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Wound healing, a highly complex pathophysiological response to injury, includes four
overlapping phases of hemostasis, inflammation, proliferation, and remodeling. Initiation
and resolution of the inflammatory response are the primary requirements for wound
healing, and are also key events that determines wound quality and healing time.
Currently, the number of patients with persistent chronic wounds has generally
increased, which imposes health and economic burden on patients and society.
Recent studies have found that microRNA(miRNA) plays an essential role in the
inflammation involved in wound healing and may provide a new therapeutic direction for
wound treatment. Therefore, this review focused on the role and significance of miRNA in
the inflammation phase of wound healing.
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1 INTRODUCTION

Our skin is a highly adaptable and multifunctional organ that can heal quickly and efficiently after
being exposed to the harsh external environments that can include physical or chemical irritants
and ultraviolet radiation. The structure of the skin is divided into three layers: the epidermis, which
is mainly composed of microlayers differentiated from keratinocyte cells; the dermis, composed of
two connective tissue layers rich in collagens (I, III type), elastin, fibroblasts, macrophages,
lymphocytes, sensory neurons, and blood vessels; the hypodermis, which is the layer of adipose
tissue (1). Efficient and coordinated function between the three layers of skin structures is required
to restore the damaged barrier after injury. Although the skin has a strong regenerative capacity, its
repair ability can be weakened due to individual physiological factors such as advanced age, diabetes
or obesity. This may lead to wounds that take longer than 12 weeks to heal (chronic wounds). It has
been reported that millions of individuals suffer from skin injuries every year and are often
accompanied by infections that are difficult to heal (2). Therefore, it is extremely urgent to find
effective clinical treatment methods for wound healing (3).

The wound healing process is characterized by four sequential but overlapping classical phases:
hemostasis, inflammation, proliferation/migration, and remodeling (4). After skin injury, a large
number of inflammatory cells are recruited to the wound site to participate in the repair process and
resisting pathogen infection (5). In addition, some intracellular inflammatory signaling pathways and
inflammatory mediators are involved in regulating the initiation and dispersal of inflammation (6).
However, chronic wounds often manifest as severe dysregulation of inflammation and continuous
destruction of tissues (7). The inflammatory response is the crucial to successful wound healing,
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and an imbalance between pro-inflammatory and anti-inflammatory
signals may lead to the occurrence of infection, failure to heal, and
the formation of hypertrophic scars and keloids (8, 9).

In recent years, several epigenetic phenomena have been found
to be involved in regulating gene expression and coordinating
various biological processes that drive tissue repair (10). For
example, non-coding gene microRNA (miRNA) regulates gene
expression by inhibiting the translation process, which is different
than the traditional regulation of gene expression through
transcription. Recently, the important role of miRNA in wound
healing has been widely reported (11). In this review, we mainly
reviewed the evidence that miRNA was involved in regulating the
inflammation stage of wound healing. We also discussed current
miRNA-based treatment strategies and the future direction of
using miRNA as a target for wound treatment.
2 INFLAMMATORY PHASE OF
WOUND HEALING

Inflammation is the primary defense against pathogen invasion
at the wound site and usually begins in the first few hours after
Frontiers in Immunology | www.frontiersin.org 2
tissue injury (12). The injury leads to the activation of the
coagulation system, which successfully stops bleeding and
provides the necessary matrix for the initiation of the
inflammatory response. Tissue-resident cell surface pattern
recognition receptors (PRRs) are recognized by Damage
Associated Molecular Patterns (DAMPs) or Pathogen
Associated Molecular Patterns (PAMPs), which in turn release
specific chemokines and pro-inflammatory cytokines to recruit
inflammatory cells (13). At the same time, the intracellular
inflammatory signaling pathways, such as toll-like receptors
(TLRs) and nuclear factor kappa B (NFkB) at the wound site
are activated to trigger a signaling cascade (14).

