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Abstract
Transcriptional regulation is the first level of regulation of gene expression and is therefore a major topic

in computational biology. Genes with similar expression patterns can be assumed to be co-regulated at the
transcriptional level by promoter sequences with a similar structure. Current approaches for modeling
shared regulatory features tend to focus mainly on clustering of cis-regulatory sites. Here we introduce
a Markov chain-based promoter structure model that uses both shared motifs and shared features from
an input set of promoter sequences to predict candidate genes with similar expression. The model uses
positional preference, order, and orientation of motifs. The trained model is used to score a genomic
set of promoter sequences: high-scoring promoters are assumed to have a structure similar to the input
sequences and are thus expected to drive similar expression patterns. We applied our model on two data-
sets in Caenorhabditis elegans and in Ciona intestinalis. Both computational and experimental verifica-
tions indicate that this model is capable of predicting candidate promoters driving similar expression
patterns as the input-regulatory sequences. This model can be useful for finding promising candidate
genes for wet-lab experiments and for increasing our understanding of transcriptional regulation.
Key words: regulation of transcription; Markov chain; promoter modeling; in situ hybridization; transcription
factor binding site

1. Introduction

Gene expression in metazoans is regulated at many
levels. Regulation of transcription is the first step in
the cascade of regulation and is thus of great import-
ance for our understanding of gene expression.
Regulation of transcription is determined by the
binding of transcription factors (TFs) to their corre-
sponding TF binding sites (TFBSs), and regulatory

sequences containing similar sets of TFBSs are
expected to be under the control of similar sets of
TFs and drive similar expression patterns. Hence, the
identification of TFBSs has become a key factor in
unraveling the transcriptional regulation mystery.
Unfortunately, the identification of these cis-regulat-
ory elements by wet-lab experiments is time-consum-
ing and labor-intensive. Computational methods have
come to the rescue, but both their sensitivity and
selectivity are severely hampered by the nature of
the target motifs: TFBSs tend to be short (typically
six to 15 bp) and degenerate, while the sequence in
which they are located can be over 10 kb in length.
Looking only at the oligonucleotide sequence recog-
nized by a TF, we can expect a number of biologically
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meaningless occurrences in almost every promoter
sequence. The most popular way of modeling TFBSs
is by position weight matrices.1 However, this
assumes that the positions within the motifs contrib-
ute to the binding affinity in an independent manner.
Recent experimental evidence has shown that this
assumption is not accurate, and a number of models
incorporating position-dependencies have been pro-
posed.2–6

There is growing evidence that TFs do not work
alone, but rather cooperate to confer a specific
spatio-temporal expression pattern; for instance, TFs
bind to sites located in close proximity to each
other, the so-called cis-regulatory modules (CRMs).
It is, therefore, not surprising that many approaches
to improve the accuracy of tissue expression predic-
tion have focused on clustered groups of predicted
binding sites.7–14 Zhao et al., for example, predicted
regulatory modules in Caenorhabditis elegans based
on the clustering of a set of motifs correlating with
muscle-specific gene expression. Clusters are defined
simply as sites of the motifs positioned within a
certain distance from each other. Blanchette et al.
described a more complex approach where large
numbers of PWMs are used to find statistically signifi-
cant clusters of phylogenetically conserved sites in
windows of 100 to 2000 bp. However, focusing only
on clustered groups of predicted binding sites might
be too simplistic an approach to the problem of
TFBS detection and regulatory region architecture
modeling. First, most of these approaches do not
take into account solitary sites at all, even though
some of them are likely to be functional. Secondly,
in many CRM-modeling approaches, additional fea-
tures of TFBSs, such as orientation, positional bias
with respect to the transcription or translation start
site, and order are ignored, although a number of
studies have illustrated the importance of these fea-
tures for some TFBSs.15–17 In a genome-wide analysis
of TFBSs in the mouse genome, Sharov et al. found
that a considerable number of TFBSs showed a signifi-
cant bias in their orientation. Berendzen et al. studied
the importance of position and orientation of cis-
regulatory elements and promoter motifs in a
number of species. Their results show that several
known functional elements appear to be relatively
enriched at defined sites in the promoter region.
Terai and Takagi showed that it is possible to find
motif combinations in yeast that are significantly
associated with a certain expression profile if their
order is restricted, whereas they are not associated if
their order is not taken into account. Methods that
have tried to use such features are few in number.
The Dragon Promoter Mapper uses a number of
motif features such as the orientation, the order,
and distances between adjacent motifs.18 However,

