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Introduction

Breast cancer, an ancient disease first noted by the 
Egyptians more than 3500 years ago [1], is the most 
common cancer and the second- leading cause of death 
from cancer in women in the United States [2]. About 
12% of women in the United States will be diagnosed 

during their lives with breast cancer, and it is estimated 
that more than 40,000 patients will die from breast cancer 
in 2016 in the United States [2]. The probability of 
receiving a breast cancer diagnosis is only 1.9% in women 
under the age of 50 years [2]; most women receive such 
a diagnosis after this age, accounting for nearly 80% of 
all cases of breast cancer [3]. Though considerable 
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Abstract

Breast cancer is currently the most common form of cancer and the second- 
leading cause of death from cancer in women. Though considerable progress 
has been made in the treatment of breast cancer, the heterogeneity of tumors 
(both inter-  and intratumor) remains a considerable diagnostic and prognostic 
challenge. From clinical observation to genetic mutations, the history of under-
standing the heterogeneity of breast cancer is lengthy and detailed. Effectively 
detecting heterogeneity in breast cancer is important during treatment. Various 
methods of depicting this heterogeneity are now available and include genetic, 
pathologic, and imaging analysis. These methods allow characterization of the 
heterogeneity of breast cancer on a genetic level, providing greater insight dur-
ing the process of establishing an effective therapeutic plan. This study reviews 
how the understanding of tumor heterogeneity in breast cancer evolved, and 
further summarizes recent advances in the detection and monitoring of this 
heterogeneity in patients with breast cancer.
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progress has occurred in the treatment of breast cancer, 
many treatment challenges remain. One of these chal-
lenges is overcoming the clinical heterogeneity of the 
disease. Breast cancer was initially thought to be homo-
geneous; clinical observation eventually revealed other-
wise, leading to the prognosis varying from patient to 
patient. Cooper observed that the size of breast tumors 
changed with the menstrual cycle [4]. Beatson further 
found that removal of the ovaries could reduce the tumor 
size of breast cancer [5]. Currently, considerable effort 
is being devoted to exploring and defining the mecha-
nisms underlying the clinical heterogeneity of breast 
cancer. Steinthal employed clinical staging to identify this 
clinical heterogeneity [6]. The development of pathologic 
techniques has allowed physicians and patients to obtain 
more information about the heterogeneity of the tumors 
associated with breast cancer on the cellular and tissue 
level. For example, Greenough applied histologic clas-
sification to assess the differences in tumor differentiation 
and proliferation among patients [7]. Understanding of 
the heterogeneity of breast cancer has been deepened 
by the identification of different expression levels of the 
estrogen receptor (ER), the progesterone receptor (PR), 
and human epidermal growth factor receptor- 2 (Her- 2), 
each of which is a key biomarker used for clinical deci-
sion making.

During the past two decades, the rapid development 
of genetic analysis technologies has enabled depiction 
of the heterogeneity of breast cancer on a genetic level 
[8]. Several genetic alterations have been identified, 
including germline BRCA mutations, which frequently 
occur in hereditary breast cancer [9]. Based on com-
prehensive gene- expression profiling, breast cancer has 
been classified into five main categories: luminal A, 

luminal B, Her2- enriched (also called Her2- related), 
claudin- low, and basal- like [10].

