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Abstract: This paper reports an independently tunable graphene-based metamaterial absorber (GMA)
designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect
absorption peaks were obtained at 6.94 and 10.68 µm with simple single-layer metal-graphene
metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption
was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was
realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band
and wide-band absorption were observed by the proposed structure upon increasing the number of
resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose
performance of this type of absorber and indicate its potential application in diverse applications,
such as solar energy harvesting and thermal absorbing.

Keywords: independently tunable; graphene; metamaterial absorber; single layer

1. Introduction

Metamaterials are a type of artificially engineered electromagnetic material composed
of periodically arranged sub-wavelength elements. They exhibit excellent properties and
applications such as negative refractive index [1], optical stealth [2], perfect lens imag-
ing [3], and perfect optical absorption [4]. Metamaterial absorbers (MAs) have long been
considered as an attractive candidate for optical applications and have been used for micro-
bolometers, photodetectors, and invisible clocks [5–7]. The first conventional MA designed
by Landy consisted of a dielectric layer placed between metallic resonators on the top and
a gold substrate at the bottom [4]. Thus far, a variety of structures with different shapes,
such as rectangular [8], split ring [9], concentric square rings [10], and their composites [11],
have been utilized as resonators for MAs. Nevertheless, they are disadvantageous in that
as long as the size of the resonators is fixed, the resonant frequencies remain unchanged
for the above resonators. To ensure that the optical spectrum can be dynamically tuned,
researchers have combined MAs with tunable materials such as liquid crystals [12], semi-
conductor silicon [13], and diodes [14]. Among them, graphene is a typical two-dimensional
material which is expected to meet the requirements of tunable MAs. It is worth mention-
ing that the surface conductivity of graphene can be tuned by changing the Fermi level
via electrostatic gating [15] or chemical doping [16,17], which is convenient for designing
tunable components. Due to the unique properties of graphene, some dynamically tunable
graphene-based absorbing structures have been reported, such as graphene disks [18],
unbroken graphene [19], and a square graphene split ring [20]. Previous studies have found
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that multilayer metamaterials can exhibit multiple absorption bands, and the peaks can be
tuned independently by adjusting the parameters of a certain layer, but this will require a
more complex design and increase fabrication difficulties [21–23]. Achieving dynamically
and independently tunable graphene-based metamaterial absorbers (GMAs) with a simple
design to improve the performance of energy-absorbing structures has been one of the
most important research topics in the recent past.

In this paper, an independently tunable multipurpose single-layer GMA is proposed
at mid-infrared frequencies. Two perfect absorption peaks are obtained; each resonant
frequency can be independently tuned with a high absorption rate of 99% by varying the
Fermi level of graphene under a set of resonators. The absorber remains effective over a
wide range of angles under oblique incidence. In addition, multi-band and broadband
absorption are observed when appropriately sized resonators are etched in the unit cell.
All these results indicate that the proposed structure can be widely used in solar ray
harvesting and thermal absorbing.

2. Design and Simulation

A schematic diagram of the proposed GMA is illustrated in Figure 1a. The periodic
arrays of metallic resonators, graphene ribbons, the insulated dielectric layer, and gold
substrate are tightly stacked from top to bottom. The metallic pads on the plane of the
graphene and the gold substrate act as electrodes where the gate voltages are applied.
Figure 1b shows the geometric design of the resonators in the unit cell. It consists of two
gold crosses of different dimensions. Graphene ribbons are placed under both the crosses,
which are separated from each other by a small gap of d = 0.2 µm. Gate voltages Vg1 and
Vg2 are applied to the two sets of graphene ribbons, and their Fermi levels are Ef1 and Ef2,
respectively. The lengths of the resonator strips are l1 = 2.4 µm and l2 = 3.5 µm, and their
widths are w1 = 0.48 µm and w2 = 0.7 µm. The periods of the unit cell are Px = 7.5 µm
along the x direction and Py = 3.75 µm along the y direction. The dielectric layer has a
thickness of 0.33 µm and comprises polytetrafluoroethylene with a relative permittivity
of 2. The thickness of the ground plane is 0.3 µm, which is greater than its skin depth,
ensuring that the transmission of electromagnetic waves can be completely suppressed.
The relative permittivity of gold is defined as [24]:

εAu = 1 −
ω2

p

ω(ω + jγ0)
(1)
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Here,ωp = 1.37 × 1016 s−1 is the bulk plasmon frequency and γ0 = 4.08 × 1013 s−1 is
the collision frequency.