the distance to the transcription or translation start
site is not taken into account, and the model might
have difficulties with motifs that lack a conserved dis-
tance between their sites showing a general prefer-
ence for a certain region within the promoter
region. Methods as the one described by Ohler et al.
use more diverse physical properties such as DNA
bendability, GC content, or stacking energy in addition
to predicted TATA-boxes and initiator sites.19 These
methods, however, need hundreds of training
sequences and focus only on the core promoter
region, where the distances between functional
elements are strongly conserved. In addition, the final
goal of these programs is fundamentally different
from ours. While we predict the promoters with
a similar architecture as an input set of promoters,
they merely predict the presence or absence of a
promoter.
We introduce here a simple Markov chain-based

promoter architecture model as an alternative to
the existing CRM models. Our model is trained using
an input set of promoter sequences and captures
information about the orientation, the positional
bias, and the order of predicted occurrences of
motifs that are over-represented in the input
sequences. Subsequently, the trained model is used
to predict genes having similar expression patterns.
We applied our model to two promoter sequence

datasets: a set of promoter sequences driving
expression in pharyngeal muscle cells in C. elegans
and a set of muscle-specific promoters in Ciona intesti-
nalis. The muscle system of C. elegans has been exten-
sively studied, and the regulatory regions and
expression patterns of a number of genes are relatively
well known. C. intestinalis is a chordate model organ-
ism that has shown to be very useful for the study of
developmental and evolutionary biology, and recently
a number of studies have focused on the transcrip-
tional regulation ofmuscle-specific genes in this organ-
ism.20–23 The availability of relatively well-annotated
expression information for C. elegans and the recent
interest in the Ciona muscle regulatory system have
determined the choice of our datasets. For both sets
we trained themodel and used it to predict new candi-
date promoters with similar expression patterns as the
input promoter sequences. Finally, our predictions
were verified for their accuracy, using both available
annotation data and new wet-lab experiments.

2. Methods

2.1. Selection of input sequence datasets
The genomic set of C. elegans promoter sequences

was obtained from WormMart (http://www.worm-
base.org/, WormBase Release WS170). For each
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transcript, the 3000 bp upstream of the translation
start site were downloaded, and overlapping upstream
open reading frames (ORFs) were removed. Finally,
repeats were masked using RepeatMasker (version
3.0; http://www.repeatmasker.org).24 A set of 20 pro-
moters, reported on WormBase to drive expression in
pharyngeal muscle cells in C. elegans, was selected as
input data for the C. elegans pharyngeal muscle model
(see Supplementary Material Section 1).

For C. intestinalis, the genomic set of promoters was
obtained from BioMart (Release JGI2).25 For each
transcript, the 3000 bp upstream of the translation
start site were downloaded, overlapping upstream
ORFs removed, and repeats masked. The promoter
sequences of 19 genes previously shown to be
expressed in muscle were used to construct the
input promoter data set (see Supplementary
Material Section 1).

2.2. Identification of useful over-represented motifs
Over-represented motifs were predicted in each

input dataset using the motif-finding programs,
MEME,26 Weeder,27 and AlignACE.28 In order not to
overlook any significant motifs, different runs on
different regions of the input promoter sequences
were done, for both strands as well as for single
strands (see Supplementary Material Section 2).
Finally, only motifs having a length between 6 and
15 bp and having more than five predicted occur-
rences in their input dataset were considered. Motifs
that were obvious repeats (AT-repeats, AT-rich
stretches, etc.) were removed. We further removed
redundant motifs and selected up to 10 motifs that
showed to be the most significantly over-represented
in the input promoter sequences. This final set of
motifs for each set of input promoter sequences was
then used for further analysis and to construct the
promoter architecture model.

To model the binding site preferences of each motif,
we used a variable-order Bayesian network (VOBN),
based on a method described previously.29 Basically,
a VOBN model can be regarded as a PWM, with the
only difference that a first-order dependency
between positions in the motif is allowed. In this
study, we have set the conditions for introducing a
dependency very strict. Because of this, the majority
of positions in the VOBN are of zero-th order, which
implies that many motifs are basically modeled as
PWMs. Only in cases where a strong dependency
was found, a first-order dependency between the pos-
itions was introduced (see Supplementary Material
Section 3). To model the background nucleotide fre-
quencies of the promoter sequences, both for C.
elegans and for C. intestinalis, an interpolated
Markov model (IMM) was trained from the genomic
set of promoter sequences of each organism. This

was done using the procedure described by Salzberg
et al.30 The IMM we used here is at most of eighth
order. However, in cases where training data is
scarce, an interpolation is made with a lower order.
Thus the IMM takes advantage of the greater accuracy
of higher-order models and, at the same time, avoids
the problem of over-fitting caused by insufficient
training data.

