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Abstract: Post-traumatic stress disorder (PTSD) is a highly debilitating psychiatric disorder that can
be triggered by exposure to extreme trauma. Even if PTSD is primarily a psychiatric condition, it is
also characterized by adverse somatic comorbidities. One illness commonly co-occurring with PTSD
is Metabolic syndrome (MetS), which is defined by a set of health risk/resilience factors including
obesity, elevated blood pressure, lower high-density lipoprotein cholesterol, higher low-density
lipoprotein cholesterol, higher triglycerides, higher fasting blood glucose and insulin resistance. Here,
phenotypic association between PTSD and components of MetS are tested on a military veteran
cohort comprising chronic PTSD presentation (n = 310, 47% cases, 83% male). Consistent with
previous observations, we found significant phenotypic correlation between the various components
of MetS and PTSD severity scores. To examine if this observed symptom correlations stem from a
shared genetic background, we conducted genetic correlation analysis using summary statistics data
from large-scale genetic studies. Our results show robust positive genetic correlation between PTSD
and MetS (rg[SE] = 0.33 [0.056], p = 4.74E-09), and obesity-related components of MetS (rg = 0.25,
SE = 0.05, p = 6.4E-08). Prioritizing genomic regions with larger local genetic correlation implicate
three significant loci. Overall, these findings show significant genetic overlap between PTSD and MetS,
which may in part account for the markedly increased occurrence of MetS among PTSD patients.

Keywords: PTSD (post-traumatic stress disorder); metabolic syndrome; MDD (major depressive
disorder); genetic correlation; obesity

1. Introduction

Post-traumatic stress disorder (PTSD) is a highly debilitating psychiatric disorder
that can develop after experiencing extreme traumatic event [1,2]. Besides trauma expo-
sure, PTSD is defined and diagnosed with four additional criteria of symptom clusters
(re-experiencing, hyperarousal, negative alterations in cognitions and mood, and avoid-
ance) [3]. It occurs at an estimated rate of 6.8–8% among the general public in the US [4,5]
and at a rate of 10–30% among military members [6,7]. Its incidence rate is also particularly
higher among female and individuals with adverse childhood experience [1].

While PTSD is classified as a mental disorder, chronic PTSD is characterized by somatic
comorbidities that affect the whole-body system besides the brain [8,9]. One of the most
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commonly co-occurring condition with PTSD is metabolic syndrome (MetS). MetS refers
to a constellation of abnormalities related to metabolic dysfunction [10]. Its components
include obesity (particularly abdominal), dyslipidemia (particularly lower HDL-C [high-
density lipoprotein cholesterol], higher LDL-C [low-density lipoprotein cholesterol], higher
triglycerides), elevated blood pressure and hyperglycemia including higher fasting blood
glucose [FBG] and insulin resistance. Observational studies using epidemiological data
showed a clear association between PTSD and metabolic syndrome as a whole and its
components individually [9,11,12].

Besides the higher co-occurrence with PTSD, another intriguing fact is the significant
phenotypic and genetic association of MetS with other stress-related psychiatric disorders
including major depressive disorder (MDD). MDD is a mood disorder that shares a lot
of symptomatology with PTSD. In addition to the substantial symptom overlaps, PTSD
and MDD also have high genetic overlap [13,14]. Various aspects of the association be-
tween MDD and MetS have been extensively studied, showing a clear epidemiological
co-occurrence as well as significant genetic overlap [15,16]. Some Mendelian randomization
studies also suggested the direction of influence is from MDD to MetS [17]. However, it
is not clear whether the genetic relationship between PTSD and MetS resembles that of
between MDD and MetS.

Most studies pertaining to understanding the relationship between PTSD and MetS
are limited to showing their epidemiologic co-occurrence. Fundamental questions as to
the nature of this commonly observed comorbidity are yet to be addressed. What is the
relationship between PTSD severity and level of metabolic dysregulation? How much of
observed association between PTSD phenotypes and MetS as a whole and its components
stem from genetic underpinning? What is the direction of causality, if there is any, between
these associations? Owing to the high prevalence and the detrimental consequences of
these disorders, answers to these questions have important practical implications. These
include how to judiciously prioritize treatments targeting a particular illness from among a
set of comorbidities so as to maximize benefit in terms of the overall health of an individual.
For example, in the absence of causal influences between co-occurring disorders, targeting
one condition will not have a direct impact on reducing risk for the other.