As shown in Figure 1, the inflammatory cells recruited in the
early stage of injury are mainly neutrophils, which are the main
defense against bacteria (15). One day after injury, the number of
neutrophils accounts for approximately half of all cells at the
wound site and (16). Neutrophils, derived from bone marrow,
are usually not observed in intact skin. There are a large number
of receptors on the surface of these cells that detect the attraction
signals of the chemo-attractants released from tissue-resident
macrophages (17). Subsequently, neutrophils eliminate necrotic
cells and pathogens through phagocytosis, the formation of
FIGURE 1 | Key events involved in the inflammatory phase of wound healing. DAMP, damage-associated molecular patterns; PAMP, pathogen-associated
molecular patterns; IL, interleukin; TNF, tumor necrosis factor.
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extracellular traps, and antimicrobial mechanisms such as the
release of high concentrations of reactive oxygen species (ROS)
and nitric oxide (NO) (18–20). ROS such as hydrogen peroxide
(H2O2) exert anti-microbial activities by destroying lipids,
proteins or DNA, and their production depends on the
function of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. Phagocytosis of neutrophils with ROS
generation and degranulation cooperate to defense and kill
pathogens (21). Within 2-4 days after injury, circulating
monocytes are recruited to the wound site, where they
differentiate into different macrophage subsets according to
local microenvironment (22). Macrophages are the crucial
effector cells in wound healing and have variety of phenotypes
and versatility (23). They differentiate into the pro-inflammatory
type (M1 macrophages) in the early stage of inflammation (24).
These macrophages release a variety of inflammatory cytokines
(such as interleukin (IL)-6, IL-1 and tumor necrosis factor
(TNF)-a) to play a pro-inflammatory roles (25). In addition,
M1 macrophages are involved in the phagocytosis and clearance
of some pathogens and apoptotic neutrophils (26). During the
later period of inflammation, anti-inflammatory macrophages
(M2 macrophages) are generated through new differentiation of
recruited monocytes or phenotypic transitions of previous pro-
inflammatory macrophages (27). These macrophages can release
anti-inflammatory cytokines, such as IL-4, IL-10, and IL-13, to
promote inflammation resolution by reducing ROS production
and neutrophil infiltration. At the same time, growth factors such
as vascular endothelial growth factor (VEGF) are also released to
initiate tissue repair (28). Although the effects of neutrophils and
macrophages are irreplicable, it has been reported that other
myeloid cells, including mast cells, dendritic cells (DC), and T
cells, are also critical in the inflammatory phase of wound healing
(29–31).
3 miRNA BIOGENESIS AND PHYSIOLOGY

miRNA is currently the most widely studied non-coding RNA
(ncRNA) with a length of about 18-25 nucleotides (32). It plays a
regulatory role by combining with the 3’ untranslated region
(UTR) of a specific messenger RNA (mRNA) to silence gene
expression (33). The single-stranded structure of miRNA
determines the complexity of its function. A signal miRNA can
participate in blocking the translation of multiple mRNAs, while
the translation inhibition of some mRNAs requires the synergy
of multiple miRNAs (34, 35). It has been reported that the
translation of more than 60% of human coding genes is regulated
by miRNAs, so they play important roles not only in maintaining
normal physiological processes, but also in the occurrence or
resolution of a variety of diseases (36, 37).

The maturation of miRNAs requires a multi-step biological
process (Figure 2). Initially, the miRNA is transcribed under the
mediation of RNA polymerase II in the nucleus to form the long
stem-loop structure, which is called primary-miRNA (pri-
miRNA). Subsequently, pri-miRNA is cleaved into 60-70
nucleotide precursor-miRNA (pre-miRNA) by RNase III
Frontiers in Immunology | www.frontiersin.org 3
enzyme, Drosha, and its cofactor DiGeorge syndrome critical
region gene 8 (DGCR8), which is then exported to the cytoplasm
via the Exportin 5 transporter (38). In the cytoplasm, pre-
miRNA is processed by another RNase III enzyme, Dicer, to
generate miRNA duplexes. Finally, the miRNA duplex is
dissociated into an active “guide strand” which forms a
miRNA-induced silencing complex (miRISC) with the
assistance of the argonaute protein family and a “passenger
strand” that may be degraded (39). The miRNA in the RISC
matches the 3’UTR region of the target mRNA through its own
“seed region” (nucleotides 2-8 at 5’ end) for complementary
pairing. This combination leads to the degradation of mRNA or
inhibition of protein synthesis to regulate target gene
expression (40).