From clinical observation to testing for genetic muta-
tions, a lengthy and steep learning curve has been expe-
rienced in understanding the tumor heterogeneity of breast 
cancer (Fig. 1). Various studies have demonstrated that 
heterogeneity can occur either among different patients 
with the same tumor type (intertumor heterogeneity) or 
within the same patient (intratumor heterogeneity) [11–13]. 
Traditionally, intertumor heterogeneity was thought to be 
the largest barrier in the treatment of breast cancer. Effective 
and individualized therapeutic plans have been established 
based on the understanding of intertumor heterogeneity. 
For example, adjuvant endocrine therapy is widely pre-
scribed for patients who have hormone receptor- positive 
tumors. However, apart from intertumor heterogeneity, 
it should be noted that intratumor heterogeneity also poses 
a tremendous challenge for treatment selection. In fact, 
ER, PR, and Her- 2 are expressed differently in different 
regions within the same tumor as well as between the 
matched primary tumors and metastatic lesions [14]. To 
further add to this complexity, microenvironmental com-
ponents of tumors (such as stromal cells and extracellular 
matrix) are highly variable among different patients [15] 
and impact the effectiveness of treatment. In the clinical 
setting, patients’ tumors may have the same molecular 
classification and receive the same treatment, yet patients 
may experience very different outcomes. Some patients 
acquire resistance to therapies such as endocrine therapy 
and targeted therapy during treatment in spite of the 
initial efficacy of these approaches [16, 17]. Therefore, it 
is important to identify potential intertumor heterogeneity 
and intratumor heterogeneity to devise new treatment 
plans with new therapeutic targets.

Figure 1. Detailed history of the understanding of the heterogeneity of breast cancer. At first, breast cancer heterogeneity could only be assessed 
according to its clinical characteristics (stage, recurrence, metastasis). Technological advances provided further information on the pathologic 
heterogeneity in histologic classification and the expression of key molecules. During the past two decades, the rapid development of genetic analysis 
has enabled depiction of the heterogeneity of breast cancer on a genetic level.
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In previous studies, cumulative exposure to carcinogenic 
factors led to elevations in chromosomal instability and 
cancer- specific driver mutations [18, 19], both of which 
lead to abnormal gene expression [12, 20, 21]. The genetic 
alterations might be different across cancer cell subgroups. 
Each of these alterations (alone or in different combina-
tions) endows different cancer cell subgroups with different 
features [22, 23]; cancer cell subgroups form solid tumors 
with distinct clinical (i.e., morphologic and prognostic) 
features. Therefore, using the origins of heterogeneity as 
a starting point, both intertumor and intratumor hetero-
geneity can be detected. Powerful technologies such as 
genomic analysis technology, molecular and pathologic 
technology, and imaging techniques have been used to 
detect breast cancer heterogeneity and inspect its dynamic 
changes (Fig. 2). This review summarizes recent advances 
in detecting and monitoring heterogeneity in breast cancer 
and is split into three sections, each of which reviews 
one of these technologies. At the end of this review, we 
will discuss how these new techniques have improved our 
understanding of the heterogeneity of breast cancer and 
its clinical management.

Genomic Analysis

Genomic analysis is an important tool for analyzing the 
heterogeneity of tumors. As early as 1978, karyotyping 
was used for the detection of genomic abnormalities [24]. 
However, because DNA samples derived from a breast 
tumor are a mixture of different DNA from heterogene-
ous tumor cells, it was difficult to identify the degree of 
genomic heterogeneity of cancer cells. Considerable pro-
gress has occurred with respect to DNA sequencing and 
the development of detection methods for genomic abnor-
malities. Recent technological advances have included the 
microarray, next- generation sequencing (NGS), and in situ 
sequencing. Each of these captures the genomic diversity 
of breast cancer cells.

In situ Hybridization

In situ hybridization (ISH), a common technique widely 
used to detect gene number copy alterations, localizes a 
specific DNA or RNA sequence in tissue by using labeled 
probes with known sequences [25]. ISH plays an important 