Genetic studies of the psychiatric and metabolic traits have recently witnessed analysis
with large-scale sample sizes [18–21]. The resulting summary statistics, which are often
publicly available, can account for a significant proportion of the heritability of these
complex polygenic traits, enabling various kinds of interrogation of the genetic aspect
of disease mechanisms. The current study tries to answer the aforementioned research
questions using large-scale publicly available GWAS (genome-wide association study)
summary statistics data as well as data derived from our own studies.

In this study, we aim to enhance our understanding of the link between PTSD and
MetS as well as its components. First, we test the phenotypic association between PTSD
phenotypes (PTSD status and symptom severity scores) and multiple metabolic traits
using data from the PTSD Systems Biology Consortium (SBC) cohort, a well-characterized
cohort comprising US veterans of the Iraq and Afghanistan wars. Then, we estimate
genetic correlations between PTSD and metabolic traits using data from large-scale GWAS
summary statistics. We also identified pleiotropic genetic regions contributing to the
shared genetics between PTSD and MetS. Finally, in order to gain insight into the presence
and direction of causal influences between Mets and psychiatric disorders, we conduct
Mendelian randomization analysis.

2. Results
2.1. Association between PTSD Phenotypes and Components of Metabolic Syndrome

The co-occurrence between PTSD and MetS has been reported in multiple studies
including in meta-analysis [9,22]. Besides MetS diagnosis, all of its components have
also been shown to be associated with PTSD individually. We tested the magnitude of
correlations among components of MetS and PTSD severity scores on 310 participants
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from the SBC cohort comprising military veterans with chronic PTSD presentation. We
tested both self-reported PTSD Checklist (PCL) as well as clinician-administered PTSD
(CAPS) PTSD severity scales. Six variables related to MetS were measured for the SBC
participants: BMI, LDL-C, HDL-C, triglycerides, fasting glucose and insulin. As expected,
all of the measured MetS-related measurements are significantly correlated with PTSD
severity scores (Figure 1 and Table 1). The strongest associations are for fasting glucose
with total PTSD symptom scores on the PCL (r = 0.26, p = 1.7E-05 and CAPS (r = 0.32,
p = 9E-08).
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Figure 1. Phenotypic associations between MetS components and PCL score.

Table 1. Correlation estimates between CAPS score and metabolic traits in the SBC dataset.

Pearson Correlation Spearman Rank Correlation

var1 var2 r p r p

CAPS BMI 0.22 3.58E-04 0.26 1.45E-06
CAPS LDL-C 0.14 1.82E-02 0.14 2.08E-02
CAPS HDL-C −0.17 4.42E-03 −0.17 3.92E-03
CAPS Triglycerides 0.12 5.30E-02 0.14 2.10E-02
CAPS Glucose 0.25 2.15E-05 0.37 3.34E-10
CAPS Insulin 0.29 1.10E-06 0.35 2.63E-09

Owing to the inclusion criteria of the study recruitment, the distribution of the PTSD
symptom severity scores seems to have a bimodal distribution (consists of values at the
two extreme values but not in the middle). To probe the effect of this distribution on the
observed association, we performed additional tests using the non-parametric Spearman
rank correlation test. Results from Spearman rank correlation test also showed significant
association between PTSD severity scores and the various components of MetS (Table 1).
Analysis with binary PTSD diagnosis label, instead of a quantitative PTSD severity score,
resulted in a significant association for most of the MetS relevant variables (Figure 2).
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Figure 2. Comparing levels of components of MetS between PTSD cases and healthy controls.
(a) Some MetS components show statistical difference between PTSD cases and healthy controls.
(b) Some MetS components show change in the expected direction between PTSD-positive cases and
PTSD-negative controls but not at statistically significant level. (***: p < 0.0001, **: p < 0.01, *: p < 0.05,
NS: p > 0.05).

