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Proteoglycans (PGs) are heavily glycosylated diverse proteins consisting of a “core

protein” covalently attached to glycosaminoglycans (GAGs) and present on the cell

surface, extracellular matrix, and intracellular milieu. Extracellular proteoglycans play

crucial roles in facilitating cell signaling and migration, interacting with growth factor

receptors, intracellular enzymes, extracellular ligands, and matrix components, as well

as structural proteins and promoting significant tumor-microenvironment interactions

in cancerous settings. As a result of their highly regulated expression patterns,

recent research has focused on the role of proteoglycans in the development

of nervous tissue, such as their effect on neurite outgrowth, participation in the

development of precursor cell types, and regulation of cell behaviors. The present

review summarizes current progress for the studies of proteoglycan function in brain

cancer and explains recent research involving brain glycoproteins as modulators of

migration, cell adhesion, glial tumor invasion, and neurite outgrowth. Furthermore, we

highlight the correlations between specific proteoglycan alterations and the suggested

cancer-associated proteoglycans as novel biomarkers for therapeutic targets.
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INTRODUCTION OF BRAIN CANCER

Brain tumors are abnormal cell growths in the brain, though only malignant tumors are cancerous.
There are two types of brain tumors: the primary brain tumor, which originates from and resides
within the brain, and the secondary (metastatic) brain tumor, which originates from cancer outside
of the central nervous system (CNS) then spreads into the brain. While primary tumors are the
more frequent solid tumors in children, metastatic tumors are more commonly diagnosed in adult
patients (1).

In recent decades, the worldwide brain tumor incidence rate has increased across all
ages. The standardization of age in varying countries is between 0.01–12.7 in males and
0.01–10.7 in females per 100,000 people, with the highest incidence in northern Europe
and the lowest in Africa (2). According to the Central Brain Tumor Registry of the
United States (CBTRUS), the incidence rate of CNS tumors in the United States (23.03
per 100,000 cases for a total count of 392,982) incident tumors, of which 121,277 cases
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are malignant and 271,705 non-malignant) is lower in males
(20.59 per 100,000 for 165,148 total cases) than in females (25.31
per 100,000 for 227,834 total cases) (3). In addition, in the
United States, the 5-years survival rate following the diagnosis of
a primarymalignant CNS tumor is about 35% (2008–2014 data)1.
The mortality rate of CNS cancers is estimated at about 3.4 per
100,000 in the world (2).

Across all age groups, themost common brain tumors develop
from glial cells, which are gliomas that encompass a large scope
of tumors and can be classified into four grades as follows:
grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma),
grade III (anaplastic astrocytoma), and grade IV (glioblastoma
multiforme) (4). Grade III and IV are categorized as high-grade
or malignant gliomas with extremely poor prognosis, with grade
IV diagnoses (which account for half of primary brain tumors)
seeing a 5-years survival rate of <10% (5). The most common
intracranial tumors in adults are brain metastases, with over
150,000 cases in the United States alone. Despite the considerable
effect of varying primary tumor types on the incidence of
metastases, 8–10% of adults diagnosed with cancer will develop
brain metastases (6).

Developing treatment for CNS cancer is one of the most
exigent branches of study in oncology. Although therapeutic
approaches that exploit the immune system are a promising
alternative strategy to surgery, radiotherapy, and anticancer drug
therapy, multidrug resistance is a substantial obstacle restricting
the success of conventional chemotherapy (7). The innate
chemoresistance of many primary brain tumors and insufficient
penetration of cytotoxic drugs across the blood-brain barrier
(BBB) are also both responsible for the unsuccessful response
of brain tumors to chemotherapy (8). Due to the urgency for
novel therapies that combat these occurrences, researchers have
emphasized and prioritized the development of anticancer drugs.

Using in vitro methods, Kwon et al. directly tested the
effects of sialic acid glycan and glycosylation on BBB influx
and efflux of IgG, specifically the influx and efflux processes
for BBB endothelial cells, and facilitated “direct measurement
of the Permeability Coefficient in each direction” (9, 10). In
the study, BBB pharmacokinetics were found to be considerably
affected by modest changes of IgG glycan profiles with sialylated
glycans, suggesting that modifying IgG glycan could become an
effective technique in increasing the concentration of the brain’s
therapeutic antibodies. Because immune pathways induced by
sialylated IgG cause little inflammation, sialylation may therefore
suggest beneficial clinical possibilities and further implications
for patients with other CNS diseases such as Alzheimer’s
disease (11–13).