The surface conductivity of graphene, σg, can be determined by the Kubo formula [25,26];
it consists of intraband and interband contributions. In the mid-infrared region, the Fermi
level is larger than half of the photon energy (Ef > h̄ω/2), and the intraband contribu-
tion dominates the surface conductivity of graphene, while the interband transitions
are negligible owing to Pauli blocking [27]. Consequently, it can be expressed by the
following formula:

σg = σintra(ω, Γ, µc)= j
e2kBT

πh̄2(ω + jΓ)

[
µc

kBT
+ 2ln

(
exp
(
− µc

kBT

)
+ 1
)]

(2)

Here, e is the elementary charge, kB is the Boltzmann constant, T = 300 K is the Kelvin
temperature, h̄ = h/2π is the reduced Planck’s constant, and ω is the applied angular
frequency. Γ is the carrier scattering rate, which is kept constant at 2.4 THz for this study.
µc is the chemical potential, which is equal to the Fermi level of graphene when µc > kB.

Figure 2 shows the variation in the real and imaginary parts of σg as the Fermi level
changes from 0.2 to 0.6 eV. It is evident that σg can be dynamically tuned by changing the
Fermi level, which is highly convenient for designing tunable absorbers working within
a specific frequency range. According to the Maxwell equations, Re (σg) is proportional
to Im (εg), which represents the absorption losses in graphene [20]. Thus, the amplitude
modulation of the absorption peak is determined by Re (σg) when Ef is changed. In addition,
the spectral tuning can be measured by ∆Im (σg), which is explained in detail below.
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According to the theory of multiple reflection and interference of the incident electro-
magnetic field, the absorption A (λ) can be obtained by A (λ) = 1 − R (λ) − T(λ), where R
(λ) is the reflection and T (λ) is the transmission [28]. Since the gold substrate at the bottom
is thicker than the skin depth, the transmittance is zero; thus, the absorption becomes
A (λ) = 1 − R (λ).

3. Results and Discussion

Theoretical research on the proposed GMA was carried out using the finite elements
solver COMSOL Multiphysics. When an s-polarized plane electromagnetic wave was inci-
dent on the double cross resonators, the absorption spectrum depicted by the solid curve
in Figure 3 was obtained. Two absorption peaks greater than 99% are observed at 6.94 and
10.68 µm. When compared to the absorption peak of the single cross resonator, it is evident
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that the two absorption peaks originate from the two individual cross-shaped metallic res-
onators. The total absorbed energy efficiency is the integration of absorption A (λ) over the
total incident energy at the regarded energy band, that is E =

∫ λmax
λmin

A(λ)dλ/(λmax − λmin),
which presents the overall capability of light conversion [29]. Here, λmin and λmax are the
value of minimum and maximum wavelengths, respectively. Within the wavelength range
from 4.5 to 13 µm, the value of E is 28.99% for the dual-band absorption structure. A larger
value of absorption efficiency can be achieved via further reducing the wavelength range;
the calculated E is 41.03% when the absorber works in the range of 6.5 to 11.5 µm. It should
be noted that this range includes a large proportion of the atmospheric window which is
the wave band with relatively high transmittance. The calculation means that nearly half of
the incident light within the considered range could be absorbed. Therefore, the absorbers
proposed in our research could acquire more of the incident energy, which will benefit the
applications for light harvesting and thermal absorbing.
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(solid line) and single cross-shaped gold resonators (dashed lines).

To further demonstrate the absorption mechanism, a single-band absorber with one
cross-shaped gold resonator was studied, as shown in Figure 4a. The thicknesses of the
dielectric layer and the gold substrate are 220 and 200 nm, respectively. Figure 4b clearly
shows that the length of the resonator strips has a significant impact on the resonant
frequency; a red shift occurs when the length increases, suggesting that an absorber
working at a specific frequency can be designed by adjusting the length of the strips.
Figure 4c shows that the width of the resonator strips has little effect on the location of the
absorption peaks. Therefore, it is possible to select a small width to realize high integration
of devices. With symmetrical resonators, Figure 4d indicates that the absorption spectrum
obtained by p-, s-, or circularly polarized incident waves have no significant differences.

