematic review, we searched for studies that used ML to predict 3D shape for 
clinical applications. The search was conducted according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guideline. Four 
electronic databases, Medline, Embase, Scopus and Web of Science, were searched for 
studies published in English full text until 28th March 2022. Studies were identified 
with search terms including “three-dimensional imaging/”, “artificial neural network”, 
“machine learning” and “predictions”. The full search strategy is given in Additional 
file 1: Table S1. Manual searches were conducted on reference lists of the included arti-
cles to identify relevant publications.

We did not limit the target population, specific disease, or the category of the predic-
tion model, however we had exclusion criteria for inputs, outputs and broad study areas. 
The inclusion criteria were predefined as: (1) inputs being two or more datasets for each 
participant, for instance, paired shapes (before and after) for one participant; (2) output-
ting a form of 3D shape; (3) paper reporting any 3D shape prediction model using at 
least one ML technique and its entire workflow; (4) study having clinical relevance aim-
ing to improve medical conditions. Publications were excluded without English full texts 
or based on animal studies. Short conference abstracts (less than one page) and reviews 
(i.e., conference review) were excluded, as these do not contain enough detail for our 
review. This study is registered with PROSPERO, CRD42021263000.

The eligibility assessment, including title/abstract screening and full-text screening, 
was conducted using the Covidence (Covidence systematic review software, Veritas 
Health Innovation, Melbourne, Australia.) independently by two reviewers (JZW and 
JL). Duplicates were automatically and manually removed. Disagreements were first 
resolved by the two reviewers through discussion, then referred to a third reviewer (TLC 
or AK) if consensus was not achieved. Consensus was achieved for all included studies.

Data analysis

Two reviewers, JZW (Bachelor of Engineering (chemical), Master of Professional Engi-
neering (biomedical), PhD candidate (health science & machine learning)) and JL (Bach-
elor of Engineering) extracted data including basic information, sample population, 
method, outcomes, and clinical area using a predefined data extraction template on Cov-
idence website. If the two reviewers did not agree on the inclusion of an article during 
screening or eligibility assessment, the article was referred to a third reviewer for further 
discussion until all reviewers agreed. The third reviewer was either TLC (Bachelor of 
Engineering (biomedical)/ Bachelor of Medical Science, PhD (medicine)) or AK (Bach-
elor of Engineering (Software Engineering)/ Bachelor of Arts, PhD (computer science)) 
depending on expertise.

The QUIPS tool was used to assess the risk of bias, which is originally designed to 
assess prognostic factor studies, however it can be used in other prognostic studies by 
removing or adjusting certain domains [35]. Reviewers (JZW, JL) independently evalu-
ated five domains of QUIPS including study participation, study attrition, prediction 
factor measurement, outcome measurement, and statistical analysis and reporting, 
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of which the study confounding domain was omitted (Additional file 2: Table S2). The 
overall risk of bias score for each study was assessed regarding to the rule adopted and 
modified from Grooten [36]: if all domains were rated as low risk, then the study was 
categorized having overall low risk of bias. A study with at least one domain rated high 
or more than two domains rated moderate was judged as overall high risk of bias. Other 
situations were categorized as overall moderate risk of bias. Moreover, if a prediction 
model was for development purpose only based on small database without any external 
validation, the study would be downgraded to high risk of bias even if it was listed as low 
risk of bias for all domains [37]. Meta-analysis was not appropriate for this review due to 
the differences in targeted body regions and various indicators for prediction accuracy.
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