In order to see the effect of chronicity of the PTSD on its relationship with metabolic
dysregulation, we sought to examine these associations in a cohort comprising PTSD symp-
toms from more recent trauma exposure. Unlike the clear association between metabolic
dysregulation with long-term PTSD presentation, using a cohort comprising more recent
onset PTSD diagnosis from recent trauma-exposures (FCC; n = 1134), we did not find a sim-
ilar pattern of association between the same MetS components and PCL score (Figure S1).
These observations are consistent with the hypothesis that PTSD triggers MetS susceptibil-
ity, rather than the other way around. That is, if the direction of influence were from MetS
components to PTSD, we would expect to see significant association in both chronic and
short-duration PTSD presentations. Besides the difference in duration of PTSD, the FCC
participants are active-duty service members that are much younger (7.6 years younger on
average) than SBC participants (Table S1).

2.2. Genome-Wide Genetic Correlations between PTSD and Metabolic Traits

In order to determine whether these phenotypic associations stem from a shared
genetic underpinning, we estimated pairwise genetic correlations between PTSD and MetS
as well as the individual components of MetS. Based on GWAS summary statistics from
recent large-scale studies on MetS-related traits with European-ancestry participants, SNP-
array based heritability estimates were computed to ensure they are sufficiently powered
and large enough proportion of the phenotype variance is explained. All summary statistics
used for further analysis have SNP heritability estimates of more than 5%. Using estimates
from LD score regression (LDSC), there is evidence for a statistically significant genetic
correlation between PTSD diagnosis and MetS (rg[SE] = 0.3305 [0.0564], p = 4.74E-09).

Obesity-related components (BMI and WHR) also show statistically significant genetic
correlations. On the other hand, the remaining components of MetS in which we inves-
tigated genetic correlation estimates did not pass Bonferroni multiple-testing corrected
p-value significance threshold (p < 0.05/8 = 0.00625). Despite the strong phenotypic correla-
tion between PTSD and sugar-related traits, the current study did not find corresponding
statistically significant genetic correlation. This can be due to the fact that the GWAS sum-
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mary statistics for these two traits are much less powered (about half the SNP heritability)
compared to the other traits. Details of genetic correlation estimates between PTSD and
various metabolic traits are listed in Table 2.

Table 2. Genetic correlation estimates between PTSD and metabolic traits.

Phenotype rg SE p

MetS 0.3305 0.0564 4.74E-09
BMI 0.2467 0.0456 6.42E-08

WHR 0.1551 0.0434 3.56E-04
HDL-C −0.1067 0.0582 6.66E-02
LDL-C 0.0583 0.0482 2.26E-01

Triglycerides 0.1135 0.0667 8.90E-02
Insulin 0.0432 0.0676 5.23E-01
Glucose 0.0739 0.0581 2.04E-01

Some previous studies reported significant genetic correlation between MetS and
depression phenotypes [17,23]. To compare estimates of genetic associations of MetS
and PTSD with genetic associations of MetS and MDD, we computed genetic correlation
estimates with MDD using the same summary statistics of metabolic traits. Our analysis
confirmed previously reported genetic correlations between MDD and metabolic traits.
We observed genetic correlation estimates with PTSD are comparable but slightly stronger
than estimates for MDD (Figure 3).
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Figure 3. Genetic correlation estimates between MetS and its components with PTSD (top) and
depression (bottom). The bars correspond to standard errors (SE) and the genetic correlation estimates
(rg) are represented by a dot in the middle of the SE bars.