miRNAs not only exist as critical epigenetic regulators, but
their expression is also highly modulated by epigenetic
mechanisms, including post-translational modifications (PTMs)
of histones and DNAmethylation (41). miRNA expression can be
increased or decreased through different epigenetic modifications.
Besides, specific RNA-binding proteins (RBPs) can modulate
miRNA biogenesis by recognizing pre-miRNA sequences (42).
Similarly, the inactivation of specific components in miRNA
biogenesis can also affect miRNA production. For example, a
recent study found that ubiquitination of DDX17 (a cofactor in
miRNA biogenesis) effectively reduced miRNA expression (43).
In short, the regulation mechanism of miRNA expression is
strictly controlled.

Although the classical pathway of miRNA biogenesis and
function have been well studied, this is not sufficient for the
complexity of miRNA-mRNA interactions. Researchers find that
miRNA biogenesis can also be accomplished through Drosha/
DCGR8 or Dicer independent pathways (34). Moreover, non-
canonical binding events of multiple miRNA-mRNA interactions
have also been reported, such as pairing with mRNA 5’UTR or
coding region (44, 45). Initially, miRNAs were thought to form
miRISC mediated post-transcriptional regulation mainly in the
cytoplasm. However, it was proved that some mature miRNAs
can be detected in the nucleus and induce the degradation of
nuclear mRNAs (46). Besides most repression of target gene
expression, there are some studies also demonstrate that certain
miRNAs expression can induce transcriptional activation of
target genes (34). The specific mechanisms by which miRNAs
mediate the regulation of gene transcription or translation
through these non-canonical means are unclear, but this may
provide new explanations for the complex regulation of miRNAs
on a variety of biological processes.
4 miRNA IN WOUND INFLAMMATION

Emerging evidence suggests that miRNA plays a key role in
regulating wound inflammation (47, 48). Interestingly, it has
been shown that the development and function of various
immune cell lineages are modulated by miRNA (49, 50). In
fact, miRNAs have a great potential in regulating both
induction and resolution of inflammatory response (50, 51).
March 2022 | Volume 13 | Article 852419
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miRNA can maintain tissue homeostasis at the wound site to
promote healing by regulating the differentiation and
development of immune cells, controlling the activation of
inflammatory signaling pathways, and producing inflammatory
mediators (Table 1).

4.1 miRNAs and Immune Cells
4.1.1 Neutrophils
Infiltration and activation of neutrophils are markers of early
inflammatory response initiation in wound healing. Staphylococcus
aureus is a common infectious bacterium that exhibits overgrowth
in chronic skin wounds (such as diabetic wounds), and is
associated with wound deterioration (80). Tanaka K et al. found
that the healing speed of skin wounds infected by Staphylococcus
aureus (S. aureus) in miR-142-deficient mice was significantly
slower than that of wild-type mice (52). Further research revealed
that the miR-142 family (miR-142-3p and miR-142-5p) promoted
the migration of neutrophils by regulating the translation of small
GTPase in neutrophils and enhanced the ability of the wound site
to resist bacterial infection (52). miR-223, a miRNA primarily
expressed in myeloid cells (especially neutrophils) is involved in
Frontiers in Immunology | www.frontiersin.org 4
regulating the development of various cancers, infection, and
inflammation (81). It has been verified that miR-223 inhibited
the differentiation of human myeloid cells by targeting Mef2c and
was an important regulator of granulocyte formation (53). This
study showed that the activity of neutrophils at the wound site was
substantially increased in miR-223-deficient (miR‐223Y/−) mice
compared with wild type (WT) mice (82). A recent study reported
that Eukaryotic Translation Initiation Factor 4 Gamma 2 (Eif4g2)
expression could be targeted by miR-139-5p, which limited the
differentiation of neutrophils. After knocking down the expression
of miR-139-5p in mice, neutrophil activation was increased and
wound healing of S. aureus infection was improved (55).