2.3. Positional bias and promoter sequence
partitioning

Using the final set of motifs, for each dataset we
scanned the input sequences for occurrences of each
motif and represented them visually. As is discussed
in the Results and discussion section, in many cases
the occurrences of a motif show a certain tendency
to appear in a certain region of the promoter
sequences. Often, this is the region proximal to the
transcription or translational start site; in other
cases, it is a region further upstream. Keeping this het-
erogeneity in mind, it would be unwise to make one
single model for the entire promoter structure, not
taking into consideration the positional bias of some
motifs.
Hughes et al. have introduced a measure for the

degree of positional bias P for a motif,28 as calculated
by Equation (1).

P ¼
Xi
i¼m

t
i

� �
w
s

� �i
1�w

s

� �t�i
ð1Þ

where t is the total number of predicted sites of a
motif in the input promoter sequences, m is the
number of sites in a window of size w bp that contains
the greatest number of sites, w is set to 300 bp, and s
is the average size of the input sequences (typically
2000 , s , 3000). P is a measure of the likelihood
of observing by chance more occurrences than the
observed number in the densest region of the promo-
ter sequences, given the total number of occurrences
of the motif per unit of sequence length. The lower
the value, the more significantly the motif is biased
in its positional distribution. Given the values of this
positional bias score of all motifs for each data set,
we can split the promoter structure model into two
regions in such a way that more positionally biased
motifs will be present mainly in one region, and not
in the other. For example, the border between the
two regions can be set at 500 bp upstream of the
translation start site for all promoter sequences. This
could be done a number of times, resulting in an arbi-
trarily large number of regions, but in this study, we
limited the regions to just two: a proximal and a
distal one.

No. 1] A. Vandenbon et al. 5



2.4. Model training
First-order Markov chains were trained for both the

proximal and distal region of the input sequences, and
similarly for a set of negative control sequences. Since
in practice for many organisms there is little to no
information available on tissue-specific expression,
the entire set of genomic promoter sequences with
their predicted sites was used as negative control
set. The conditional probabilities of the Markov
chains will be denoted as

Pset;regionðByjAxÞ ð2Þ

where set stands either for the input set of promoters
and their predicted sites or for the non-input set of
promoters and their predicted sites, and region
stands for the proximal or distal region of the promo-
ters. A and B represent over-represented motifs or a
‘start’ or ‘stop’ state representing the beginning and
the end of the region, and x and y their respective
orientation. For the ‘start’ and ‘stop’ states, orientation
is not taken into account. The conditional probability
of Equation 2 is the chance to observe a site of a
certain motif B in a certain orientation y, after a site
of a certain motif A in a certain orientation x in the
particular region of set. The direction in this process
is always from the 30 end toward the 50 end; the
chance of finding find ‘start’ after ‘end’ is not included
as it is not relevant. The conditional probabilities are
learned from the predicted sites of the motifs in the
respective regions of both the input and background
promoter sequences. From the corresponding prob-
abilities of the input and background sequences, we
can calculate a log likelihood ratio (LLR) as

LLRregionðByjAxÞ ¼ log
Pinput;regionðByjAxÞ

Pnon�input;regionðByjAxÞ

 !
ð3Þ

for each region. Naturally, if the chance of observing a
site of motif B in an orientation y after a site of motif A
in orientation x is higher in the input than in the non-
input promoters, this LLR will have a high positive
value, indicating that this transition is more character-
istic for the input sequences than for the non-input
sequences. Conversely, if the chance of observing a
site of motif B in an orientation y after a site of
motif A in orientation x is lower in the input than in
the non-input, this LLR will have a high negative
value, indicating that this transition is less character-
istic for the input sequences than for the non-input
sequences. If multiple sites of a motif are present in
a region, each of them makes a contribution to the
score of the region. The addition of pseudocounts
was used to avoid over-fitting for motifs with a low
number of occurrences.