Figure 2. Heterogeneity can be detected on three levels: genes, cells and tissues, and clinical features. Genetic heterogeneity can be detected using 
gene sequencing, microarrays, and ISH. Pathologic heterogeneity can be detected with the help of IHC and QDs- IHC. Heterogeneity can be determined 
through the clinical features of tumors using various imaging methods such as mammography, ultrasound, MRI, and PET. ISH: In situ hybridization; 
IHC: immunohistochemistry; QDs: quantum dots; CT: computed tomography; MRI: magnetic resonance imaging; PET: positron- emission tomography. 
All of the pictures were produced at our clinic’s imaging center.
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role in detecting both intertumor and intratumor gene 
heterogeneity in breast cancer. For example, the fluores-
cence in situ hybridization (FISH) assay is considered the 
“gold standard” in evaluating HER2 gene status in patients 
with breast cancer [26]. The FISH assay has also been 
widely used to identify gene copy number and distribu-
tion heterogeneity. For example, Janiszewska and colleagues 
employed FISH to assess the spatial heterogeneity of cel-
lular genetic diversity and the changes in the frequency 
and topology of the PIK3CA mutation and Her- 2 ampli-
fication within Her- 2- positive breast cancer during neo-
adjuvant therapy [27]. Furthermore, the development of 
the multicolor FISH (mFISH) assay makes it possible to 
simultaneously detect the degree of intertumor and intra-
tumor heterogeneity in several genes [28, 29]. Li and 
colleagues used mFISH to detect copy number aberrations 
in four genes related to cell cycles in patients with breast 
cancer [29]. More recently, ISH was employed to identify 
heterogeneous expression in RNA molecules in breast 
cancer, providing information about tissue- specific and 
cell- specific expression [30].

Gene- Expression Profiling

Gene- expression profiling is an important method of 
detecting gene- expression heterogeneity in patients with 
breast cancer. Genetic microarrays and 21- gene expression 
assays are the most frequently used techniques in clinical 
detection of RNA- expression heterogeneity among patients.

A gene microarray is a collection of microscopic probes 
attached to a solid surface. The concept was first intro-
duced by Schena in 1995 [31], and is based on the ability 
of DNA to find and spontaneously bind its complementary 
sequence in a reversible way with high specificity [32]. 
The technique can simultaneously measure the expression 
levels of thousands of genes and identify differentially 
expressed genes among different patients with cancer [33, 
34]. Gene microarrays have been used to identify a number 
of differentially expressed genes [33]. As early as 2000, 
Perou and colleagues performed pattern analysis for gene 
expression in breast cancer using complementary DNA 
microarrays, initially discovering five major intrinsic gene 
signatures: luminal A, luminal B, Her- 2- enriched, claudin- 
low, and basal- like [10]. Gene microarrays could further 
be used to predict response to chemotherapy and risk of 
recurrence by inspecting the expression level of genes 
related to therapy resistance and recurrence [34, 35]. 
Recently, microarrays have been frequently used to screen 
noncoding RNAs related to breast cancer and identify 
new tumor subtype markers [36–38]. Though the micro-
array can attain the level of high- throughput analysis of 
gene expression, it cannot provide in situ information 
about gene expression.

The 21- gene expression assay is based on reverse tran-
scriptase polymerase chain reaction (RT- PCR), which is 
able to qualitatively detect gene expression. In 2004, Paik 
and colleagues first developed a scoring system based on 
21 prospectively selected genes in paraffin- embedded tumor 
tissue to quantify the likelihood of distant recurrence in 
patients with node- negative, ER- positive breast cancer [39]. 
They further demonstrated that the 21- gene recurrence 
score could also be a powerful tool to predict the mag-
nitude of benefit from chemotherapy [40]. Several addi-
tional studies have shown that the use of the 21- gene 
expression assay is cost- effective in patients whose cancer 
has not metastasized to the lymph nodes [41–43]. The 
21- gene expression assay has been widely used to predict 
tumor heterogeneity in disease recurrence and response 
to chemotherapy [44–47]. Various studies have demon-
strated that 21- gene recurrence score changed the clini-
cal–pathological adjuvant chemotherapy recommendation 
[48–53].