2.3. Genomic Regions with Significant Local Genetic Correlation between PTSD and MetS

Given the significant genome-wide genetic correlation between PTSD and MetS, we
sought to identify specific genomic regions and genes with significant contribution to the
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globally aggregated genetic correlation. Three genomic regions with significant local genetic
correlation are identified: (i) chromosome 13:111.62–112.32 Mb (rg,local = 0.707, p= 3.30 E-05),
(ii) chromosome 20:43.01–44.07 Mb (rg,local = 0.754, p = 2.99E-04), and (iii) chromosome
4:102.54–104.38 Mb (rg,local = 0.609, p = 7.99E-04). These regions contain genes previously
implicated in genetic studies of relevant traits including SLC39A8 and HNF4A (Figure 4).
Notably, one of the identified loci (4:102.54–104.38 Mb) has previously been shown to be one
of the regions underlying shared genetic liability between psychiatric and immune-related
phenotypes [24].
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Figure 4. Regional association plots for three loci with significant local genetic correlation between PTSD
and MetS. (a) 13:111,621,245–112,319,064, (b) 20:43,008,891–44,072,210, (c) 4:102,544,804–104,384,534.

2.4. Bidirectional Two-Sample Mendelian Randomization Analysis

Since the metabolic traits are correlated with chronic but not short-duration PTSD,
we hypothesized the direction of causal influence might be from PTSD to metabolic dys-
regulation, but not the reverse. To test this hypothesis, we first selected 16 genome-wide
significant (p < 1E-08) and LD independent (pruning with r2 threshold of 0.1 and window
of 10 Mb) SNP’s as genetic instruments. Testing the causal hypothesis that PTSD results in
MetS using the inverse variance weighted (IVW) Mendelian randomization method did
not result in a statistically significant estimate (b = 0.095, SE = 0.176, p = 0.59). Similarly,
using 146 genome-wide significant and independent SNP’s in the MetS summary statistics,
a test of the effect of MetS on PTSD also did not pass a significant threshold (b = 0.017,
SE = 0.009, p = 0.06).

Next, since we could not determine the direction of influence between PTSD and MetS
despite the significant genetic correlation, we sought to assess the direction of influence with
MDD, which is another stress-related psychiatric disorder with large-scale well-powered
genetic study for Mendelian randomization analysis. A similar IVW analysis suggest the
direction of influence is from MDD to MetS (40 genetic instruments, b = 0.23, SE = 0.06,
p = 1.3E-04) rather than from MetS to MDD (108 genetic instruments, b = 0.015, SE = 0.011,
p = 0.165). This comports with previous reports of the effect of depression phenotypes on
metabolic dysregulation [17,23].

3. Discussion

PTSD often co-occurs with other psychiatric disorders (including depression and
anxiety disorders) and physical ailments (including metabolic syndrome, cardiovascular
diseases, and type-2 diabetes) [9,25]. Understanding the relationship among these comor-
bidities is crucial for effectively reducing their detrimental impact. In the present study,
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we investigated the phenotypic association and genetic overlap between PTSD and one
of its common comorbidities, MetS. First, we showed that level of metabolic dysfunction
increases with severity of PTSD symptoms. We found genetic correlation estimates closely
reflect phenotypic associations (in line with Cheverud’s conjecture [26]) even if they are
estimated using completely independent datasets. Moreover, the phenotypic association
between MetS and long-term PTSD presentation but not with the shorter duration PTSD
presentation is consistent with the Mendelian randomization finding that psychiatric ill-
nesses play a causal role in increasing MetS onset, but not necessarily the reverse. This
direction of causality suggest effective PTSD/MDD treatment may help mitigate the onset
of MetS-related risk factors.

Some clinical implications of the results of the present study are worth mentioning.
First, it is important to acknowledge that the relationship between PTSD and MetS is
not limited to increased preponderance in binary case–control comparison. Higher PTSD
symptom severity scores are also associated with elevated level of metabolic dysfunction.
Second, the epidemiologic link between PTSD and metabolic syndrome may arise from
a shared genetic underpinning. Future risk stratification and management strategies
can benefit from incorporating this insight. Third, the level of genetic overlap between
metabolic traits with PTSD is comparable to that of major depression. Fourth, the direction
of causal influence is likely from the psychiatric illnesses leading to metabolic dysfunction,
but may not be the other way around. Therefore, interventions that target the psychiatric
disorders may also help reduce metabolic-related disease risk, which are some of the leading
causes of mortality in the general public. In fact, the high comorbidity with MetS and its
components is thought to be a major factor responsible for the markedly high (2 to 3 times
higher) mortality rate among PTSD patients [9,27]. In order to design effective intervention
strategies, the etiologic structure underlying these commonly co-occurring conditions need
to be deciphered. The sequence of pathological events among these comorbidities, for
example, will inform which illness should be targeted so as to maximize benefit for the
other comorbidities as well and overall health condition.