2.5. Scoring promoter sequences
For each promoter sequence to score, we took the

regions with their motif sequence (from 30 to 50)
and the LLR values corresponding to the particular
region. The final score Scoretotal of a promoter
sequence is then given by the following equation:

Scoretotal ¼
X

all regions

Scoreregion

¼
X

all regions

Xnþ1
i¼1

LLRregionðBi;yjAi�1;xÞ ð4Þ

where Scoreregion represents the score of each region
of the promoter sequence, n is the number of pre-
dicted cis-regulatory sites in each region, i ¼ 0 rep-
resents the start of the region, and i ¼ n þ 1 the end
of the region. Fig. 1 shows a visual representation of
the scoring process.
As indicated above, the transitions between motifs

that are more characteristic for input promoter
sequences will have a high positive score, whereas
transitions between motifs that are more

Figure 1. A visual representation of the scoring process of the
Markov chain-based promoter structure model. (A) A
promoter sequence to score. The arrow on the right indicates
the translation or transcription start site. The squares represent
predicted TFBSs for motifs A, B, and C, with ‘ þ ’ and ‘ 2 ’
indicating their orientation. The promoter sequence is divided
into a proximal and a distal region with the boundary between
these regions, here set at 2500 bp. (B) and (C) A visual
representation of the promoter model during the scoring
process of the distal region and the proximal region,
respectively. The states of the model are shown as circles. Each
of the two regions has a ‘start’ and a ‘stop’ state, in addition to
states for each motif type in both orientations. To score the
sequence shown in (A), in the proximal region of the promoter
a transition is made from ‘start’ to ‘Cþ’, from ‘Cþ’ to ‘A2’,
from ‘A2’ to ‘A2’ and finally from ‘A2’ to ‘stop’, corresponding
to the TFBSs predicted in the proximal region of the promoter.
The score of the proximal region is the sum of the LLR values
associated with each of these transitions (e.g. LLRproximal(Cþ j
start) for the transition from ‘start’ to ‘Cþ’, etc.). This process
is repeated for the distal part of the promoter, and the final
score of the promoter is the sum of the scores of both regions.

6 Markov Chain-based Promoter Structure Modeling [Vol. 15,



characteristic for non-input promoter sequences will
have a high negative score. Thus, promoters having
similar sets of motifs as the input sequences, with
similar orientations and orders as those of the input
sequences, in the same region get a high positive score.
High-scoring promoters have a structure similar to the
input promoters and are, hence, assumed to drive
similar expressions. As can be seen from Equation 4,
the individual strength of predicted motif sites does
not contribute to the score of a sequence.

2.6. In situ hybridization experiments
Mature adults of C. intestinalis were collected from

harbors in Murotsu, Hyogo, Japan, and maintained
in indoor tanks of artificial seawater at 188C. Larvae
were obtained as described previously20 and fixed
overnight in 4% paraformaldehyde in 0.5 M NaCl,
0.1M, pH 7.5, 3-(N-morpholino) propanesulfonic
acid (MOPS) buffer prior to storage in 80% ethanol
at 2308C. As the template to synthesize digoxi-
genin-labeled antisense RNA probes, cDNA clones
were obtained from C. intestinalis Gene Collection
Release 1.31 The RNA probes were synthesized using
a DIG RNA labeling kit (Roche Diagnostics,
Indianapolis, IN). In situ hybridization of whole-
mount specimens was carried out as described pre-
viously.32 The larvae were mounted in 50% glycerol
containing 2% 1,4-diazabicyclo-2,2,2-octane (DABCO)
and observed under a confocal microscope LSM 510
(Zeiss).

3. Results and discussion

3.1. C. elegans pharyngeal muscle promoter
architecture model

In a set of 20 promoter sequences reported to drive
expression in pharyngeal muscle cells of C. elegans, we
predicted over-represented motifs (see Section 2).
Table 1 shows the positional bias score of the found
motifs, together with the 300 bp window in the
input promoter sequences where the occurrences of

each motif are the most abundant. None of these
motifs showed a significant similarity to motifs in
the JASPAR database.33 Note that some motifs
(Cel_PM4, Cel_PM7) show a considerable bias in
their orientation. Given that the motifs with the
most significant positional bias seem to prefer the
region roughly between the translation start site and
21000 bp, we divided the promoter region into a
proximal region (from the translation start site to
21000) and a more distal region (from 21000 to
the 50 end of the promoter sequence). Next, for
both regions, a first-order Markov chain was trained
taking into account the orientation of the motif
occurrences as described (see Methods and
Supplementary Material Section 4).
In a next step, the genome-wide set of promoters of