Gene Sequencing

In 1977, Frederick Sanger first introduced his DNA sequenc-
ing technique [54]. After 30 years of development, novel 
sequencing technologies with reduced costs and increasing 
throughput have been developed. NGS is a newly devel-
oped high- throughput technology that has revolutionized 
cancer genome sequencing by providing detailed charac-
terization of the cancer genome and epigenomic informa-
tion about breast cancer [55–57]. NGS makes it possible 
to perform large- scale analysis of cancer genes, leading 
to the discovery of new genes associated with breast cancer 
and of the heterogeneity of individual tumors [58]. Stephens 
and colleagues identified several new cancer genes in breast 
cancer with the help of NGS [18]. Furthermore, based 
on the NGS results, additional bioinformatic tools will 
allow mining of the sequencing data and unveiling of the 
evolution process for cancer cell subgroups within breast 
cancer [59]. The phylogenetic tree for breast cancer evo-
lution provides an intuition into the dynamic evolutionary 
course of intratumor heterogeneity [22, 23, 60]. In com-
bination with flow- based cell sorting and efficient whole- 
genome amplification (WGA), NGS can be used to detect 
the genomic alteration of single tumor cells [22]. NGS- 
based liquid biopsy is currently an area of great research 
interest and will ideally facilitate the early diagnosis of 
intratumor heterogeneity and continuing surveillance of 
dynamic changes [61–63]. Murtaza and colleagues suc-
cessfully inspected the dynamic changes in genomic archi-
tecture derived from circulating tumor cells during adjuvant 
chemotherapy and identified genes related to resistance 
to chemotherapy [64]. Although NGS can roughly identify 
spatial heterogeneity in genomic alterations through 
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multiregional sequencing, it cannot provide information 
about in situ gene expression [65, 66].

Recently, Lee et al. developed a new technique, fluo-
rescent in situ sequencing of RNA, for gene expression 
profiling [67, 68] through conversion of RNA into cross- 
linked cDNA amplicons and manual sequencing on a 
confocal microscope. This technique is still in its experi-
mental phase, but has broad prospects for helping research-
ers further understand intratumor heterogeneity.

Pathologic Analysis

Pathologic analysis plays important roles in the diagnosis 
and subtyping of breast cancer. Developments in pathologic 
technologies have promoted greater understanding of both 
intertumor and intratumor heterogeneity. Pathologic analy-
sis can now combine morphology with molecular biology, 
providing new insights into breast cancer heterogeneity.

Pathologic analysis techniques such as immunohisto-
chemistry (IHC) and immunofluorescence (IF) have been 
widely used for assessing therapeutic biomarkers of breast 
cancer and identifying subsets of patients with different 
outcomes [69, 70]. IHC markers such as ER, PR, Her- 2, 
and proliferation markers could divide breast cancer cases 
into groups remarkably similar to subtypes defined by 
gene expression studies [71–73]; however, these are quali-
tative analyses. Quantifying tumor heterogeneity has 
become more urgent with these developments in pathol-
ogy’s capabilities. Some studies have attempted to conduct 
semiquantitative analysis using conventional IHC and 
successfully identified different degrees of intratumor het-
erogeneity [74, 75]. Potts and colleagues combined semi-
quantitative analysis with ecology diversity statistics to 
evaluate the heterogeneity on IHC- stained breast cancer 
samples and identified new features in HER2 expression 
among different patients [74].

Though conventional pathologic analysis methods have 
great value in evaluating the heterogeneity of breast cancer, 
due to its limitations in quantitative analysis and multi-
molecular staining, these methods are not able to com-
pletely reveal the heterogeneity of breast cancer, especially 
intratumor heterogeneity.

Recently, nanotechnology has been regarded as a prom-
ising tool to illustrate the heterogeneity of breast cancer. 
Optical- based nanoparticle imaging, such as quantum 
dots- based immunohistochemistry (QDs- IHC), is an 
important branch of nanotechnology as applied in medi-
cine. Most of the QDs are semiconductor nanocrystals 
that have properties including high fluorescence intensity, 
strong resistance to photobleaching and chemical degrada-
tion, size- tunable emission wavelengths, and simultaneous 
multiple fluorescence under a single excitation source [76, 
77]. Due to these properties, QDs- IHC is a powerful tool 