MetS is a major risk factor for adverse cardiovascular events, diabetes and all-cause
mortality [28,29]. Its individual components are also independently associated with cardio-
vascular diseases and the occurrence of multiple concurrent MetS risk factors are shown
to increase the severity of the associated cardiovascular disease [30]. For instance, risk
for stroke and coronary heart disease increases threefold, while cardiovascular mortal-
ity increases more than fivefold among those with MetS compared to those without [31].
Therefore, a better understanding of the nature of the relationship between PTSD and MetS
may yield insight into the mechanism of the markedly elevated mortality rate among PTSD
patients. In particular, the findings in the present study suggest metabolic dysfunction
may play a mediating role for the significant association between PTSD and cardiovascular
diseases [32].

Besides the overall MetS diagnosis, the MetS-related metabolic traits have previously
been reported to be associated with PTSD phenotypes. PTSD is reported to be significantly
associated with higher BMI, and particularly with central obesity [33,34]. Multiple studies
including meta-analysis showed PTSD patients have higher levels of LDL-C and triglyc-
erides, but lower level of HDL-C compared to healthy controls [35]. Increased fasting blood
glucose (hyperglycemia) and insulin are also observed among PTSD patients [12], [36].
There are also strong evidence depicting strong association between these metabolic traits
and major depression, which is a common comorbidity of PTSD [37,38]. However, some
studies suggest these associations may not be uniform across gender and age groups and
sub-population specific patterns need to be deciphered [39].

This study involved estimating the level of genome-wide correlations. Future studies
that can identify specific polymorphisms, genes, pathways and metabolites involved in the
common pathophysiology of PTSD and metabolic dysfunction are needed. In particular,
abundance of many metabolites (a molecular phenotype that is closest to physiological
and clinical endpoints among the cascade of biological processes) is shown to be highly
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genetically influenced [40,41], making it amenable to the kind of approaches we conducted
in this study. Blood concentration levels of many small molecule biochemical (including
metabolites) correlates of PTSD/MDD [11,42,43] have high heritability estimates, both from
twin/family studies [44] as well as SNP array-based studies [41]. Some preclinical animal
studies and observational studies with human data pointed to the association of many
metabolite levels to PTSD and its psychiatric comorbidities.

The findings of the present study should be interpreted in light of its strengths and
limitations. Most previous studies focused on comparing the presence and prevalence of
MetS and associated metabolic traits between PTSD patients with healthy controls. Here,
the phenotypic associations with PTSD were assessed using two quantitative scores of PTSD
symptom severity. This approach can capture the effect of disease severity in addition to a
binary disease onset. Another strength of the study is that the genetic correlation estimates
are obtained from large-scale genetic analysis results. To ensure this summary statistics
are well-powered, SNP heritability of the summary statistics data are computed and only
those with sufficient minimum threshold are used, resulting in a more reliable genetic
correlation estimate.

The main limitations of the study are the following. First, to avoid population stratifi-
cation effects, only genetic studies with European-ancestry participants are collected and
analyzed. Therefore, the results with this summary data may not necessarily generalize on
other ancestral groups. Second, genetic correlations between psychiatric conditions and
metabolic traits are reported to be gender and age dependent [45]. In the present study, we
could not tease out sub-population specific signals using our current data. The findings in
the present study should be interpreted in light of these and other potential confounding
variables that could not be controlled. Third, the Mendelian randomization results should
be seen as an exploratory analysis that need to be thoroughly reanalyzed in future studies
with appropriately sufficient sample sizes.

