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OBJECTIVE—Increased retinal vasopermeability (RVP) occurs
early in diabetes and is crucial for the development of sight-
threatening proliferative diabetic retinopathy (DR). The hormone
prolactin (PRL) is proteolytically processed to vasoinhibins, a
family of peptides that inhibit the excessive RVP related to DR.
Here, we investigate the circulating levels of PRL in association
with DR in men and test whether increased circulating PRL, by
serving as a source of ocular vasoinhibins, can reduce the
pathological RVP in diabetes.

RESEARCH DESIGN AND METHODS—Serum PRL was eval-
uated in 40 nondiabetic and 181 diabetic men at various stages of
DR. Retinal vasoinhibins were measured in rats rendered hyper-
prolactinemic by placing two anterior pituitary grafts under the
kidney capsule and in PRL receptor–null mice. RVP was deter-
mined in hyperprolactinemic rats subjected to the intraocular
injection of vascular endothelial growth factor (VEGF) or made
diabetic with streptozotocin.

RESULTS—The circulating levels of PRL increased in diabetes
and were higher in diabetic patients without retinopathy than in
those with proliferative DR. In rodents, hyperprolactinemia led
to vasoinhibin accumulation within the retina; genetic deletion of
the PRL receptor prevented this effect, indicating receptor-
mediated incorporation of systemic PRL into the eye. Hyperpro-
lactinemia reduced both VEGF-induced and diabetes-induced
increase of RVP. This reduction was blocked by bromocriptine,
an inhibitor of pituitary PRL secretion, which lowers the levels of
circulating PRL and retinal vasoinhibins.

CONCLUSIONS—Circulating PRL influences the progression of
DR after its intraocular conversion to vasoinhibins. Inducing
hyperprolactinemia may represent a novel therapy against DR.
Diabetes 59:3192–3197, 2010

D
iabetic retinopathy (DR) develops from a mi-
croangiopathy, in which the loss of pericytes
and endothelial cells results in abnormally per-
meable retinal capillaries. In its early stages,

elevated retinal vasopermeability causes intraretinal hem-
orrhages and exudates that, together with capillary clo-
sure, create nonperfusion areas. Over time, the resulting
hypoxia stimulates the local production of proangiogenic
factors, such as vascular endothelial growth factor
(VEGF); the newly formed blood vessels extend and bleed
into the vitreous, eventually causing detachment of the
retina from the accompanying fibrous tissue as well as loss
of vision (1). The current treatments for DR, laser photo-
coagulation and vitrectomy, are often effective but can be
destructive and only treat the advanced disease (2). Thus,
developing new strategies to oppose both excessive retinal
vasopermeability and angiogenic responses has become a
major research focus.

Vasoinhibins are a family of antiangiogenic prolactin
(PRL) fragments (3) that inhibit ischemia-induced retinal
angiogenesis (4) and prevent excessive retinal vasoperme-
ability associated with diabetes (5). Vasoinhibins are
present in the retina (6), and because radioactive PRL
injected intracardially is incorporated into ocular tissues
(ciliary body, choroid, and retina) (7), we reasoned that a
portion of ocular vasoinhibins could originate from the
intraocular cleavage of PRL coming from the circulation;
therefore, high levels of serum PRL in diabetic patients
may restrain DR progression.

RESEARCH DESIGN AND METHODS

The Institutional Review Board of the Hospital “Dr. Luis Sánchez Bulnes”
approved the protocol for blood sample collection. All subjects were recruited
in this hospital, provided written informed consent before collection of
samples, and were treated in accord with the tenets of the Declaration of
Helsinki. The cohort consisted of 181 male mestizo patients with type 1 or type
2 diabetes and an estimated mean time from disease onset of 13.6 � 0.7 years.
Forty healthy male, mestizo volunteers without diabetes served as control
subjects. The mean age of the diabetic patients was 61.3 � 1.2 years, and that
of the control group was 57.0 � 1.7 years. All participants underwent clinical
evaluation and a comprehensive ophthalmologic examination including visual
field testing, intraocular pressure evaluation, slit-lamp biomicroscopy, and
indirect ophthalmoscopy. Also, fluorescein angiography was performed in all
patients with DR. Patients with diabetes were under glycemic control and
receiving either insulin or oral antidiabetic agents and an appropriate diet.
Exclusion criteria included the treatment with common medications causing
hyperprolactinemia (major tranquilizers and antipsychotics [chlorpromazine,
haloperidol, risperidone, and amisulpride], prokinetics [metoclopramide and
domperidone], or antihypertensive drugs [�-methyldopa, reserpine, and vera-
pamil]), and having renal dysfunction (serum creatinine �1.5 mg/dl). Based on
the international clinical DR severity scale (8), patients with diabetes were
classified as having no DR (NDR) (n � 37), nonproliferative DR (NPDR) (n �
92), or proliferative DR (PDR) (n � 72). Table 1 summarizes the demographics
and attributes of all patients studied. Blood samples were obtained by
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venipuncture from a peripheral vein after overnight fasting and prior to any
treatment. Serum was collected and kept at �70°C until use.