In Figure 5, the electric field amplitude and surface current distributions on the
resonator and the ground plane are plotted. Evidently, the electric fields are localized near
the left and right ends of the horizontal strip in the case of p-polarized wave incidence
(Figure 5a1), which can be attributed to the accumulation of opposite charges at the ends
of the metallic arm, resulting in electric dipole resonance. The strong coupling of the
electric dipole results in a reverse charge distribution on the bottom plate. The electric field
distribution at the corresponding location is shown in Figure 5b1. The surface currents on



Materials 2021, 14, 284 5 of 11

the top layer mainly flow along the negative x-axis direction, and those on the bottom flow
in the opposite direction because of the reversed electric dipole moments. Consequently,
a magnetic polariton (or “magnetic atom”) [30,31] is excited, which can induce a strong
magnetic resonance and cause a resonant fall in the reflection spectrum [32]. For s-polarized
wave incidence, the vertical strip is excited, forming an equivalent current loop along the
y-axis. For both cases of wave incidence, the excited electromagnetic resonances confine
and dissipate the electromagnetic energy in the absorber, resulting in perfect absorption
close to 100%.
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The two absorption bands of the proposed GMA can be tuned as a whole or separately
by different gate voltage loading methods on the two independent sets of graphene ribbons.
As shown in Figure 6, the absorption spectrum blue shifts when the Fermi levels vary from
0 to 0.6 eV simultaneously. The first resonance peak shifts from 6.94 to 6.81 µm and the
second one shifts from 10.68 to 10.22 µm; the absorption values of both peaks remain higher
than 99%. To investigate the independent tuning of the two absorption bands, the Fermi
level of one set of graphene ribbons was tuned, while that of the other was kept unchanged.
The results are presented in Figure 7. Figure 7a shows that the first peak exhibits a slight
blue shift when Ef1 increases from 0 to 0.6 eV, and the second peak with Ef2 = 0 remains
unchanged, as expected. Figure 7b illustrates the absorption spectrum with constant Ef1
and different Ef2 values. Similar to the trend in the previous case, a blue shift evidently
occurs for the second peak.
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It is important to note that the tuning efficiencies for the two resonance peaks are 
significantly different under the same variation in the applied gate voltages loaded on 
graphene; the second resonant peak exhibits a better response. For instance, when Ef1 and Ef2 
have the same increase from 0.4 to 0.6 eV, the absorption peak at the shorter wavelength shifts 
from 6.86 to 6.81 μm and that at the longer wavelength shifts from 10.37 to 10.22 μm. 
Assuming that the relative change in the resonant wavelengths is defined as δλ = 100 × (λ1 

R − λ
2 
R)/λc, where λ1 

R and λ2 
R are the resonant wavelengths for Ef = 0.4 eV and Ef = 0.6 eV, respectively, 

and λc = (λ 1 
R  + λ 2 
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It is important to note that the tuning efficiencies for the two resonance peaks are
significantly different under the same variation in the applied gate voltages loaded on
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graphene; the second resonant peak exhibits a better response. For instance, when Ef1
and Ef2 have the same increase from 0.4 to 0.6 eV, the absorption peak at the shorter
wavelength shifts from 6.86 to 6.81 µm and that at the longer wavelength shifts from
10.37 to 10.22 µm. Assuming that the relative change in the resonant wavelengths is
defined as δλ = 100 × (λ1

R − λ2
R)/λc, where λ1

R and λ2
R are the resonant wavelengths for

Ef = 0.4 eV and Ef = 0.6 eV, respectively, and λc = (λ1
R + λ2

R)/2 [33], the spectral shifts can be
quantified as 0.732% and 1.457%, respectively. This phenomenon can be explained by the
perturbation theory of graphene on a metamaterial resonator. The change in the resonant
frequency is given by [34]:

∆ω =
(

Im
(
σg(ω)

)
− jRe

(
σg(ω)

))∫S

∣∣Exy
∣∣2dS

W0
(3)

where S is the graphene area, σg (ω) denotes the graphene conductivity,
∣∣Exy

∣∣ is the
amplitude of the electric field on the plane of graphene, and W0 represents the stored
electromagnetic energy in an uncovered metamaterial resonator. Thus, the spectral shift in
the resonant frequency Re (∆ω) is related to Im (σg(ω)), and the corresponding amplitude
modulation of absorption, Im (∆ω), is determined by Re (σg(ω)). The spectral shift is
dominant over the amplitude modulation as Im (σg(ω)) > Re (σg(ω)), which is valid in
the mid-infrared region [27,34]. The change in Im (σg(ω)) increases with wavelength for
the same change in Ef, as shown in Figure 2b, explaining why the relative change in the
resonant wavelength at the second resonance peak is greater than that at the first one.