PTSD, MetS and its components are heritable traits with large-scale publicly available
GWAS summary statistics data, enabling application of modern genetic analysis tools to
interrogate the mechanism of influence among them [13,46]. In this study, we conducted
four sets of distinct but interrelated analysis. First, we confirmed phenotypic association
between PTSD phenotypes and components of MetS on a well-characterized military
veteran cohort comprising chronic PTSD presentations. Then, using publicly available
GWAS summary statistics data, we showed significant genetic correlations between PTSD
diagnosis and MetS as a whole and some of its components. We also conducted local genetic
correlation analysis to prioritize genetic regions with significant pleiotropic effect on PTSD
and MetS. Finally, we implemented a bidirectional two-sample Mendelian randomization
analysis to test the direction of causal influence between MDD and MetS. Our analysis
suggests metabolic dysfunction is a detrimental sequalae of stress-induced psychiatric
illnesses, and may be one of the mechanisms leading to the high mortality rate among
MDD and PTSD patients.

Future studies need to further investigate many aspects of the pathophysiology of
the co-occurrence of PTSD and MetS. These include (i) replicating and refining the current
findings with additional datasets as results from new larger cross-ancestry genetic studies
become available, (ii) identifying metabolites and other small molecule biochemicals that
mediate the effect of genetics on PTSD/MDD, (iii) uncovering specific genes and pathways
underpinning the genetic correlations between PTSD/MDD and metabolic dysregulation,
and (iv) identifying potential pleiotropic genetic variants that are shared between PTSD
and metabolite genetics.

4. Materials and Methods

The current study involves examining the relationship between PTSD and metabolic
dysregulation at genetic and phenotypic levels. These two aspects are done in parallel on
independent datasets (Figure 5).
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4.1. Systems Biology Consortuim (SBC) and Fort Campbell Cohort (FCC) Datasets

The SBC (Systems Biology Cohort) consists of participants from US military veterans
who served in OEF (Operation Enduring Freedom) and/or OIF (Operation Iraqi Free-
dom) [47,48]. All participants in the PTSD-positive cases and PTSD-negative controls
experienced DSM-IV PTSD Criterion A trauma (combat exposure). Two PTSD assess-
ment criteria were implemented for SBC participants. The first one, CAPS (Clinician
Administered PTSD Scale) for DSM-IV, is a structured questionnaire administered by a
clinician to assess PTSD symptom severity [49]. The second one, PCL (PTSD Checklist), is
a self-administered 17-item questionnaire to estimate PTSD severity and ascertain PTSD
diagnosis [50]. Exclusion criteria include suicidal ideation, substance abuse within the
past year, history of alcohol dependence within the past eight month of PTSD assessment,
a lifetime history of any psychiatric disorder with psychotic features, bipolar disorder,
or obsessive compulsive disorder, any neurological disorder, systemic illness affecting
central nervous system function, and history of a moderate or severe traumatic brain
injury. Multiple metabolic traits are measured for all participants: body-mass index (BMI),
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), triglycerides, fasting glucose and insulin. More details of the SBC cohort are shown
in Table 3.
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Table 3. Descriptive table for SBC cohort.

Negative
(n = 164)

Positive
(n = 146)

Overall
(n = 310)

CAPS total score
Mean (SD) 4.00 (5.14) 68.1 (18.2) 34.2 (34.6)

Median [Min, Max] 2.00 [0, 19.0] 66.0 [24.0, 114] 15.5 [0, 114]
PCL toral score

Mean (SD) 25.5 (9.04) 59.6 (12.9) 41.9 (20.3)
Median [Min, Max] 23.0 [17.0, 62.0] 61.0 [25.0, 85.0] 37.0 [17.0, 85.0]

Missing 24 (14.6%) 16 (11.0%) 40 (12.9%)
BDI total score

Mean (SD) 5.85 (6.46) 24.3 (11.0) 14.9 (12.9)
Median [Min, Max] 3.00 [0, 28.0] 24.0 [0, 56.0] 13.0 [0, 56.0]

Missing 24 (14.6%) 11 (7.5%) 35 (11.3%)
Gender

Female 29 (17.7%) 25 (17.1%) 54 (17.4%)
Male 135 (82.3%) 121 (82.9%) 256 (82.6%)

Age
Mean (SD) 33.1 (7.90) 33.5 (7.96) 33.3 (7.91)

