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Abstract: The phytohormone salicylic acid (SA) can influence the polyamine metabolism in plants.
Additionally, polyamines (PAs) can regulate the synthesis of SA, providing an exciting interplay
between them not only in plant growth and development but also in biotic or abiotic stress conditions.
The effect of SA on polyamine metabolism of leaves is well-studied but the root responses are rarely
investigated. In this study, tomato roots were used to investigate the effect of short-term exposition of
SA in two different concentrations, a sublethal 0.1 mM and a lethal 1 mM. To explore the involvement
of SA in regulating PAs in roots, the degradation of PAs was also determined. As both SA and PAs
can induce reactive oxygen species (ROS) and nitric oxide (NO) production, the balance of ROS and
NO was analyzed in root tips. The results showed that 0.1 mM SA induced the production of higher
PAs, spermidine (Spd), and spermine (Spm), while 1 mM SA decreased the PA contents by activating
degrading enzymes. Studying the ROS and NO levels in root tips, the ROS production was induced
earlier than NO, consistent with all the investigated zones of roots. This study provides evidence
for concentration-dependent rapid effects of SA treatments on polyamine metabolism causing an
imbalance of ROS-NO in root tips.
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1. Introduction

The phytohormone salicylic acid (SA) is known to induce multiple responses for plant
growth and development, and also during abiotic and biotic stress conditions, its role is
inevitable. Additionally, polyamines are essential for plant growth regulator compounds
involved in multiple plant physiological responses from development to biotic and abiotic
stress types. SA can interact with PAs, affecting the ROS and NO production, which
strongly connects their metabolism [1,2]. Nowadays, studying Arabidopsis thaliana L., new
evidence suggests that this interaction is more complex [3]. However, our knowledge is
very limited on how SA can influence the root polyamine metabolism and what its role is
in the ROS-NO interaction.

Biosynthesis of PAs positively affects the optimal PA metabolism in plants. It is
well-studied that SA can activate the gene expression of PA synthesis genes, arginine
decarboxylase (ADC), and ornithine decarboxylase (ODC) in different plants, e.g., maize
(Zea mays L.) [4]. During drought stress, SA was reported to regulate biosynthesis of PAs in
oat (Avena sativa L.) plants [5]. Additionally, in the leaves of Yali pear (Pyrus bretschneider
cv. Yali), SA could regulate the biosynthesis of PAs after salt stress [6]. It is important
to note that some evidence is contradictory, e.g., exogenous SA could increase PA levels
in maize but this response decreased the drought stress tolerance of plants [4]. As our
knowledge increases through new results about the involvement of SA in plant root growth
and development [7,8], it is important to investigate the SA-induced responses in plant PA
metabolism and decipher the potential connection between them in this organ.

PA degradation, which can also contribute to the fine-tuning of PA homeostasis, is
catalyzed by two types of enzymes: copper amine oxidases (CuAOs) and flavin-containing
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polyamine oxidases (PAOs) [9]. Plant CuAOs are induced by SA, especially AtCuAOY1
gene in Arabidopsis thaliana [10]. PAOs were also reported to be induced by SA after 24 h
treatment in Arabidopsis [11]. Despite these results, root PA metabolism after short-term
SA treatment is unexplored. In order to investigate the role of SA, we applied different
concentrations of SA (0.1 and 1 mM) in short-term treatments to tomato roots.

2. Results
2.1. Effects of SA Treatments on Free Polyamines in Tomato Roots

Both applied SA concentrations were effective to induce a decrease in Put level for
2 h, but after 2 h, 0.1 mM SA slightly induced its concentration, while 1 mM SA remained
close to the control in the roots of tomato plants (Figure 1). In the case of Spd, 0.1 mM SA
increased Spd levels in almost all time point except at 3 h, while 1 mM SA decreased Spd
contents (Figure 1). At the same time, Spm levels did not change significantly after the
applied SA concentrations during this time period (Figure 1).
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Figure 1. Changes in free polyamine (Put, Spd, and Spm) levels as a function of time in the roots of
control or 0.1 mM or 1 mM SA-treated tomato plants. Error bars represent standard deviation (SD) of
the means from three biological replicates. Different letters denote significant differences (one-way
ANOVA, Tukey’s post hoc test, p < 0.05).

2.2. Effects of SA Treatments on Total Polyamines and Ratio of (Spd + Spm)/Put

There were no significant differences between the total PA levels of the control and
1 mM SA-treated roots during the investigated time period (Figure 2). However, 0.1 mM
SA showed a higher trend of total PAs except at 3 h, and this trend was reflected in the
ratio of Spd + Spm/Put, showing that SA in this concentration could effectively induce the
production of higher PAs in the roots of tomato plants (Figure 2).
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Figure 2. Changes in total polyamine (PA) levels and ratios of (Spd + Spm)/Put as a function of time
in the roots of control or 0.1 mM or 1 mM SA-treated tomato plants. Error bars represent standard
deviation (SD) of the means from three biological replicates. Different letters denote significant
differences (one-way ANOVA, Tukey’s post hoc test, p < 0.05).