to detect breast cancer heterogeneity, as it can provide 
in situ information for multiple biomarkers (Fig. 3) [78]. 
Chen and colleagues successfully visualized Her- 2 and ER 
simultaneously with QD- based imaging; this technique 
very clearly displayed the heterogeneous expression of 
these markers in breast cancer [79]. Furthermore, Peng 
and colleagues obtained multidimensional information 
both from cancer cells and from the tumor microenviron-
ment through QDs- IHC [80]. When performing multiplex 
imaging of various key immunomarkers such as epidermal 
growth factor receptor (EGFR), Her- 2, and the Ki- 67 
protein simultaneously, we found new tumor characteristics 
that were associated with breast cancer prognosis [81–83]. 
Furthermore, Chen and colleagues divided patients with 
breast cancer into five new subtypes through QD- based 
quantitative determination of HER2 and EGFR in com-
bination with hormone receptor status [83]. To summarize, 
QDs- IHC provides new insight into the heterogeneity of 
breast cancer and will play an important role in indi-
vidualized breast cancer treatment.

Imaging Analysis

A variety of imaging techniques exist for the screening 
and diagnosis of breast cancer. Mammography, ultrasound, 
magnetic resonance imaging (MRI), and positron emission 
tomography (PET) are the most common techniques for 
breast cancer imaging. These imaging techniques can reveal 
the diverse characteristics of breast cancer (Fig. 4). With 
the development of technology and deeper recognition 
of breast cancer, some imaging techniques are further 
used to detect breast cancer heterogeneity. This section 
summarizes recent advances in this area.

X- ray- Based Imaging

X- ray- based imaging includes techniques such as mam-
mography, computed tomography, and new imaging tech-
niques such as digital breast tomosynthesis (DBT). 
Mammography has been widely used in breast cancer 
screening and allows physicians to obtain information 
about calcifications and breast cancer’s morphologic fea-
tures. The mass shape (round, oval, lobular irregular, and 
obscured) on mammography has been associated with 
the Oncotype Dx (a breast cancer array incorporating the 
mRNA expression of 21 genes) recurrence score [84]. 
However, very little research to date has evaluated the 
application of mammography in detecting inter-  or intra-
tumor heterogeneity due to the limited information yielded 
by the imaging technique.

DBT, first introduced in 2011, improved on standard 
mammography by increasing breast cancer detection rates 
[85]. However, limited evidence exists of its use in 
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detecting heterogeneity in breast cancer. Computed tomog-
raphy (CT) allows scanning of the entire breast in thin 
slices [86, 87]. The use of contrast material with CT allows 
more information to be obtained about the characteristics 

of breast cancer in a particular patient. Tamaki and col-
leagues found that CT findings could serve as predictive 
prognostic factors when correlated with histological char-
acteristics [88]. However, due to its radioactivity and low 

Figure 4. Clinical features demonstrated by different imaging techniques. Clinical heterogeneity can be assessed using various clinical features such 
as morphology, stiffness, texture, angiogenesis, molecular expression, and metabolism. Different imaging techniques can be used to detect these 
features. MG: mammography; CT: computed tomography; US: ultrasonography; MRI: magnetic resonance imaging; PET: positron- emission 
tomography.

Figure 3. QDs- based imaging for the study of breast cancer’s heterogeneity. Schematic plots of QDs- based biomarker imaging (A); QDs- based 
imaging of multiple biomarkers simultaneously (B: collagen IV [green] and epidermal growth factor receptor [red]); multispectral analysis software 
allows unmixing and spectral analysis of collagen IV (C) and EGFR (D); new prognostic features could be illustrated by the ratio between collagen IV 
and EGFR (E). EGFR: epidermal growth factor receptor; QDs: quantum dots. Reproduced with permission from [81, 82].
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sensitivity, CT is not as commonly used as MRI for detec-
tion and staging of breast cancer or for potential deter-
mination of heterogeneity.

Ultrasound

With the development of ultrasound technology, two 
relatively new techniques, contrast- enhanced ultrasound 
(CEUS) and elastography, have added complementary 
information to breast cancer diagnosis. Aside from mor-
phological features, CEUS can provide more information 
about tumor angiogenesis.