4.1.2 Macrophages
Macrophages differentiated from monocytes are essential in all
wounds and are present for almost the entire inflammatory
phase, whether it is the elimination of potential pathogens or
the subsequent resolution of inflammation (83). The endocytosis
function of macrophages is the key to effectively eliminate
apoptotic or necrotic cells at the injury site. The expression of
miR-21 is up-regulated after macrophages have successfully
FIGURE 2 | miRNA biosynthesis process and mechanism of action. miRNA, micro-RNA; Pri-miRNA, primary miRNA; Pre-miRNA, precursor miRNA; DGCR8,
DiGeorge syndrome critical region gene 8; miRISC, microRNA-induced silencing complex.
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engulfed apoptotic cells (56). Furthermore, the enhanced
expression of miR-21 in turn promotes the endocytosis of
macrophages (56). Recently, Liechty C et al. found that miR-21
participated in regulating the polarization of macrophages and
induced the production of pro-inflammatory macrophages (M1
type) in diabetic wounds (57). In contrast, miR-223 has been
verified to effectively induce macrophages polarization into an
anti-inflammatory M2 phenotype at the wound site (54). A
previous study showed that miR-155 deficiency was beneficial
in the promotion of wound healing (84). Subsequently, Ye J et al.
found that the accumulation and activation of inflammatory cells
such as neutrophils and macrophages in diabetic wounds was
reduced after the addition of miR-155 inhibitors (59).

4.1.3 Other Immune Cells
DCs are a special type of antigen-presenting cell and are important
in the immune response process. It has been reported that miR-21
activated the protein kinase B/phosphatidylinositol3-kinase(AKT/
PI3K) signaling pathway to promote DC differentiation by
inhibiting the expression of phosphatase and tensin homologue
(PTEN) in skin wounds (58). In addition, the differentiation of the
T cells of the adaptive immune system is also regulated by miRNA.
miR-155 has been confirmed to be involved in promoting the
differentiation of Th17 and Th9 cells, which was achieved by
inhibiting the expression of suppressor of cytokine signaling 1
Frontiers in Immunology | www.frontiersin.org 5
(SOCS1) (60, 61). All the above evidence indicates the importance
of miRNA in regulating the differentiation and activation
of immune cells, which are also the keys to the initiation and
resolution of wound inflammation.

4.2 miRNAs and Inflammation-Related
Signaling Pathway
4.2.1 The TLR Pathway
TLRs, considered immune sensors, are involved in the formation
of the first line of defense against invading pathogens and play
a fundamental role in regulating inflammatory diseases (85).
As transmembrane proteins, the structure of TLRs consists
of a leucine-rich extracellular ligand binding domain,
a transmembrane domain, and an intracellular Toll-IL-1
Receptor (TIR) signal domain. TLRs recognize PAMPs or
DAMPs and induce signal cascade by recruiting adaptor
molecules that interact with TIR domain including myeloid
Myeloid differentiation primary response 88 (MyD88), TIR-
domain containing adapter-inducing interferon-b (TRIF), TIR
domain-containing adaptor protein (TIRAP), and TRIF-related
adaptor molecule (TRAM) (86). Most TLRs signaling is MyD88-
dependent or independent, which leads to the activation of
nuclear transcription factors such as NF-kB, p38/mitogen-
activated protein kinase(MAPK), and c-Jun N-terminal kinase/
activator protein-1(JNK/AP-1), triggering inflammatory
TABLE 1 | miRNAs involved in the inflammatory process of wound healing.