2.3. Effects of SA Treatments on Polyamine Degradation Enzymes

Both of the investigated PA-degrading enzyme activities, DAO and PAO, showed
slight changes in roots, suggesting that this regulation type of PA levels could not be
significantly involved in short-term responses to exogenous SA in this organ (Figure 3).
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Figure 3. Changes in enzyme activities of copper amine oxidase (DAO) and polyamine oxidase (PAO)
as a function of time in the roots of control or 0.1 mM or 1 mM SA-treated tomato plants. Error bars
represent standard deviation (SD) of the means from three biological replicates. Different letters
denote significant differences (one-way ANOVA, Tukey’s post hoc test, p < 0.05).

2.4. Effects of SA Treatments on ROS and NO Levels

Production of ROS and NO were analyzed in root tips at different distances from
the apex of the root, namely 0.5, 1, and 1.5 mm. Observing these zones, ROS production
was induced only at 1 h after 1 mM SA treatment but not after 0.1 mM SA treatment
(Figure 4). However, NO production was inversely induced at 6 h only at 1 mM SA
treatment (Figure 4).
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Figure 4. Changes in ROS and NO as a function of time in the root tips of control or 0.1 mM or 1 mM
SA-treated tomato plants. Error bars represent standard deviation (SD) of the means from three
biological replicates. Different letters denote significant differences (one-way ANOVA, Tukey’s post
hoc test, p < 0.05).

3. Discussion

SA biosynthesis and signaling are very important in plant growth and development as
well as under stress conditions [12,13]. While the leaf PA metabolism after SA treatment is
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well-studied, the SA-induced root PA metabolism responses are unknown. This prompted
us to investigate the effect of SA treatment in two different concentrations, 0.1 mM as
sublethal and 1 mM as lethal SA treatments, in tomato roots on PA metabolism and related
balance of ROS-NO. In this study, we focused on short-term effects of SA on PA metabolism.
These results revealed that the two concentrations of SA induced different changes in PA
metabolism. While 0.1 mM SA induced the increase in free PAs, 1 mM SA decreased or
did not change them compared to the control. There is new evidence that ADC2 can be a
hub for hormone treatments, as it was shown that the expression of this gene was strongly
induced not only after SA but some other hormones as well [11]. The only exception was
at 3 h, where a slight difference could be seen, suggesting that this time point may be the
change in the diurnal cycle as described by Gemperlova et al. (2006) [14] in tobacco plants.
We investigated only the free PA levels, so the other forms of PAs, conjugated or bounded
forms, which may also be important in SA-induced responses, remain to be investigated.

PA catabolism may be also an effective way to modulate the homeostasis of PAs [15]. In
our study, the activities of PA-degrading enzymes did not show any significant alterations
compared to control, suggesting that this short-term treatment did not induce changes in
these enzyme activities; only slight fine-tuning or modulation occurred after SA treatments.

ROS and NO are also connected by PAs in different ways, e.g., during their synthesis or
degradation [16]. Our study revealed that during this short-term treatment, only 1 mM SA
could induce ROS production and NO production compared to control, but this induction
was altered in time. ROS was produced earlier since NO increased only at 6 h after SA
treatment. It is suggested that these alterations can contribute to the lethal effect of 1 mM
SA in roots. Further investigations can clarify how this ROS-NO imbalance influences the
late responses of tomato roots not only in growth but also stress conditions [17-21].

4. Materials and Methods
4.1. Plant Materials and Treatments

Tomato (Solanum lycopersicum L.) cultivar cv. Rio Fuego was used for experiments.
Plants were grown hydroponically in a greenhouse of the Department of Plant Biology,
University of Szeged as described by Szepesi et al. (2009) [22]. Germinated seeds were
placed to perlite for 1 week and grown under 200 pmol m~2 s~! photon flux density
(F36W/GRO lamps, OSRAM SYLVANIA, Danvers, MA, USA), with 12/12 h light/dark
period, day/night temperatures of 24/22 °C, and relative humidity of 55-60%. Plants
were irrigated with modified Hoagland nutrient solution at pH 5.8. The experiments were
replicated three times. Salicylic acid (SA) treatment was supplied by nutrient solution in
different concentrations, 0.1 mM SA and 1 mM SA, for 6 h based on earlier experiments.