Abbreviations: BBB, blood-brain barrier; CS, chondroitin sulfate; CNS, central

nervous system; DS, dermatan sulfate; ECM, extracellular matrix; GAGs,

glycosaminoglycans; GBM, glioblastoma; HS, heparan sulfate; HP, heparin;

HA, hyaluronic acid; KS, keratan sulfate; NG2, neuron-glial antigen 2; PG,

proteoglycan.
1Available online at: https://www.cancer.org/content/dam/cancer-org/research/

cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-

and-figures-2019.pdf

ROLES OF PROTEOGLYCANS IN BRAIN
CANCER

Proteoglycans (PGs) are heavily glycosylated proteins and
present on the cell surface, extracellular matrix (ECM), and
intracellular milieu (14). The basic PG unit consists of a “core
protein” covalently attached to glycosaminoglycans (GAGs),
which are long chains consisting of linear or branched
carbohydrate polymers that are negatively charged under certain
physiological conditions, expressed on most mammalian cells.
The six known GAGs are heparin (HP), hyaluronic acid (HA),
heparan sulfate (HS), chondroitin sulfate (CS), keratan sulfate
(KS), and dermatan sulfate (DS). These GAGs’ respective
disaccharide units contain different uronic and amino sugars
(15). Their structure is demonstrated in Figure 1. GAGs
are considerably linked to several diseases, including cancer,
inflammation, bacterial infections, multiple sclerosis, viral
infections, and Alzheimer’s disease, as they interact with ligands
tomodulate physiological and pathological processes. Given such
active involvement, GAG-based drugs are of considerable interest
to researchers and have yielded promising outcomes in both
animal and clinical trials, suggesting prospective development in
therapeutics (16).

GAG to PG linkage is crucial to establishing and maintaining
the fundamental functions of CNS, such as migration, cellular
proliferation, specification, plasticity, synaptogenesis, and
regeneration. Their mechanisms and functions have been
summarized in many reviews (17–20). PG diversity depends
on differential expression of protein sequences, variations in
the length, and profile of GAG modifications. PGs regulate
growth factors that affect cell adhesion, neurite outgrowth (21),
ECM assembly, and tumor cell invasion (22, 23). Syndecans
and glypicans are the two main transmembrane PGs containing
HS chains in the CNS. Heparan sulfate PGs directly influence
the aggregation and activity of AMPA receptors, which hinders
cognitive functions by inducing or maintaining long-term
potentiation (LTP) (24). Chondroitin sulfate PG, which is
expressed abundantly in the cerebellum and hippocampus but
decreases significantly postnatally, affects the stabilization of
synapses and axonal sprouting (25). Figure 2 demonstrates
the selected cellular localization and significance for tumor
development of the PGs discussed.

Chondroitin Sulfate Proteoglycan
Chondroitin sulfate PG 4, commonly referred to as neuron-
glial antigen 2 (NG2), contributes to the stabilization of
interaction between cell and substratum on endothelial
basement membranes, especially at the early spreading stage
of melanoma cells (26) In addition, CS PG 4 is a suggested
biomarker in glioblastoma (GBM) (27). NG2-expressing
oligodendrocyte precursor cells support neurons and synaptic
signaling physiologically and carry out these functions in both
brains that are healthy and those in the process of injury
repair and regeneration. Moreover, NG2 protein facilitates
tumorigenesis and tumor progression (28). In the previous study
of human GBM cells, more cells survived under NG2-mediated
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FIGURE 1 | Structure and composition of GAGs. Sulphation sites are shown in orange.

activation (29) and chemoresistance through integrin-dependent
PI3K/Akt signaling (30).

Gliomagenesis is induced by unusual expression of neuron-
glial antigen 2 endocytosis in vivo murine oligodendrocyte
precursor cells, which provides another mechanism through
which benign precursor cells can be converted into cancer
stem cells (31). Additionally, NG2-expressing precursor cells
demonstrate significant developmental plasticity. For instance,
activating Notch signaling induced pericyte-like differentiation
in NG2-positive GBM cancer stem cells, which during tumor
angiogenesis contributed to vessel stabilization (32). Although
these results suggest that NG2 plays a role in cancer stem
cells, it is still uncertain whether the GAG moieties or the
PG’s other functional domains are responsible for the stemness-
related functions.