Male Wistar rats (250–300 g) and PRL receptor–null and age-matched
wild-type mice (9 weeks, 129SvJ background) were maintained and treated in
accord with the guidelines of the Association for Research in Vision and
Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision
Research. The Bioethics Committee of the Institute of Neurobiology from the
National University of Mexico (UNAM) approved all animal experiments.
Hyperprolactinemia was induced by the implantation of two anterior pituitary
glands (APs) under the kidney capsule as previously described (9), and sham
rats were subjected to similar surgery without implantation. Ten days after
surgery, AP-implanted and nonimplanted rats received a daily, intraperitoneal
(i.p.) injection of vehicle or bromocriptine (5 mg/kg body wt); 5 days later, all
animals were killed and the sera and retinas collected to evaluate PRL and
vasoinhibin levels, respectively. In other experiments, rats with or without AP
implants for 15 days were anesthetized with 70% ketamine and 30% xylazine (1
�l/g body wt, i.p.) and injected intravitreously with PBS or 9 �mol/l recom-
binant human VEGF (rhVEGF165; gift from Genentech, South San Francisco,
CA) as described (5). After 24 h, retinal vasopermeability was evaluated by
fluoroangiography and the Evans blue method. Finally, to induce a diabetic
state, rats with or without AP implants for 15 days were injected or not with
a single i.p. dose of streptozotocin (60 mg/kg in 10 mmol/l citrate buffer, pH
4.5) (Sigma-Aldrich, St. Louis, MO) after overnight fasting. Rats with a blood
glucose concentration �250 mg/dl were considered diabetic. After 75 days,
animals were killed to determine the levels of serum PRL and retinal
vasoinhibins or to evaluate the level of retinal vasopermeability by the Evans
blue method. Some groups of diabetic and nondiabetic rats, with or without
AP implants, were injected daily with bromocriptine 5 days before being
killed.
Serum PRL. Serum PRL was measured in human subjects by a commercial
ELISA kit (Genzyme Diagnostics, San Carlos, CA) or in rats and mice by the
Nb2 cell bioassay, a standard procedure based on the proliferative response of
the Nb2 lymphoma cells to PRL (10).
Western blot. Pools of rat or mouse retinas (four or six, respectively) were
homogenized in 0.5% Nonidet P-40, 0.1% SDS, 50 mmol/l Tris, 150 mmol/l NaCl,
100 �g/ml phenylmethylsulnonyl fluoride, and 1 �g/ml aprotinin (pH 7) and
centrifuged (9,600g for 10 min). Supernatant protein (50 �g) was resolved by
15% SDS-polyacrylamide gels under reducing conditions, transferred to nitro-
cellulose membranes, and probed with 1:500 monoclonal antibody INN-1 to
rat PRL that reacts with the NH2-terminus of PRL (6), or with 1:500 antiserum
to mouse PRL (AFP-131078; National Institute of Diabetes and Digestive and
Kidney Diseases, Bethesda, MD). Secondary antibodies conjugated to alkaline

phosphatase (Bio-Rad Laboratories, Hercules, CA) were used. Optical density
values were determined using the Quantity One, 1-D analysis software
(Bio-Rad, Hercules, CA).
Immunohistochemistry. Rat eyes were fixed in 10% formalin and embedded
in paraffin. Twelve-micrometer paraffin sections were then processed for
immunohistochemistry using 1:100 monoclonal anti-PRL receptor U-5 anti-
body (Novus Biologicals, Littleton, CO) and an avidin-biotin-peroxidase
reaction (Vector Laboratories, Burlingame, CA).
Fluorescein isothiocyanate-dextran angiography. Fluorescein isothiocya-
nate (FITC) angiography was carried out as reported (11). Blood vessel
network was delineated and its area quantified using the Image Pro-Plus
software (Media Cybernetics, Silver Spring, MD).
Retinal vasopermeability. Retinal vasopermeability was measured using a
modification of the Evans blue assay as previously described (5).
Statistical analysis. Data are given as means � SEM. The unpaired Student
t test was used for all comparisons except for data with multiple groups using
ANOVA.