Elastography is based on the depiction of tissue stiff-
ness, which in breast cancer has been associated with 
interactions among tumor cells, stromal cells, and the 
extracellular matrix [89]. These properties are associated 
with heterogeneity in breast cancer, and many authors 
have tried to use ultrasound to detect breast cancer het-
erogeneity. Elastography also demonstrated that some 
sonographic features are associated with pathologic features, 
including histologic grade [90]; however, elastography was 
not useful for the correlation of mechanical elasticity with 
breast cancer subtype [90–92].

CEUS was reported to be a useful tool for correlating 
imaging features with pathological characteristics. Several 
studies identified heterogeneity in the expression of vas-
cular endothelial growth factor (VEGF) using CEUS [93, 
94]. Masumoto and colleagues found that perfusion param-
eters on CEUS were significantly associated with ER, Her- 2, 
and Ki- 67 status [95]. This result is consistent with other 
studies [96, 97]. CEUS also achieved high accuracy in 
predicting the heterogeneity of the response of breast 
cancer to neoadjuvant chemotherapy [98, 99]. The use 
of microbubbles labeled by specific antibodies also allows 
CEUS to achieve the level of detail of molecular imaging. 
Sorace and colleagues successfully depicted microvessel 
density within tumors using multitargeted microbubbles 
conjugated with antibodies against mouse Avβ3 integrin, 
P- selectin, and vascular endothelial growth factor receptor 
2 (VEGFR2) [100]. Based on these results, ultrasound 
will be a powerful tool for detecting both intertumor and 
intratumor heterogeneity of breast cancer.

Magnetic Resonance Imaging

Due to its excellent soft- tissue contrast and high sensitiv-
ity, MRI has been widely used in diagnosis of breast cancer 
as a complementary imaging technique to mammography 
and ultrasound [101]. Parameters such as tumor size, 
morphology, and shape can be obtained from MR images. 
Dynamic contrast- enhanced MRI (DCE- MRI) even allows 
the investigation of microvascular structure and kinetic 
characterization (e.g., maximum relative enhancement, 

time to peak, area under the curve) as well as statistical 
measurement of texture enhancement (e.g., gray level co- 
occurrence matrix) [102]. These parameters reflect intra-
tumor characteristics including growth patterns, 
angiogenesis, and permeability. Therefore, MRI is a feasible 
tool for evaluating breast cancer heterogeneity.

Numerous studies have been conducted to explore the 
application of MRI in screening for breast cancer hetero-
geneity. Yun and colleagues demonstrated that MRI param-
eters such as standard deviation and kurtosis of apparent 
diffusion coefficient (ADC) values were closely related to 
intratumor spatial heterogeneity of necrosis patterns and 
vascularity in MCF- 7 and MDA- MB- 231 xenograft models 
[103]. Different breast cancer subtypes exhibit different 
growth patterns and angiogenesis [104, 105]. Therefore, 
it is possible to correlate MRI parameters with molecular 
subtypes of breast cancer. In a retrospective analysis of 
102 patients, Chang and colleagues used receiver operating 
characteristic (ROC) curve analysis in conjunction with 
MRI to identify region- based features of tumors and achieve 
high accuracy in breast cancer classification [106]. ADC 
was also reported to be associated with breast cancer 
subtypes [107–110]. Some studies further attempted to 
correlate imaging features with expression information. 
Sutton and colleagues found that MR- derived image fea-
tures (such as kurtosis) were significantly related to the 
Oncotype Dx recurrence score [111]. Other studies have 
reached similar conclusions [84]. MRI is also a powerful 
tool to predict the heterogeneity of the response to anti-
cancer therapy among patients [112, 113]. Ashraf and 
colleagues determined that DCE- MRI kinetic statistics could 
predict response to neoadjuvant chemotherapy [112]. 
Another study explored the use of chemical exchange 
saturation transfer MRI (CEST- MRI) to characterize the 
metabolic heterogeneity within tumors [114]. CEST con-
trast was linearly correlated with nicotinamide adenine 
dinucleotide hydrate (NADH) concentration and the 
NADH redox ratio [100]. These results might confirm 
the usefulness of a novel noninvasive imaging surrogate 
to screen for metabolic heterogeneity in breast cancer.