miRNA Target Process Effect on wound
healing

Reference

Immune cell
miR-142-3p/5p Small GTPase Promote the migration of neutrophils ↑* (52)
miR-223 Mef2c (a) Inhibit the activation of neutrophils ↑ (53, 54)

(b) Induce M2 macrophage polarization
miR-139-5p EIF4G2 Inhibits neutrophils differentiation ↓ (55)
miR-21 PTEN (a) Enhance the endocytosis of macrophages ↑ (56–58)

(b) Promote M1 macrophage polarization
(c) Promote DCs differentiation

miR-155 SOCS1 (a) Increase inflammatory cell accumulation and activation ↑ (59–61)
(b) Promote the differentiation of Th17 and Th9 cells

Inflammatory pathway
miR-150-5p Activate TLRs signaling pathway ↓ (62)
miR-21 PDCD4 Restrict the TLR4 activity ↑ (63)
miR-146a IRAK1/TRAF6 Inhibit TLR4 signaling pathway activation ↑ (64, 65)
miR-132 HB-EGF Suppress the activation of NF-kB signaling ↑ (66)
miR-223 CUL1a/b, TRAF6,

TAB1
Suppress the activation of NF-kB signaling ↑ (67)

miR-34 LGR Enhance the activity of the NF-kB signaling pathway ↓ (68)
miR-19a/b SHCBP1 Inhibit p65 nuclear translocation ↑ (69)
miR-20a SEMA7A Inhibit p65 nuclear translocation ↑ (69)
miR-17 STAT3 Inhibit JAK/STAT signaling pathway activation ↓ (70)

Inflammatory mediator
miR-203 TNF-a, IL-24 Alleviate skin inflammation ↑ (71)
miR-23b Decrease proinflammatory cytokines and increase anti-inflammatory

cytokines
↑ (72)

miR-149, miR-497 Inhibit secretion of proinflammatory cytokines ↑ (73, 74)
miR-16, miR-146a, miR-26a/b COX-2 Relieve inflammatory response ↑ (75, 76)
miR-27b p66shc Reduce ROS production ↑ (77)
miR-375 TIMP-1 Reduce ROS production ↑ (78)
miR-5591-5p AGEs Reduce ROS production ↑ (79)
March
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responses (87). In fact, TLR signaling pathways play integral role
in regulating wound healing. The expression and activation of
specific TLRs regulated by different conditions determine
whether to promote or inhibit the process of wound healing
(88). Studies have suggested that non-coding gene miRNA have
directly or indirectly participated in regulating the TLR signaling
pathway (89). Gene Ontology (GO) and KEGG pathways
analysis showed that miR-150-5p may be involved in the
activation of TLRs signaling pathways after traumatic injury
occurs (62). A previous study has confirmed that TLR4 is one of
the pivotal factors leading to persistent inflammation in diabetic
wounds. Knocking out the expression of TLR4 is beneficial to
alleviate the inflammatory response and promotes wound
healing in diabetic mice (90). miR-21 has been shown in an
earlier study to restrict the TLR4 activity by targeting
programmed cell death 4 (PDCD4) (63). Furthermore, miR-
146a negatively regulates the activation of TLR4 signaling
pathway by targeting IL-1 receptor-associated kinase 1
(IRAK1) and TNF receptor-associated factor 6 (TRAF6) to
suppress immune response (64). Moreover, Liu et al. suggested
that miR-146a down-regulated TLR4 expression and reduced the
inflammatory response of fibroblast-like synovial cells (65).