C. elegans was scored by the trained model (see
Methods). Of the 20 input promoters, 11 were in
the 100 top-scoring sequences (see Supplementary
Material Section 5). To verify the validity of this pre-
diction, we used the expression annotation that can
be found in WormBase. For the 100 highest scoring
non-input genes having a tissue expression annotation
(the first one being ranked 30th, the last one 606th
out of 24 446 promoters), we determined which
tissues were statistically over-represented. We found
that the 100 top-scoring annotated non-input genes
are enriched for genes expressed in pharyngeal
muscles (10 genes, 4.1 expected by chance, P-
value ¼ 0.0025) and muscle tissue in general (42
genes, 30.9 expected by chance, P-value ¼ 0.0072).
There was also a slight enrichment for genes
expressed in motor neurons (7 genes, 2.4 expected
by chance, P-value ¼ 0.0110), which are involved in
the regulation of muscle contractions. It is not surpris-
ing to find the top-scoring genes to be enriched for
not only pharyngeal muscle cells, but also muscle
tissues in general, as the input genes’ tissue expression
patterns were not restricted to only pharyngeal
muscle cells but also included other muscle tissues.
Table 2 shows the 10 top-scoring annotated

Table 1. The seven motifs used in the C. elegans pharyngeal muscle promoter model, with their consensus sequence

Motif name Consensus sequence Positional bias score Densest 300 bp window Orientation bias þ –(ratio þ)
Cel_PM1 TTTSBVRRATTTTMR 7.3e 2 9 2862 to 2562 25–14 (0.64)

Cel_PM2 ACTCMGAGCA 1.1e 2 4 2337 to 237 12–12 (0.50)

Cel_PM3 CGGGATCT 9.1e 2 4 2504 to 2204 9–16 (0.36)

Cel_PM4 GAATCAGCGC 4.1e 2 3 2605 to 2305 18–7 (0.72)

Cel_PM5 AAAAATTCAATTTT 0.033 22240 to 21940 17–17 (0.50)

Cel_PM6 GCARCAWA 0.034 21742 to 21442 11–12 (0.48)

Cel_PM7 CTCCCTGAGC 0.086 21307 to 21007 21–7 (0.75)

The third and fourth columns show the positional bias score of each motif and the positions of the densest window relative
to the translation start site, respectively. The fifth column shows the number of predicted sites in the input promoters on
each strand and the ratio of sites in the ‘plus’ orientation.

No. 1] A. Vandenbon et al. 7



non-input genes and their expression annotation as
reported on WormBase. Five of these 10 genes are
reported to be expressed in muscle tissue, one of
them in pharyngeal muscles. In addition, some
genes are reported to be expressed in neurons and
motor neurons. It is known that muscle genes and
neuronal genes share some regulatory elements, and
other studies have reported similar observations.13,34

3.2. C. intestinalis muscle promoter
architecture model

We predicted over-represented motifs in a set of 19
C. intestinalis promoter sequences known to drive
expression in C. intestinalis muscle tissue. Table 3
shows the positional bias scores of the detected over-
represented motifs. Motif Cin_M1 and motif Cin_M3
have consensus sequences that are highly similar to
those of motifs that have been reported before as
playing a crucial role in transcriptional regulation of
muscle genes in C. intestinalis.20 The binding sites of
these motifs show similarity to those of the CREB and
Myf (MyoD) TFs, respectively. Note that again in
Table 2, some motifs (Cin_M5, Cin_M10) show a con-
siderable bias in their orientation.
For this model, predicted TATA-boxes were used as

reference points instead of the translational start
sites. Sequences in which we could not find a TATA-
box within a reasonable distance of the coding
region were anchored at the position 100 bp
upstream of the translation start site. Given the pre-
ference of some motifs for the proximal region, the
promoter architecture model was partitioned into a
proximal part (from the translation start site to
250 bp upstream of the predicted TATA-box) and a
distal part (from 250 bp upstream of the predicted
TATA-box until the 50 end of the promoter sequence).
Although our model does not include a direct way to
model the clustering of sites, Table 2 illustrates that
the proximal part of the promoter model was
denser in motif occurrences than the distal part.
For both regions, a first-order Markov chain was