Molecular Imaging

Molecular imaging is an emerging discipline with great 
promise in detecting intertumor and intratumor expres-
sion patterns of key molecules in breast cancer. Molecular 
imaging depends greatly on labeled biomarkers; these can 
be molecules, proteins, or antibodies. By tracing these 
labeled biomarkers, we can evaluate heterogeneity in bio-
chemical changes, cellular physiology, cellular function, 
and metabolism within breast cancer [115].

PET is the most frequently used molecular imaging 
technique. PET can be used to assess various properties 
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of tumors with an appropriate radiotracer, such as 
18F- fluorodeoxyglucose (18F- FDG) for metabolism, 
18F- fluorothymidine (18F- FLT) for proliferation, and 
18F- fluoroestradiol (18F- FES) for ER status [115, 116]. 
Therefore, it can be a powerful tool to identify and inspect 
the dynamic changes in intratumor heterogeneity of breast 
cancer.

Several studies found that different 18F- FDG PET fea-
tures could be translated into the immunohistochemical 
characteristics of breast cancer [117–119]. For example, 
in a retrospective analysis of 171 patients, Groheux and 
colleagues demonstrated that SUVmax, SUVmean, and 
TLG were significantly associated with the three phenotype 
subgroups (triple- negative, Her- 2- positive, and ER- 
positive/Her- 2- negative breast cancer) [118]. Koo et al. 
found that 18F- FDG uptake was correlated with a high 
Ki- 67 index in triple- negative breast cancer [117]. PET 
based on 18F- FES or 89Zr- trastuzumab could even achieve 
dynamic monitoring of ER and Her- 2 status during con-
comitant endocrine and trastuzumab therapy. In a study 
by van Kruchten and colleagues, 18F- FES PET was used 
to determine the dose needed for ER antagonists to com-
pletely abolish ER [120]. Currin and coworkers demon-
strated restoration of endocrine sensitivity after initial 
endocrine resistance with the help of 18F- FES PET [121]. 
In another study, Her- 2- based PET was used to help 
explore heterogeneity during Her- 2 mapping of metastatic 
disease and to help select patients who may demonstrate 
a response to trastuzumab therapy [122]. Several studies 
further demonstrated that PET successfully identified spatial 
metabolic heterogeneity in breast cancer [123]. With the 
help of 18F- FLT, intratumor proliferation heterogeneity 
was imaged using PET for assessing the response to neo-
adjuvant chemotherapy [124, 125].

Besides PET, QDs- based imaging is also a promising 
molecular imaging technique (discussed earlier in the 
Pathologic Analysis section). QDs conjugated with various 
biomarkers could image different targets in breast cancer 
[77, 78], and they have shown great potential in molecular 
imaging. Tada and colleagues successfully applied anti- Her- 2 
antibody- conjugated QDs to obtain images of Her- 2 over-
expression in breast cancer xenografts [126]. However, in 
vivo fluorescence imaging is affected by tissue depth. Some 
authors have tried to link QDs- based imaging with other 
imaging techniques to solve this problem. For example, 
Ma and colleagues successfully achieved in vivo multimo-
dality imaging using a multilayered, core/shell nanoprobe 
based on magnetic nanoparticles (MNPs) and QDs [127].

QDs- based imaging is relatively immature for clinical 
application. However, QDs- based imaging will have a 
future role in molecular imaging for breast cancer due 
to its optimal applicability in imaging acquisition and 
ability to quantify multiple biomarkers.