4.2.2 The NF-kB Pathway
The NF-kB transcription factor family, consisting offive members
(NF-kB1 (p105/p50), NF-kB2 (p100/p52), RelB, p65 (RelA), and
C-rel) modulates the expression of key genes in many cellular
biological processes (91). The activation mechanism of NFkB is
divided into classical and non-classical pathways. The classical
pathway primarily promotes transcription by inducing the
translocation of a free p65/p50 dimer into the nucleus to bind to
the kB element on the target gene (92). It has been recognized that
the regulation of the inflammatory process is one of the most
important functions of classical NF-kB signaling pathway (93).
Therefore, the NF-kB signaling pathway is closely related to
wound inflammation and has complex crosstalk with miRNAs.
Epidermal growth factor (EGF) is an important molecule that
mediates the activation of NFkB signal (94). In keratinocytes, miR-
132 inhibits NFkB activity by directly targeting silencing heparin-
binding epidermal growth factor (HB-EGF) and reducing
inflammation (66). Similarly, Zhou W et al. found that miR-223
could directly target multiple components (cullin-1 (CUL1) a/b,
TRAF6, and transforming growth factor b(TGF-b)-activated
protein kinase 1(TAB1))of the signal cascade to inhibit the
activation of the classical NFkB pathway, which was conducive
to the resolution of neutrophil inflammation (67). On the
contrary, Wu J et al. demonstrated that miR-34 enhanced the
activity of the NF-kB signaling pathway to regulate the
inflammatory response of keratinocytes, which was mainly
achieved by directly targeting the inhibition of leucine-rich
repeat containing G protein receptor(LGR) gene expression (68).
The latest research showed that miR-19a/b and miR-20a suppress
p65 nuclear translocation by targeting SHC SH2 domain-binding
protein 1(SHCBP1) and semaphorin 7A(SEMA7A), respectively,
and they regulate TLR3-mediated activation of NF-kB signaling
pathway (69). miR-31 has been reported to be highly expressed in
human wound edge keratinocytes. The results of in vitro
Frontiers in Immunology | www.frontiersin.org 6
experiments demonstrated that miR-31 promoted the
proliferation and migration of keratinocytes, which was
beneficial to wound healing (95). Subsequently, Shi J et al. found
that miR-31 was up-regulated by the NFkB signaling pathway
during the inflammation phase to mediate the transition from
wound inflammation to the remodeling phase (96). The above
findings indicate that the complex regulatory network between
miRNA and NFkB signaling plays an important role in in the
initiation and resolution of wound inflammation.

4.2.3 The JAK/STAT Pathway
In addition to the above signal pathways, the Janus kinase/signal
transducer and activator of transcription(JAK/STAT) pathway is
also involved in the regulation of wound inflammation (97). This
signaling pathway involves the IL-6 receptor (gp130) family,
which is associated with the initiation of immune responses (98).
Based on its important role in a variety of inflammatory diseases,
the STAT signaling pathway has been reported to be a target for
the treatment of inflammation (99). miRNA has also been
reported to regulate the JAK/STAT signaling pathway in
wound repair. For example, Yang Z G et al. demonstrated that
STAT3 expression was down-regulated in the miR-17 transgenic
mice (70). Subsequently, a luciferase assay confirmed that miR-
17 could directly target the 3′UTR of STAT3, which suppressed
the activation of the JAK/STAT signaling pathway (70). Figure 3
illustrates how various miRNAs target inflammatory pathway-
related genes to participate in the regulation of wound
inflammation. Further studies are required regarding the
regulation of miRNA on some inflammation-related signaling
pathways in the inflammatory phase of wound healing. This
would provide new directions for accelerating wound healing
and even the treatment of chronic refractory wounds.