Median [Min, Max] 30.0 [20.0, 59.0] 31.0 [23.0, 59.0] 31.0 [20.0, 59.0]
Missing 23 (14.0%) 25 (17.1%) 48 (15.5%)

Ethnicity
Asian 12 (7.3%) 4 (2.7%) 16 (5.2%)
Black 41 (25.0%) 49 (33.6%) 90 (29.0%)
White 76 (46.3%) 53 (36.3%) 129 (41.6%)
Other 12 (7.3%) 15 (10.3%) 27 (8.7%)

Missing 23 (14.0%) 25 (17.1%) 48 (15.5%)
BMI

Mean (SD) 27.9 (4.51) 29.5 (5.49) 28.6 (5.07)
Median [Min, Max] 27.5 [19.5, 45.0] 28.6 [18.9, 49.9] 27.9 [18.9, 49.9]

Missing 27 (16.5%) 15 (10.3%) 42 (13.5%)
HDL-C

Mean (SD) 52.0 (13.8) 48.4 (12.9) 50.3 (13.5)
Median [Min, Max] 50.0 [25.9, 90.0] 45.6 [18.8, 94.6] 48.8 [18.8, 94.6]

Missing 21 (12.8%) 15 (10.3%) 36 (11.6%)
LDL-C

Mean (SD) 99.8 (25.4) 107 (31.5) 103 (28.6)
Median [Min, Max] 99.0 [40.6, 164] 103 [42.0, 237] 100 [40.6, 237]

Missing 21 (12.8%) 17 (11.6%) 38 (12.3%)
Triglycerides

Mean (SD) 107 (83.3) 122 (82.6) 114 (83.2)
Median [Min, Max] 84.0 [26.0, 718] 101 [38.0, 492] 92.0 [26.0, 718]

Missing 21 (12.8%) 14 (9.6%) 35 (11.3%)
Glucose

Mean (SD) 80.5 (11.7) 91.1 (28.4) 85.6 (22.0)
Median [Min, Max] 80.0 [53.0, 142] 88.0 [50.0, 309] 83.0 [50.0, 309]

Missing 21 (12.8%) 14 (9.6%) 35 (11.3%)
Insulin

Mean (SD) 11.6 (8.84) 18.8 (16.5) 15.1 (13.6)
Median [Min, Max] 9.75 [2.40, 67.4] 13.3 [2.20, 108] 11.1 [2.20, 108]

Missing 22 (13.4%) 14 (9.6%) 36 (11.6%)

The FCC (Fort Campbell Cohort) participants comprises active-duty service members
in the US Army with recent PTSD symptom presentation from recent trauma exposure
(within 90–180 days of return from deployment) [51]. Given the larger sample size (n = 1134)
of the cohort, only PCL is available to assess PTSD symptoms. Metabolic traits (BMI, LDL-C,
HDL-C, triglycerides and insulin) are also measured in the same manner as the SBC dataset.
Written informed consent was obtained from all participants in both cohorts and approvals
were obtained from all appropriate Institutional Review Boards.
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4.2. GWAS Summary Statistics Data

Several large-scale GWAS summary statistics pertaining to MetS or its components
as well as PTSD and depression are obtained from public repositories. The PTSD GWAS
summary statistics is from the Psychiatric Genomic Consortium (PGC) freeze-2 study of
the European-ancestry participants [18]. The study consists of 23,212 PTSD-positive cases
and 151,447 healthy controls and provided univariate association test results for 9.77 M
genetic variants. The depression summary statistics [52] consists of combined samples
from PGC-MDD [20] and UKBB depression [53] studies. Details of the summary statistics
that are used in the current study are summarized in Table 4.

Table 4. GWAS summary statistics used in the current study.