4.2. Analysis of Free Polyamine Levels by HPLC

For measuring the levels of free polyamines (Put, Spd, and Spm), high-performance
liquid chromatography (HPLC) was used as described by Szepesi et al. (2022) [23]. Briefly,
root samples were homogenized by 5% (v/v) perchloric acid. The homogenate was cen-
trifuged at 4 °C for 10 min with 12,000 rpm by Eppendorf centrifuge (5424R, Eppendorf
GMBH, Hamburg, Germany). The supernatant was used for analysis, and to neutralize,
2 M NaOH was pipetted to the supernatant. Polyamines were benzoylated by adding
benzoyl chloride to produce benzoyl polyamine derivatives. Diethyl ether was pipetted
to obtain the organic phase for drying. Dried samples were injected in acetonitrile into a
JASCO HPLC System (JASCO, Tokyo, Japan). HPLC separation occurred by reverse-phase
C18 column (250 x 4.6 mm internal diameter, 5 um particle size (Phenomenex, Torrance,
CA, USA)). A UV-VIS detector (JASCO HPLC system, Japan) analyzed benzoyl polyamines
at 254 nm wavelength. The mobile phase was ultrapure water/acetonitrile in a 55:45 (v/v)
ratio, flow rate 0.5 mL min~!. Standards were Put, Spd, and Spm hydrochlorides from
Sigma-Aldrich, Merck GMBH, Hamburg, Germany. The results were the means of three
independent biological replicates expressed in pmol g~ fresh weight 1.
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4.3. Polyamine Catabolism: Diamine (DAO, EC 1.4.3.6) and Polyamine Oxidase (PAO, EC 1.4.3.4)

Copper amine oxidase (CuAO or DAO, EC 1.4.3.6) and polyamine oxidase (PAO,
EC 1.4.3.4) activities were analyzed by a spectrophotometric method as described by
Moschou et al. [17] with some modification. Tissues were ground in liquid N to fine
powder, and an extraction buffer was added to each sample in a ratio of 1:3. The extraction
buffer contained 0.2 M TRIS (hydroxymethyl)aminomethane (pH 8.0); 10% glycerol; 0.25%
Triton X-100; 0.5 mM phenylmethanesulfonyl fluoride (PMSF); and 0.01 mM leupeptin.
The homogenates were left on ice for 20 min and centrifuged for 10 min at 7000x g at
4 °C (Eppendorf centrifuge 5424R, Eppendorf GMBH, Germany). The reaction mixture
contained supernatant and 100 mM potassium phosphate buffer (pH 6.6); then, the reaction
was started by adding 1 M Put for DAO or 1 M Spd for PAO activity measurements. The
reaction mixture was incubated for 1.5 h at 37 °C, and after, the reaction was stopped by
adding 20% (w/v) trichloroacetic acid. To analyze the content of Al-pyrroline, a degradation
product of enzymes, 2-aminobenzaldehyde (from 10 mg mL~! stock solution) was pipetted
to the reaction mixture. After centrifugation, absorbance of the supernatant was determined
at 430 nm (KONTRON, Milano, Italy). The enzyme activity was expressed as the specific
activity (U g_1 FW), where one unit (U) represents the amount of enzyme catalyzing the

formation of 1 umol of Al-pyrroline min~1.

4.4. Microscopic Analysis of Reactive Oxygen Species and Nitric Oxide in Tomato Root Tips

NO was detected with a specific fluorescent dye, 10 uM 4-amino-5-methylamino-2’,7’-
difluorofluorescein (DAF-FM DA) (Sigma-Aldrich, St. Louis, MO, USA), and ROS was
detected by using 10 uM 2,7-dichlorodihydrofluorescein diacetate (H,DC-FDA) (Sigma-
Aldrich, St. Louis, MO, USA) as described by Gémes et al. (2011) [16]. The root tip sections
were put on slides and covered with buffer and glass coverslip. Fluorescence intensity
was detected with Zeiss Axiowert 200 M-type fluorescent microscope (Carl Zeiss Inc.,
Jena, Germany) equipped with an objective x10. Digital photographs were taken from
the samples with a high-resolution digital camera (Axiocam HR, HQ CCD camera; Carl
Zeiss Inc., Jena, Germany) with a filter set 10 (excitation 450-495 nm, emission 515-565 nm).
Fluorescence intensities (pixel intensity) of different zones (0.5, 1, and 1.5 mm distance
from the tip) were measured on digital images within circular areas of 100 pm radii using
Axiovision Rel. 4.8 software.

4.5. Statistical Analysis

Data presented here are the mean values from at least three independent experiments.
Statistical analysis of two-way analysis of variance (ANOVA) was carried out with Graph-
Pad Prism version 8.0.1.244 for Windows (GraphPad Software, La Jolla, CA, USA). Different
letters on the bars denote significant differences (p < 0.05) based on Tukey’s post hoc test
for multiple comparisons.

5. Conclusions

The concentration-dependent effect of SA on polyamine metabolism in plant roots
was revealed in this study. A total of 0.1 mM SA as a sublethal concentration was effective
to induce the production of higher PAS, while 1 mM SA as a lethal concentration decreased
the PA contents. The ROS production increased earlier than NO production, showing
a detrimental imbalance of these species in the roots. This study provides evidence for
concentration-dependent effect of SA on polyamine metabolism causing an imbalance of
ROS-NO in roots, helping our understanding of SA-induced PA metabolism in plants.
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