4.3 miRNA and Inflammatory Mediators
Cytokines are recognized as “inflammatory mediators” secreted
by immune cells and non-immune cells and are closely related to
the inflammatory response (100). miRNA also plays an
important role in regulating functional cytokine networks
(101). A previous study showed that miR-203 directly targeted
TNF-a and IL24 expression and alleviated skin inflammation
(71). The expression of pro-inflammatory cytokines (such as
TNF-a, IL-1b, and IL-6) in wound tissues of mice overexpressing
miR-23b was significantly reduced, while the anti-inflammatory
factor IL-10 was increased (72). In addition, miR-149 and miR-
497 have also been found in recent studies to inhibit the secretion
of pro-inflammatory cytokines and exert an anti-inflammatory
effect in wound healing (73, 74). In addition to the cytokines
secreted by cells, there are also some small molecular lipids
derived from fatty acid metabolism that are also labeled as
“inflammatory mediators” (102). Lipid mediators produced by
free arachidonic acid metabolism, such as prostaglandins (PG),
prostacyclin (PC) and thromboxanes (TX), are important
chemicals that trigger and amplify wound inflammation (103).
Some lipid mediators derived from polyunsaturated fatty acids
(PUFAs) have been reported to be involved in the resolution of
inflammation (102). In fact, cyclooxygenases (mainly COX1 and
COX2) are key enzymes that catalyze the production of these
March 2022 | Volume 13 | Article 852419

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jiang et al. miRNA Regulation of Wound Inflammation
lipid mediators (102). COX-2 has is a target of miR-16 and miR-
146a to regulate inflammatory response (75). Kwon Y et al.
found that miR-26a and miR-26b relieved allergic inflammation
by inhibiting the expression of COX2 and forming a negative
feedback loop (76).

ROS, also an essential mediator in regulating inflammatory
response, play a significant role in wound healing and tissue repair.
However, excessive ROS leads to oxidative stress and persistent
chronic inflammation impairing tissue regeneration. Wang et al.
observed that miR-27b overexpression accelerated wound healing
in diabetic mice, partly by reducing mitochondrial ROS
production through targeted adaptor protein p66shc (77).
Frontiers in Immunology | www.frontiersin.org 7
In addition, miR-375 and miR-5591-5p were also shown to be
involved in the inhibition of intracellular ROS production during
wound healing by targeting metalloproteinases 1 (TIMP-1) and
advanced glycation end products (AGEs), respectively (78, 79).
5 EXOSOMAL miRNAs IN
WOUND INFLAMMATION

Exosomes, secreted by a variety of cells, are crucial components of
intercellular information transmission (104). Many experiments
have shown that exosomes were closely associated with
FIGURE 3 | The schematic overview of miRNA-regulated inflammatory signaling pathways that occur during wound healing. TLRs, toll-like receptors; TIR, toll-IL-1
receptor; TRIF, TIR-domain-containing adapter-inducing interferon-b; TRAM, TRIF-related adaptor molecule; TIRAP, TIR domain-containing adaptor protein; MyD88,
Myeloid differentiation primary response 88; IRAK, interleukin(IL)-1 receptor associated kinase; TRAF, tumor necrosis factor receptor-associated factor; MAPK,
mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; AP-1, activator protein-1; PDCD4, programmed cell death 4; IkBa, inhibitor of kappa B alpha; LGR,
leucine-rich repeat containing G protein receptor; EGF, epidermal growth factor; HB-EGF, heparin-binding epidermal growth factor; EGFR, EGF-receptor; CUL1,
cullin-1; TAB1, transforming growth factor b(TGF-b)-activated protein kinase 1; SHCBP1, SHC SH2 Domain-Binding Protein 1; SEMA7A, semaphorin 7A; IL-6R, IL-6
receptor; JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3.
March 2022 | Volume 13 | Article 852419
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maintaining skin homeostasis, regulating wound inflammation
and promoting repair (16). For example, human mesenchymal
stem cells (MSC) release exosomes through the paracrine mode to
regulate the inflammatory microenvironment of the wound site
and accelerate wound healing. These exosomal cargoes often
contain some miRNAs, such as miR-21, miR-146a, and miR-
181, which are carried to the wound site to participate in the
resolution of inflammation (105). Scientists found that EVs
isolated after adding miR-223 inhibitor to bone marrow MSC
(BMMSC) significantly reduced the polarization of macrophages
to M2 type and delayed cutaneous wound healing (106). This
indicates that BMMSC transferred miR-223 to the wound site by
secreting exosomes and regulated the polarization of macrophages.
In another study, microarray experiments detected miRNA in
exosomes derived from human adipose-derived mesenchymal
stem cells (AEXOs). The results showed that the content of anti-
inflammatory miRNAs, such as miR-223, miR-203, and miR-146a,
was relatively high, and the researchers speculated that the anti-
inflammatory effect of AEXO was attributed to these miRNAs
(107). Overall, miRNAs derived from exosomes change the
phenotype of macrophages and promote the resolution of
inflammation to facilitate wound healing.
6 miRNA-BASED THERAPIES AND
FUTURE PERSPECTIVE