trained (see Methods and Supplementary Material
Section 4). The genomic set of promoter sequences
of C. intestinalis was then scored using the trained
model. The promoters were ranked by their score
and the top-scoring genes selected for further analy-
sis. Of the 19 input promoters, 16 are in the top
100 scoring sequences (see Supplementary Material
Section 5). As a verification of the predictions,
expression patterns of non-input genes from the top
50 scoring sequences were analyzed experimentally
by in situ hybridization. Among the 29 non-input
sequences in the top 50 list, three sequences, all of
which encode muscle actin, were excluded from the
analysis because their muscle-specific nature wasTa

bl
e
2
.
Th

e
te
n
h
ig
h
es
t
sc
or
in
g
n
on

-i
n
pu

t
pr
om

ot
er
s
fo
r
th
e
C
.
el
eg
an

s
ph

ar
yn

ge
al

m
u
sc
le

pr
om

ot
er

m
od

el
,w

it
h
th
ei
r
ra
n
k,

se
qu

en
ce

an
d
tr
an

sc
ri
pt

n
am

e
an

d
re
po

rt
ed

ex
pr
es
si
on

p
at
te
rn

R
an

k
Se

qu
en

ce
n
am

e
Tr
an

sc
ri
pt

n
am

e
Ex
pr
es
si
on

p
at
te
rn

as
an

n
ot
at
ed

on
W
or
m
Ba

se

3
0

Y2
4
D
9
A
.4

Y2
4
D
9
A
.4
a.
2

N
er
vo

u
s
sy
st
em

,r
ep

ro
du

ct
iv
e
sy
st
em

,a
n
al

de
pr
es
so
r
m
us

cl
e,

bo
dy

w
al
lm

us
cl
e,

ph
ar
yn

x

4
7

F5
2
C
9
.8

F5
2
C
9
.8
e

N
er
vo

u
s
sy
st
em

,i
n
te
st
in
e

5
0

T1
3
C
5
.1

T1
3
C
5
.1
a

H
ea

d
n
eu

ro
n
s,
h
yp

o
de

rm
is
,v
u
lv
al

m
us

cl
e,

an
te
ri
or

ga
n
gl
ia
,

sp
er
m
at
h
ec

ae

7
2

D
1
0
8
1
.2

D
1
0
8
1
.2

St
om

at
o-
in
te
st
in
al

m
us

cl
e,

an
al

de
pr
es
so
r
m
us

cl
e,

bo
d
y
w
al
l

m
u
sc
le

7
5

F2
2
B7

.9
F2

2
B7

.9
E
lin

ea
ge

,s
yn

cy
ti
al

h
yp

od
er
m

7
9

C
5
3
C
1
1
.3

C
5
3
C
1
1
.3

H
ea

d
n
eu

ro
n
s,
ve
n
tr
al

n
er
ve

co
rd
,t
ai
ln

eu
ro
n
s,
n
er
vo

u
s
sy
st
em

8
0

F1
0
E9

.6
F1

0
E9

.6
a.
1

N
er
vo

u
s
sy
st
em

,r
ep

ro
du

ct
iv
e
sy
st
em

,b
o
dy

w
al
lm

u
sc
le
,

ph
ar
yn

ge
al

n
eu

ro
n
s,
an

al
de

pr
es
so
r
m
us

cl
e,

vu
lv
al

m
u
sc
le

8
3

ZK
6
5
2
.8

ZK
6
5
2
.8

H
ea

d
n
eu

ro
n
s,
n
er
vo

u
s
sy
st
em

,i
n
te
st
in
e,

ta
il
n
eu

ro
n
s

8
4

C
3
6
E6

.5
C
3
6
E6

.5
.2

Ph
ar
yn

x,
ph

ar
yn

ge
al

m
us

cl
e

8
6

R
0
7
B1

.1
R
0
7
B1

.1
Ve

n
tr
al

co
rd

m
ot
or

n
eu

ro
n
s,
se
am

ce
lls
,h

yp
od

er
m
al
,n

eu
ro
bl
as
ts
,

h
ea

d

O
f
th
es
e
te
n
pr
om

ot
er
s
fiv

e
dr
iv
e
ex
pr
es
si
on

in
on

e
or

m
or
e
m
u
sc
le

ti
ss
u
es
,o

n
e
sp
ec

ifi
ca

lly
in

ph
ar
yn

ge
al

m
u
sc
le
s.