RESULTS

Serum PRL levels are higher in diabetic patients with
no retinopathy than in those with PDR. All diabetic
patients showed higher levels of PRL than the control
subjects (32.8 � 4.9 vs. 16.3 � 1.7 ng/ml, P � 0.005).
However, patients with PDR had a reduced concentration
of PRL (26.7 � 2.7 ng/ml, P � 0.05) compared with diabetic
patients without retinopathy (34.1 � 3.6 ng/ml) (Fig. 1A).
The pattern of circulating PRL levels (higher in diabetic
patients with no retinopathy than in those with PDR) did
not depend on the type of diabetes (Fig. 1B) or on other
systemic complications associated with diabetes (hyper-
tension and nephropathy). An inverse relationship be-
tween PRL levels and the progression of DR was observed
when comparing only individuals having prehypertension
(�120/80 mmHg) or hypertension (�140/90 mmHg) (Fig.
1C) and when a subset of all diabetic patients were
matched for diabetes duration, glycemia, glycosylated
hemoglobin, cholesterol, creatinine, and blood pressure
(Fig. 1D).

TABLE 1
Characteristics of the male subjects studied

Control
subjects*

Diabetic patients
Comparison among the
three diabetic groups

NDR NPDR PDR P

Age (years) 57.7 � 1.7 61.9 � 1.8 61.8 � 1.8 61.2 � 1.0 NS
n 40 37 92 72
Type 1 diabetes (n) NA 0 16 7 NA
Type 2 diabetes (n) NA 37 76 65 NA
Diabetes duration (years) NA 14.3 � 0.9 14.0 � 0.6 13.9 � 0.7 NS

n 37 92 50
Glucose (mg/dl) 86.6 � 3.2 156.9 � 16.1† 177.7 � 14.4† 165.6 � 24.0† NS

n 7 26 39 23
Hb1Ac (%) — 8.3 � 0.5 9.8 � 0.6 9.2 � 1.4 NS

n 14 19 5
Cholesterol (mg/dl) — 194.8 � 10.6 195.3 � 9.8 235.3 � 11.2 ‡�0.05

n 23 35 20
Creatinine (mg/dl) — 0.85 � 0.04 0.90 � 0.03 0.84 � 0.03 NS

n 37 92 52
Systolic BP (mmHg) 120.6 � 1.3 127.5 � 3.3 126.6 � 3.3 134.3 � 4.1† ‡�0.05

n 40 25 36 29
Diastolic BP (mmHg) 78.2 � 0.7 74.4 � 1.7 76.0 � 2.1 79.0 � 2.0 ‡�0.05

n 40 25 36 29
Prolactin (ng/ml) 16.3 � 1.7 34.1 � 3.6 32.8 � 4.9 26.7 � 2.7 §�0.005; ��0.05

n 40 37 92 72

Data are means � SEM or n. Diabetic patients were without diabetic retinopathy (NDR); with nonproliferative diabetic retinopathy (NPDR),
and with proliferative diabetic retinopathy (PDR). *Volunteers with no diabetes-related disorders.†vs. control subjects P � 0.001. ‡NDR �
NPDR � PDR. §Control subject � NDR. �NDR � NPDR � PDR. BP, blood pressure; NA, not applicable. NS, P � 0.05; —, not determined.
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Serum PRL is incorporated into the eye and converted
to vasoinhibins. To investigate whether serum PRL could
serve as a source of retinal vasoinhibins we used a rat
model of hyperprolactinemia induced by placing two AP
grafts under the kidney capsule for 15 days (9). As
demonstrated by the Nb2 cell bioassay and Western blot,
AP-grafted rats showed a sixfold increase of serum PRL
(Fig. 2A, n � 20) and threefold higher levels of vasoinhib-
ins in the retina (Fig. 2B and C, n � 3) compared with the
nongrafted controls. Injection of grafted rats with the
dopamine D2 receptor agonist bromocriptine, an inhibitor
of PRL secretion (12), reduced both PRL in the circulation
and vasoinhibins in the retina to basal levels (Fig. 2A–C).

The ciliary body is responsible for the active transport
of plasma proteins to intraocular fluids (13), and we
detected that the PRL receptor is localized in this structure
(Fig. 2D, n � 3). To examine if the PRL receptor in the
ciliary body could mediate uptake of circulating PRL and
its transfer into the vitreous, we analyzed retinal vasoin-
hibins in PRL receptor–null mice, which are known to be
hyperprolactinemic (12). The mice displayed 700-fold
higher levels of circulating PRL (Fig. 2E, n � 8), but the
levels of retinal vasoinhibins were similar to those of their
wild-type littermates (Fig. 2F and G, n � 3).