Category Sum. Data Phenotype Sample Size h2
SNP Source Reference

PSY PTSD (PGC-freeeze-2) PTSD 174,659 6.50% [18]
Depression (PGC+UKBB) depression 500,199 6.10% [52]

MetS MetS (UKBB) metabolic
syndrome 291,107 9.20% [21]

Anthropometric BMI Body mass index 315,347 16.70% [54]
WHR Waist-to-hip ratio 502,773 13.50% [55]

Lipids LDL-C LDL-C 431,167 18.20% [56]
HDL-C (UKBB) HDL-C 115,082 16.80% [57]

Triglycerides Triglycerides 115,082 19.70% [57]
Sugar

related Glucose (GIANT) fasting blood
glucose 200,622 8.30% [58]

Insulin (MAGIC) Fasting insulin 151,013 8.10% [58]

PGC: Psychiatric Genomics Consortium; UKBB: UK Biobank; GIANT: Genetic Investigation of ANthropometric
Traits consortium; MAGIC: Meta-Analyses of Glucose and Insulin-related traits Consortium.

Preprocessing and quality-control step is done on each of the summary statistics
individually as follows. Rare variants (minor allele frequency, MAF < 0.01) are filtered out.
If z-statistics is not given, it is computed from the effect size (regression coefficient or odds-
ratios) of the univariate tests (Z = beta/SE or Z = log(OR)/SE). If rsID’s of genetic variants
are not provided in the original summary statistics, its rsID is looked up from dbSNP
database and inserted as an additional column. After computing SNP array heritability on
the given summary statistics, if it does not explain a significant variance of the phenotype
(h2

SNP < 5%), that summary statistics is dropped from further analysis.

4.3. Estimating Genome-Wide Genetic Correlations and SNP Heritability

The proportion of variance of the association between two genetically influenced traits
that is attributable to genetic background is known as genetic correlation (rg). Its estimate
is obtained from GWAS summary statistics data using cross-trait LD score regression
(LDSC) [59]. A Python command line implementation of LDSC was used. Genome-wide
SNP array heritability (the fraction of phenotypic variance explained by genetic variation)
of the summary statistics are also computed using LDSC. LD scores that was precomputed
for European ancestry individuals in the 1000 Genome Project was used [60].

4.4. Estimating Local Genetic Correlations on Independent LD Blocks

A predefined LD blocks that was defined using European European-ancestry 1000-
genome data is obtained [61]. The whole human genome is divided into 2495 LD inde-
pendent segments in such a way that each block of ~1 Mb are independent of each other.
Genomic regions containing at least one SNP that is suggestively significant (p < 1E-05)
associations with PTSD are selected, resulting in 50 independent regions for further analy-
sis. Univariate local heritability analysis on these 50 genomic regions was conducted
for PTSD susceptibility. A total of 43 regions with Bonferroni corrected significance
(p < 0.05/50 = 0.001) are selected for further bivariate local genetic correlations. Local
genetic correlation estimates between PTSD and MetS are analyzed on these 43 genomic
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regions. Both univariate local heritability and bivariate local genetic correlation analysis are
conducted with LAVA (Local Analysis of coVariant Association) [61]. Regional association
plots are generated with LocusZoom [62]. All genomic locations are based on coordinates
in the hg19/GRCh37 human genome reference.

4.5. Mendelian Randomization Analysis

Genetic instrumental variables are selected based on association statistics on the
exposure phenotype summary statistics (PTSD [18], MetS [21], and depression [20]). Only
genome-wide significant SNP’s (p < 5E-08) are selected. To enforce independence among
genetic instruments, LD clumping procedure with window distance of 10 Mb and r2

threshold of 0.1 is conducted. For each instrumental variable, the corresponding SNP-
outcome association statistics is obtained from the three summary statistics. After ensuring
the same effect allele is used in the exposure and outcome summary statistics, palindromic
SNP pairs (C/G and A/T alleles) are removed.

Two-sample (separate sources of GWAS summary statistics for the exposure and
outcome variables) Mendelian randomization analysis is performed using the inverse
variance weighted (IVW) method [63]. Briefly, IVW aggregates the overall effect by sum-
ming the weighted (where the weights are the reciprocal of the variances) estimate from
individual genetic instrument (which is the Wald ratio of the exposure to outcome effect).
The Mendelian randomization analysis is done with TwoSampleMR package [64] in R
(version 4.1.1) statistical software.
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