8 Markov Chain-based Promoter Structure Modeling [Vol. 15,



obvious. Other two genes, whose expression patterns
had been already known, were also excluded. Among
the 24 sequences remaining, cDNA clones were avail-
able for four predicted sequences in C. intestinalis
Gene Collection Release 1,31 and they were used to
synthesize RNA probes for the in situ hybridization
analysis. The results of these experiments are shown
in Fig. 2. For three of the four tested genes, expression
was observed in muscle cells in the tail of the C. intes-
tinalis larva. A fourth gene showed expression in the

central nervous system and mesenchyme, but not in
muscle tissue.

3.3. Conclusion
We have introduced a simple promoter architecture

model that uses the positional bias, the orientation
bias, and the order of predicted sites of a set of
motifs to predict promoter sequences that drive
similar expression patterns as the input promoter

Table 3. The ten motifs used in the C. intestinalis muscle promoter model, with their consensus sequence. See the legend of Table 1 for
explanations on the meaning of each column

Motif name Consensus sequence Positional bias score Densest 300 bp window Orientation bias þ –(ratio þ)
Cin_1 TKGTGACGTCA 1.2e 2 5 2232 to þ68 24–14 (0.63)

Cin_2 GCCGGC 1.9e 2 3 21020 to 2720 19–10 (0.66)

Cin_3 TGCAGCTGCR 2.5e 2 3 2407 to 2107 12–14 (0.46)

Cin_4 MACAACARA 4.8e 2 3 2328 to 228 15–9 (0.63)

Cin_5 ATAAACGACANA 6.9e 2 3 2614 to 2314 21–8 (0.72)

Cin_6 ATGCCGAC 0.037 2214 to þ86 14–13 (0.52)

Cin_7 CATCGGGGTA 0.040 2398 to 298 14 – 9 (0.61)

Cin_8 NVNNGACAACTG 0.045 258 to þ242 19–18 (0.51)

Cin_9 AMTCAAGCAA 0.094 2150 to þ150 17–10 (0.63)

Cin_10 YTTCACTC 0.13 2191 to þ109 19–5 (0.79)

Here the positions of the densest window are given relative to the TATA-box.

Figure 2. Expression signals of four high-scoring genes for the Ciona muscle promoter architecture model, determined by in situ
hybridization experiments in C. intestinalis. These are the 20th, 31st, 41st, and 50th highest scoring sequences, respectively. These
ranks include the input sequences and possible alternative transcripts. For each gene, the expression in the trunk and in the tail is
shown. (A) A gene encoding a protein similar to human ‘vacuolar Hþ ATPase E1’. This gene is conspicuously expressed in the central
nervous system (brain, visceral ganglion, nerve cord) as well as in mesenchyme, but not in the muscle cells. (B) A gene encoding a
protein similar to human ‘deformed epidermal autoregulatory factor 1’. In the trunk, this gene is specifically expressed in
mesenchyme cells. In the tail, signals are predominantly found in muscle cells. Note that signals are not found in the notochord and
epidermis. (C) A gene encoding a protein similar to human ‘glioma tumor suppressor candidate region gene 1 isoform 4’. It is
expressed in endoderm of the trunk and also expressed weakly in muscle cells of the tail. (D) A gene encoding a protein similar to
human ‘antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5’. In the trunk, this gene is weakly
expressed in endoderm cells. Signals are predominantly found in muscle cells, while signals are not found in the notochord and
epidermis. Color versions of these pictures are available upon request.
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sequences. As this model does not directly model the
clustering of motifs, it can be considered as an
alternative to the existing CRM-based models.
During the training of the model, only one parameter
needs to be set (i.e. the position of the boundary
between the regions). We did not use any tissue-
specific or organism-specific information in the con-
struction of the model, so we can expect it to be appli-
cable in other tissues and organisms as well. The fact
that we could successfully predict expression profiles
in two organisms illustrates the general applicability
of our approach. Moreover, the motifs we used in
the two datasets and described here were based
solely on computational predictions, illustrating that
this method does not require prior knowledge of the
regulatory factors involved and their binding sites.
Apart from a set of promoter sequences of co-regu-
lated genes no other input data are needed.
However, the structure of promoters driving
expression in other tissues, such as the photoreceptor
in C. intestinalis, has shown to be more challenging.
Improvements to the model, such as the incorpor-
ation of additional information (e.g. the clustering of
sites, the distance between pairs of sites, or evolution-
ary conservation) are likely to improve its prediction
performance and are now being studied.
Supplementary Data: Supplementary data are

available online at www.dnaresearch.oxfordjournals.
org.
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