It has been demonstrated that the expression of many miRNAs is
dysregulated during wound healing, especially in chronic wounds
caused by diabetes and a series of related complications (108).
Given the critical role of miRNA in wound healing, it is considered
an attractive candidate for a set of advanced treatment strategies.
In addition, the application of miRNA in disease treatment has
attracted great attention for the following reasons. A single
miRNA can target multiple genes at the same time to form a
network amplification effect. miRNA is a small molecule and
relatively stable, which is conducive to technical manipulation.

The current miRNA-based treatment involves increasing or
decreasing the expression level of a specific miRNA, which can
be achieved through several technical methods. Increasing the
expression of beneficial miRNAs is accomplished through the
use of miRNA mimics, while methods to downregulate specific
miRNAs include miRNA inhibitors, siRNA, and antisense
oligonucleotides (109). However, naked miRNAs are not stable
in vivo due to the action of nucleases. Furthermore, the ability of
miRNAs to passively diffuse into target cells to exert regulatory
effects is limited due to hydrophilic properties and their negative
charges. Therefore, the successful delivery of miRNA mimics or
anti-miR to the intended target also requires a safe and effective
delivery system to reduce the degradation of the cargo in the
body and maintain stability. Initially, viral vectors were
recognized for efficiently carrying genetic material into cells
and inducing stable expression. Unfortunately, these vectors
often have the disadvantages of potential mutagenesis, toxicity
and difficulty in production (109). In addition to traditional viral
vectors, various non-viral vectors such as liposomes,
nanoparticles and some inorganic materials, which have lower
Frontiers in Immunology | www.frontiersin.org 8
toxicity and higher efficiency, have also been developed (110).
For example, Saleh B et al. used nanoparticle-laden hydrogels as
a vector to deliver miR-223 to the wound site, which successfully
weakened the inflammatory response and accelerated wound
healing (54). A recent study reported that anti-inflammatory
miR-146a could be effectively delivered to wound by nano silk
solution to promote wound closure in diabetic mice (111).
Moreover, miRNA as a cargo that presents in exosomes and
participates in the regulation of the wound healing process also
provides a new perspective for wound treatment.

According to statistics, more than 60 miRNA-based
therapeutic drugs are in different stages of clinical trials, some
of which have completed clinical trials and have been approved
(112). Although miRNA-based treatment methods have shown
promising results in vivo, they are still in preliminary stages for
their applications to wound healing. It is a considerable challenge
to modulate a process controlled by a complex and large network
of interacting factors through a single miRNA. Therefore, a
better understanding of the processes and functions of miRNA
in wound healing is needed. Indeed, the selection of suitable
target cells and an effective delivery system are also urgent
problems to be solved in the future.
7 CONCLUSION

Inflammation is an effective defense mechanism to eliminate
harmful damage, pathogen infection, and damaged cells at the
wound site. Uncontrolled inflammation, however, can lead to
delayed healing and eventually to chronic wounds. Therefore, the
concept of how to adjust the balance between anti-inflammatory
and pro-inflammatory activities at the chronic wound site and
how to promote tissue repair have become a major challenge for
physicians and many scientists.

Further exploration of the important role miRNA plays in
wound inflammation will help us better understand normal and
pathological wound healing mechanisms. While not without
limitations, the current development of molecular-based
therapies and new material carriers offers unprecedented
opportunities for more effective wound management.
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92. Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC,
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