High levels of circulating prolactin mitigate in-

creased retinal vasopermeability in diabetic rats. We
next investigated whether hyperprolactinemia, by raising
intraocular vasoinhibins, could lower diabetes-induced
retinal hypervasopermeability. To examine this issue, AP-
grafted rats were challenged or not with intravitreously
injected VEGF, which is one of the prominent vasoperme-
ability factors in DR (1). VEGF caused multiple hemor-
rhage areas (Fig. 3A and B, n � 3) and increased
vasopermeability (Fig. 3C, n � 3) in the retina. These
VEGF-induced vascular alterations in the retina were
greatly diminished in hyperprolactinemic animals (Fig. 3).
Next, retinal vasopermeability was assessed in nongrafted
and AP-grafted rats made diabetic by streptozotocin injec-
tion. Serum PRL levels were similar in diabetic rats
compared with nondiabetic controls (Fig. 3D, n � 4).
Hyperprolactinemia was higher in nondiabetic than in
diabetic animals (13-fold vs. 8.5-fold, respectively) and
was blocked by treatment with bromocriptine (Fig. 3D).
Consistent with these changes, the levels of vasoinhibins
were elevated in the retina of grafted rats, and bromocrip-
tine reduced this increase (Fig. 3E), supporting that hyper-
prolactinemia raises vasoinhibins in the retina. Then, we
confirmed that retinal vasopermeability increases in dia-
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betic animals (P � 0.011) and found that the magnitude of
this increase was significantly smaller (P � 0.05) in
hyperprolactinemic diabetic rats compared with the nor-
moprolactinemic counterparts (Fig. 3F, n � 4). Reduced
retinal vasopermeability is likely due to the hyperpro-
lactinemia-induced elevation of intraocular vasoinhibins
because it was prevented by bromocriptine (Fig. 3F). In
the absence of diabetes, neither hyperprolactinemia
nor administration of bromocriptine affected retinal
vasopermeability compared with untreated animals
(Fig. 3F).

DISCUSSION

The association between circulating PRL levels and DR has
long been controversial. Studies performed over 2 decades
ago reported increased (14), decreased (15), or normal
(16,17) PRL levels in patients with DR. Here, we show that
the circulating concentration of PRL is higher in diabetic
patients without retinopathy than in those with PDR. These
findings indicate an inverse relationship between systemic
PRL and the severity of DR and suggest that previous
contradictory findings are due to the lack of DR grading and
the small number of patients reported (14–17).
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The inverse correlation between PRL and DR suggests
that systemic PRL, after its conversion to vasoinhibins,
influences the progression of DR. It was reported recently
that patients with DR have lower levels of circulating
vasoinhibins than nondiabetic patients (18). This result,
together with our finding of higher circulating levels of
PRL in diabetic patients without retinopathy, suggests that
one way to upregulate intraocular vasoinhibins would be
to further increase the systemic levels of PRL, thereby
favoring its ocular incorporation and cleavage. Supporting
this notion, hyperprolactinemia led to the accumulation of
vasoinhibins within the retina of rodents. Notably, genetic
deletion of the PRL receptor prevented this effect, indicat-
ing receptor-mediated incorporation of systemic PRL into
the eye in a manner similar to that described for PRL
transport across the choroid plexus to the cerebral spinal
fluid (19) or across the mammary epithelium to the milk
(20). These results suggest that the PRL receptor mediates
the ocular incorporation of systemic PRL, which can then
be cleaved to vasoinhibins.

Furthermore, the observation that higher levels of se-
rum PRL mitigate excessive retinal vasopermeability in
diabetic and VEGF-injected rats is consistent with hyper-
prolactinemia producing higher levels of ocular vasoinhib-
ins and suggests hyperprolactinemia as a therapeutic
strategy against diabetes-induced retinal hypervasoperme-
ability. A broadly protective role of PRL in diabetes is
supported by studies showing that PRL stimulates �-cell
proliferation, insulin gene transcription, and insulin secre-
tion in normal physiology and in pregnancy (21,22). Nota-
bly, the risk of DR development and progression increases
during pregnancy, followed by a high regression rate
during the postpartum period (23). The pathogenic mech-
anisms of DR in pregnancy are not fully understood, but
PRL may play a protective role. There is evidence that PRL
levels are lower in diabetic than in healthy pregnant
women (24) and high, sustained PRL levels occur during
lactation, when DR improves significantly (25). However,
serum PRL levels showed no correlation with DR during
pregnancy (24), and larger studies analyzing various stages
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of retinopathy are required to evaluate this relationship
conclusively.

Here, we reveal PRL to be an important systemic
inhibitor of diabetes-induced retinal hypervasopermeabil-
ity after its intraocular conversion to vasoinhibins, which
act directly on endothelial cells to block blood vessel
growth, dilation, and permeability and to promote apop-
tosis-mediated vascular regression (5). Thus, we propose
that PRL/vasoinhibins are endogenous regulators of the
development and progression of DR and that current
medications known to induce hyperprolactinemia consti-
tute novel therapeutic options to treat DR and other
vasoproliferative retinopathies.
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