Lam et al. reported an efficient and effective “glial progenitor
cell-based therapy” for congenital myelin CNS disorders
(33). From bone marrow stromal cells, they produced glial
progenitor cells in a 14-days CS PG 4-based induction protocol.
The generated cells were highly enriched in oligodendrocyte
precursor cell marker expression. After being transplanted into
the myelin-deficient mice, the cells differentiated successfully

into myelinogenic oligodendrocytes. Both lifespan and motor
function were improved significantly by remyelination of the
shiverer mouse. Their study demonstrated the feasibility of
human bone marrow stromal cells as a source of glial progenitor
cells for attaining such myelinogenic oligodendrocytes (33). The
novel induction protocol overcame existing hurdles of cell source
restriction and timeframe requirements, providing a method for
efficient myelin disorder glial therapy.

In addition, lecticans were also investigated as a group of
chondroitin sulfate PGs due to their role in linking ECM
molecules (34). The unique composition of brain ECM causes
brain tissue to resist invasion by non-neuronal tumors (35).
Due to its moderate plasticity, CNS has a considerable capacity
for regeneration, although changes in ECM have been observed
after trauma and throughout the development of CNS disease.
The modification of PGs in ECM is shown as one of the
factors leading to change in CNS plasticity. Through control
of neurotransmission and synaptic connections, the scaffold of
proteins and sugars in the ECM changes the functionality of
surrounding tissue (36).

To activate immune cells, CS PGs generally collect the
microenvironment’s signals and bind immunological receptors,
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FIGURE 2 | Cellular localization and significance for tumor development of GAGs. Unlike many other GAGs, HA is not covalently-linked to cell surface and only

non-covalently interacts with PGs.

thus boosting inflammatory responses. CS PGs also stimulate
matrix-degrading enzymes and bind signaling molecules in
immune cells such as chemokines and cytokines (37).

Heparan Sulfate Proteoglycans
Heparin has anticoagulant activity and can only be produced by
mast cells. Heparan sulfate also functions as an anticoagulant,
though on a lower level than heparin, and is generated
by nearly all cell types. Present both in the ECM and on
the cell surface, heparan sulfate PGs (HSPG) facilitate cell-
microenvironment interactions and cell signaling pathways. In
GBM, HS glycosaminoglycans expression and their regulating
enzymes are changed, but the structure and content of the
HS itself remain unknown. For example, glypicans of the HS
PG families [See review: Wang et al. (38)] are proteins that
are membrane-bound and that modulate morphogen gradient
formation and extracellular growth signals to engage in organ
development (39). Crucially, some studies reported an increased
level of glypicans in the peripheral blood of patients, holding
glypicans as a promising new biomarker in the cancer field (40).

Tran et al. used LC-MS analysis to portray the differences in both
HS disaccharide content and structure. As a result, they suggested
inter-tumoral differences in PG expression and function have
potential implications for therapeutic stratification (41).

Spyrou studied the inhibition of heparanase in brain tumor
cells of children and subsequently reduced their invasive capacity,
proliferation, and tumor growth in vivo. The results suggest that
heparanase affects both tumor cells and their ECM in cases of
malignant brain tumors. However, the inhibitor (PG545) failed
to pass the BBB due to its size, and thus direct injection or a new
drug delivery system is required (42).

Hyaluronic Acid
Hyaluronan (or hyaluronic acid) is a “multifunctional GAG
synthesized as a large negatively charged linear polymer by
distinct hyaluronan synthases” (43). While aggrecan-related
components generally result in clear regional distribution
patterns, hyaluronan is widely distributed in the white and gray
matter (44). HA interacts with several cell membrane receptors,
including CD44 and Lymphatic vessel endothelial hyaluronan
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receptor 1, the former being the more thoroughly studied
receptor for HA-mediated motility in cancer progression. In
addition, certain PGs use link modules to form supramolecular
complexes with HA. Generally, high levels of HA and HA
receptors are correlated with poor prognosis in cancer patients.