Progress in Understanding of 
Heterogeneity

The technological advances reported in this paper have 
greatly increased our understanding of intertumor het-
erogeneity. Based on analysis of the copy number and 
gene- expression profiling data from approximately 2000 
breast cancer patients, Curtis et al. identified 10 novel 
molecular subgroups with distinct clinical outcomes [128]. 
The 21- gene assay based on gene- expression profiling could 
provide additional prognostic information and predict 
benefit from adjuvant chemotherapy in ER- positive patients 
[47]. Another example is QDs- IHC, with which we revealed 
intertumor heterogeneity pattern by quantitatively analyz-
ing traditional biomarkers such as EGFR, Her- 2, and Ki- 67 
[81, 82]. Furthermore, greater in- depth knowledge of 
intratumor heterogeneity has resulted from these various 
new technologies. NGS offers the compelling advantage 
of providing an assessment of intratumor heterogeneity. 
A number of NGS studies demonstrated that breast tumors 
are composed of several subclones harboring different 
somatic mutations, copy number aberrations, and chro-
mosomal rearrangements [19, 66]. Further NGS analysis 
found that clonal competition and selective pressure from 
the microenvironment and therapy led to a state of dynamic 
change for these subclones [18, 22, 129]. Using integrated 
NGS and digital RNA profiling, Balko and colleagues 
discovered that the genomic landscape of residual cancer 
after neoadjuvant chemotherapy was different from that 
of the pretreatment specimens, with increased enrichment 
in MCL1 amplification, PTEN deletions and/or mutations, 
JAK2 amplifications, and CDK6/CCND1–3 amplification 
[130]. With the help of FISH, Janiszewska and colleagues 
found a dramatic increase in the relative frequency of 
PIK3CA- mutant cells after neoadjuvant chemotherapy [27]. 
Furthermore, NGS analyses of primary breast tumors and 
matched metastatic lesions have a distinct genomic land-
scape [131]. Based on these findings, we can identify new 
therapeutic targets and develop a more detailed, targeted 
treatment plan. In actuality, 18F- FES PET has been used 
to monitor endocrine resistance during endocrine therapy 
to help create more efficient treatment plans [121]. 
However, overcoming intratumor heterogeneity will take 
considerably more research.

The microenvironment in which cancer cells exist is 
another important component of breast cancer and plays 
an essential role in cancer progression [15], and it can 
pose selective pressure on cancer cells by regulating cancer 
cell–signal transduction and gene expression. Developments 
in these techniques (mentioned above) also deepened our 
understanding of heterogeneity in a microenvironment. 
Conventional pathologic analysis and IHC have identified 
various stromal biomarkers such as COX- 2, MMP- 1, and 
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Syndecan- 1 that are associated with breast cancer prognosis 
[132]. Furthermore, with the help of QDs- IHC, simulta-
neous imaging was possible of EGFR and collagen IV in 
triple- negative breast cancer. EGFR and collagen IV could 
act as predictors of clinical outcomes [82]. Genomic analysis 
was also a powerful tool. A 163- gene prognosticator gen-
erated from stromal gene expression profiling was highly 
prognostic in Her- 2- positive cases of breast cancer [133].

Future Perspectives

Precision medicine has received greater attention in recent 
years, especially in the field of cancer treatment [134]. 
As part of this new approach, effective detection of het-
erogeneity in breast cancer, both inter-  and intratumor, 
has become imperative. In terms of genomic analysis, new 
analysis techniques and genomic data mining that will 
enable us to identify new targets for therapy are the pri-
mary future directions of breast cancer treatment. With 
regard to pathologic analysis, quantitative analysis of the 
heterogeneity of tumor(s) in breast cancer will be an 
important element in finding factors that are associated 
with prognosis and sensitivity (or resistance) to therapy. 
Molecular imaging shows great promise in the detection 
of heterogeneity in breast cancer; this imaging technique 
could combine morphological and molecular heterogeneity 
with functional heterogeneity, enabling more in- depth 
understanding of intratumor heterogeneity. Collectively, 
development of these techniques has the potential to pro-
mote considerable progress in precision medicine with 
respect to detection of heterogeneity in breast cancer, and 
potential improvements in treatment.
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