In order to interpret the resonance of the proposed absorber, the distributions of the
electric field amplitude on the plane of graphene at resonant wavelengths were investigated.
In Figure 8a, the electric field is distributed along the edge of the smaller cross-shaped res-
onator, which indicates that the smaller resonator is excited by the incident electromagnetic
wave and the absorption peak at 6.94 µm is obtained. As shown in Figure 8b, the electric
field is localized and concentrated at specific regions of the larger cross-shaped resonator.
This illustrates that the perfect absorption at 10.68 µm is achieved due to electromagnetic
resonance at the larger cross resonator.
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Figure 8. Amplitude of the electric field on the plane of graphene at the resonance peaks:
(a) λ = 6.94 µm and (b) λ = 10.68 µm.

Figure 9 shows that the absorption spectrum changes with the incident angle of the
s-polarized wave in the range of 0◦ to 90◦. Both absorption bands maintain high absorption
over a wide range of incident angles (up to 60◦), indicating that the wide-angle nature of
MA is unhindered.
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A triple-band absorber with three resonators of varied dimensions in the unit cell was
designed, as shown in Figure 10a. The lengths of the strips are l1 = 1.4 µm, l2 = 2.4 µm,
and l3 = 3.5 µm, and their widths are wi = 0.2 × li (i = 1, 2, 3). The periods along the x and y
directions are Px = 11.25 µm and Py = 3.75 µm, respectively. The other geometric parameters
remain unchanged. In Figure 10b, three peaks are observed at 4.51, 6.95, and 10.66 µm,
and their absorption rates are 0.998, 0.962, and 0.945, respectively. In earlier reports on
electromagnetic MAs, the perfect absorption was explained in terms of matching the bulk
metamaterial’s impedance z =

√
µe f f /εe f f to that of vacuum [4,7,35,36], where εeff and

µeff are the effective permittivity and permeability of the bulk multi-layer metamaterial.
To satisfy the condition of matched impedances, the condition of εeff = µeff is achieved by
manipulating the spectral positions and strengths of the electric and magnetic resonances
of the electromagnetic MAs [35]. The triple-band absorber consists of metal/dielectric-
spacer/metal structure, allowing us to regulate absorption by varying the thickness of
dielectric and, hence, εeff and µeff. The absorption peaks decrease slightly at 6.95 and
10.66 µm due to the mismatch between the dimensions of polytetrafluorethylene and the
corresponding two resonators, resulting in an impedance mismatch between the structure
and its surrounding [37]. However, the absorber is still efficient with an absorption greater
than 90%. At the same time, the spectral shift of the absorption peaks increases with the
resonant wavelengths because of the larger ∆Im (σg) at longer wavelengths for the same ∆Ef.
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Furthermore, a broadband absorber was designed using similarly sized resonators
in the unit cell. As shown in Figure 11a, the length of the strips of the three gold
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cross resonators are l1 = 3.4 µm, l2 = 3.45 µm, and l3 = 3.5 µm, and their widths are
wi = 0.2 × li (i = 1, 2, 3). As depicted in Figure 11b, a composite wide-band absorption
spectrum is obtained. As earlier, it blue shifts with the increasing Fermi level, ranging from
0 to 0.6 eV. Compared with the single-band absorber shown in Figure 4a, the full width at
half maximum of the broadband absorption is increased by about 1.5 µm. Similarly, a num-
ber of multispectral MAs can be achieved by adding appropriate gold resonators. Therefore,
the proposed structure provides a flexible model for multi-band and broadband absorbers.
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4. Conclusions

In summary, an independently tunable multipurpose absorber with a single layer of
metal-graphene metamaterials is proposed at mid-infrared frequencies. Compared with
the previous work, the proposed dual-band absorber achieves independent tuning of two
absorption peaks through reasonably designing the shape and arrangement of graphene
and provides a flexible model for multi-band and broadband absorbers. The values of
the absorption peaks are higher than 99%, and the structure does not hinder the wide-
angle nature of MAs. The absorption spectrum is blue shifted when the Fermi level of
graphene increases, and each resonance peak can be tuned independently. Triple-band
and broadband absorbers were further achieved by appropriate design. The results of
this study suggest that the proposed multipurpose structure can be widely used in light
harvesting and thermal absorbing.
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