Using pluripotent stem cells-derived and primary brain
microvascular endothelial cells, Al-Ahmad et al. tested the effect
of HA on BBB properties. The impact of HA signaling on
developmental and mature brain microvascular endothelial cells
was assessed by measuring changes in transendothelial electrical
resistance, permeability, brain microvascular endothelial cells
markers localization, and expression, CD44 expression, and
hyaluronan levels. HA treatment generally reduced barrier
function and P-glycoprotein activity. The effects were more
evident with treatment using oligomeric forms of HA and
exacerbated when the treatment was applied during the brain
microvascular endothelial cells differentiation phase (considered
developmental BBB). The hyaluronidase activity, as well as
an increase in CD44 expression during prolonged oxygen-
glucose deprivation stress, were also observed. Inhibiting HA
signaling by the antibody blockade of CD44 reversed the
treatment’s adverse effects, thus conveying the significance of
HA signaling through CD44 on BBB properties (45). Moreover,
Hartheimer et al. determined how hyaluronidases can sensitize
GBM stem cells to chemotherapy drugs by disrupting the
HA-CD44 signaling, with which they further developed a
combined treatment of hyaluronidases and chemotherapy drugs
by disrupting the stemness-promoting HA to target GBM stem
cells. This combination therapy shows promise even when
temozolomide treatment alone causes resistance (46).

Dermatan Sulfate PG—Endocan: A New
Biomarker and Therapeutic Target
Endocan is a novel endothelial cell-specific molecule with 50 kDa
molecular weight and high solubility in water. As a proteoglycan,
endocan is secreted into the blood and formed in the presence of
CS. In normal tissues, CS andDS PGs are expressed in endothelial
cells but are overexpressed in certain tumor endothelial cells.
Unsurprisingly, abnormal expression levels of endocan were
observed in tumor prognosis, angiogenesis, and metastasis.
Researchers believe that the role of endocan is to regulate
the tumor by tumor-related angiogenesis, cell inflammation,
lymphangiogenesis, and other aspects (47). Accordingly, Kijima
et al. studied surface marks from patient derived xenografts and
cell lines based on array comparative genomic hybridization
to investigate the early stages of GBM tumorigenesis (48).
In additional to research that found raised levels of systemic
inflammatory markers to be correlated with cardiovascular
disease (49), a recent study revealed that the specific sulfation
level of DS is crucial in synaptic plasticity and is related to changes
in the expression of glutamate receptors and other associated
synaptic proteins (50). As such, endocan became a valuable target
for GBM diagnosis and therapy.

As another interesting target, dermatan sulfate epimerase 1
is overexpressed in many types of cancer as a tumor-rejection
antigen. The CS/DS chains mediate several growth factor

signals. However, investigating their roles in gliomas involves
less work. Liao et al. examined the expression of Dermatan
sulfate epimerase 1 in gliomas by utilizing a public database
and conducting immunohistochemistry on a tissue array.
Their investigation revealed that Dermatan sulfate epimerase
1 regulates the HB-EGF/ErbB pathway, which participates in
GBM cells’ malignant behavior. Treating epidermal growth factor
receptor and ErbB2 with selected inhibitors thus suppressed
malignant phenotypes, demonstrating that the upregulation of
Dermatan sulfate epimerase in gliomas contributes to controlling
malignant behavior in cancer cells (51).

Keratan Sulfate (KS)
Keratan sulfate (KS) is a sulfated GAG, which contains
structurally unique characteristics of diversity in the linker
oligosaccharides connecting to the core protein. The repeating
disaccharide unit in KS contains one galactose and one N-
acetylglucosamine and is linked to core proteins via either
N-linked or O-linked glycosylation of the PGs. KS is most
abundant in the cornea, and second abundant in the brain (52).
Negatively charged KS modifications of synaptic vesicle protein
2 interacted with both Ca2+ ions and other neurotransmitters
such as dopamine, establishing the PG delivery complex (53).
Furthermore, high sulfation level KS PGs are commonly found
in the brain. For example, synaptic vesicle proteins 2 played
significant neuronal and synaptic regulatory roles (54).

An earlier study reported that highly sulfated KS was
overexpressed in malignant astrocytic tumors (55). It has also
been found that the interruption of Synaptic vesicle proteins 2
functionality is associated with epilepsy (56). These results were
confirmed by the subsequent research of the interactivity of KS
with nerve growth factor and receptor proteins, neuroregulatory
proteins, synaptic proteins and neurotransmitters (57). In
addition, abnormal sulfation degrees of KS are observed in the
brains of Alzheimer’s patients (58). Tsidulko’s work demonstrated
that PG composition and ECM structure in normal brain tissue
were affected during temozolomide induced chemotherapy.
These changes were believed to participate in the development
of the tumorigenic niche for the expansion of the residual glioma
cells and the disease progression (59). Recently, researchers have
reviewed the influences of KS sulfation on electrosensory tissues
and neuronal regulation. KS with overexpressed sulfation level
interacts with neuroregulatory proteins. Hence, actin and tubulin
cytoskeletal development was stabilized by KS PG microtubule-
associated proteins during neuritogenesis (60).

THE ROLE OF PGs IN BRAIN
INFLAMMATION AND PLASTICITY

In general, PGs have influenced several aspects of tumor
biology such as tumor cell adhesion and migration, cell
proliferation, angiogenesis, and inflammation. Up- and down-
regulated expression in PG core proteins is observed in many
cancers and usually related to changes in cell signaling and
invasion (19, 61). Jang et al. found that the interaction between
the intracellular domain of some transmembrane PGs with the
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cytoplasmic domain of proteins promoted the signaling (62).
In an earlier review, the cytoplasmic domain of syndecan-1
was found to have interaction with talin to modulate integrin
signaling via a syndecan-1-integrin-insulin-like complex (63).
Likewise, the cytoplasmic tail of transmembrane heparan sulfate
PG syndecan-4 interacts with α-actinin regulating cytoskeletal
organization. Fröhling et al.’ recent research suggested that the
loss of syndecan-4 expression is correlated with the increase if
intestinal inflammation.While primarily expressed in the colonic
epithelium, syndecan-4 accumulated the deficiency during the
growth of susceptibility regarding the intestinal inflammation.
Mechanisms were proposed that syndecan-4 played a role
in protecting against inflammation, keeping the epithelial gut
barrier’s unity and regeneration (64). When using anti-syndecan-
4 antibodies as a therapeutic approach to treat patients with
inflammatory disorders, researchers must carefully evaluate
patients who have inflammatory diseases associated with an
epithelial barrier function.

Many PGs were proposed as markers for therapy evaluation.
For example, syndecan-4 mRNA expression was specified as the
unique marker to predict the GBMmultiforme patient’s response
during the WT1 peptide vaccine treatment (65). Letoha et al.
reported that syndecan-4 bound and mediated the transfer of
a cell-penetrating short peptide with 17 amino acids into the
cells (66). Roy et al. then demonstrated a positive correlation
between glioma grade and serglycin expression level in GBM
progression (67).

There is significant evidence showing that the sulfate
composition of CS GAG chains changes with age. As a result
of aging and aggregation of proteins, the deposition of HS PGs
and CS PGs results in the injury of protective perineuronal
nets with increased cell death (60). Dying neurons then induce
inflammation, ECM degrades through the proteolytic activity
of enzymes, inducing responses that amplify neuronal death
and neuroinflammation (68). Simultaneously, overexpression of
chondroitin 6-O-sulfotransferase 1 may decrease the ratio of 4–
6S in perineuronal nets and increase seizure susceptibility (69).
This is supported by Foscarin’s work that the age-associated rise
in the ratio of 4–6S GAG in perineuronal nets may decrease
synaptic plasticity (70). Their studies highlighted the necessity
for genetic manipulation of other enzymes such as chondroitin

sulfotransferases to discover their biological functions and
generate the profile of sulfation’s role in development and aging.

Recent preclinical research demonstrated the antitumoral
effects of chondroitin sulfate PG 4. The NG2-directed chimeric
antigen receptor T-cells were proved to efficiently target GBM
cancer stem cells (71). The combination of anti-NG2 antibodies
was induced in chemotherapy in B-cell acute lymphoblastic
leukemia (72).

CONCLUSION

In summary, adjustments in PG core proteins, biosynthetic
enzymes, and extracellular regulating enzymes are correlated
with many developmental anomalies and overgrowth or
tumor predisposition syndromes. PGs facilitate the activity of
various signaling pathways and stimulate cell-microenvironment
interactions in tumors. Due to such a diverse range of functions,
PGs and their modifying enzymes are an imperative area of
study that may potentially uncover therapeutic targets and
biomarkers of GBM. In the damaged CNS, PGs accumulate
during traumatic brain injuries, multiple sclerosis, and spinal
cord injuries, driving pathogenesis and neuroinflammation. It
should be noted that compared to the in vitro examination,
more complex factorsmay interfere with the regulated expression
of PGs in ECM in vivo. When assessing experiment data for
therapeutic targets and treatment strategies, researchers should
carefully consider adverse side effects that can be avoided
in advance.
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