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Abstract

Background: Genotype imputation is commonly used in genetic association studies to test untyped variants using
information on linkage disequilibrium (LD) with typed markers. Imputing genotypes requires a suitable reference
population in which the LD pattern is known, most often one selected from HapMap. However, some populations, such as
American Indians, are not represented in HapMap. In the present study, we assessed accuracy of imputation using HapMap
reference populations in a genome-wide association study in Pima Indians.

Results: Data from six randomly selected chromosomes were used. Genotypes in the study population were masked (either
1% or 20% of SNPs available for a given chromosome). The masked genotypes were then imputed using the software
Markov Chain Haplotyping Algorithm. Using four HapMap reference populations, average genotype error rates ranged from
7.86% for Mexican Americans to 22.30% for Yoruba. In contrast, use of the original Pima Indian data as a reference resulted
in an average error rate of 1.73%.

Conclusions: Our results suggest that the use of HapMap reference populations results in substantial inaccuracy in the
imputation of genotypes in American Indians. A possible solution would be to densely genotype or sequence a reference
American Indian population.
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Introduction

Current technologies allow rapid and extensive genotyping of

common single nucleotide polymorphisms (SNPs) [1,2]. However,

none of the available genotyping platforms has complete coverage.

Furthermore, while there has been an increase in collaborative

studies (for example, genome-wide association meta-analyses),

problems arise when different genotyping platforms have been

used and many markers do not overlap [3]. One solution has been

the development of methods to impute untyped variants using

information on linkage disequilibrium (LD) with typed markers

[3–5]. For example, using genotype imputation, a meta-analysis of

type 2 diabetes genome-wide association studies was performed by

Zeggini et al. and this study resulted in the identification of at least

six new diabetes loci [6]. Similarly, a meta-analysis testing

association of low-density lipoprotein cholesterol (LDL) to SNPs

in the low-density lipoprotein receptor region on chromosome 19

showed strong evidence for association at an imputed SNP

(rs5611270), which was not well tagged by any of the individual

SNPs. A subsequent replication study in which this SNP was

directly genotyped further confirmed association with LDL with a

p,10225 [4].

To impute genotypes, a suitable reference population is

required, most often one selected from HapMap [7–9]. This

reference population has all the markers of interest genotyped.

The LD pattern between markers is then used to infer genotypes

for untyped markers from those for the typed markers in the

population being studied. While HapMap has information on a

large number of ethnic groups, including African Americans and

Mexican Americans, American Indians are not represented.

One study has used HapMap2 reference populations to estimate

imputation accuracy in a variety of populations including a small

group of American Indians from Mexico [10]. While this study

concluded that using a combination of HapMap groups as the

reference can provide accurate imputation in many populations

(estimating allelic error rate at ,5%), these results need to be

validated in other studies since the sample sizes in many groups

were very small. For example, accuracy in Pima Indians was

estimated using only eight individuals from the Human Genome

Diversity Cell Line Panel [10]. Furthermore, this study used only

HapMap2 data and potentially more appropriate reference

populations, such as Mexican Americans, are present in

HapMap3.

In the current study, we evaluated the accuracy of imputation in

1,266 Pima Indians who had participated in a genome-wide

association study (GWAS) [11]. The accuracy of imputation using

HapMap reference populations was compared with that using the

Pimas as their own reference. To our knowledge, this is the first

extensive exploration of accuracy of HapMap populations in

predicting American Indian genotypes.

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e102544

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0102544&domain=pdf


Methods

Ethics Statement
Written informed consent was obtained for all participants and

this study was approved by the institutional review board of the

National Institute of Diabetes and Digestive and Kidney Diseases.

Study population genotypes and quality control
A previous GWAS in Pima Indians (N = 1,266) provided

genotype information on 454,194 SNPs [11]. The GWAS SNPs

passed the following quality control criteria: Hardy-Weinberg

Equilibrium p-value.0.001, SNPs were genotyped in .85% of

individuals, and minor allele frequency .0.05. Due to the

computational burden in imputing the entire genome, six

randomly selected chromosomes were analyzed (chromosomes 1,

7, 8, 15, 17, and 22).

Reference populations
Using HapMap2 data, we used the Yoruba (YRI; N = 120

haplotypes), White (CEU; N = 120 haplotypes), and Japanese and

Chinese combination (JPT+CHB; N = 180 haplotypes) separately

as reference populations [7]. In addition, we used the Mexican

ancestry (MXL; N = 104 haplotypes) HapMap3 data since this

group is not represented in HapMap2 [8].

We also used Pima Indians as a reference population; LD

patterns in the Pima Indian GWAS were used to impute and

predict genotypes. In addition, to evaluate the influence of the size

of the reference Pima panel, we estimated accuracy when

randomly selecting a subset of Pima individuals as the reference

(N = 25, 50, 100 respectively). Haplotypic phase in the reference

population was assigned using the program fastPHASE [12] prior

to imputation. To assess accuracy using the Pima reference

comparably to other reference populations, the phase information

in the study Pima population was considered unknown.

In these analyses, individuals selected for the reference panel

were excluded from assessment of genotype accuracy (ie, removed

from the study population so that their genotypes do not

contribute to the assessment of accuracy). Genotypes were then

imputed separately using the 50, 100, or 200 haplotypes

(equivalent to two haplotypes per individual).

Imputation
All genotype imputation procedures were performed using the

software MaCH (Markov Chain Haplotyping Algorithm) [13]. To

evaluate accuracy, a procedure called ‘masking’ was used. In this

method, randomly selected genotypes in the study population are

assigned missing values, the imputation procedure is carried out,

and the assigned genotypes are then compared with the original

genotypes [13].

Either 1% or 20% of genotypes were masked for each

chromosome. The method of imputation implemented in MaCH

has been previously described [13]. Briefly, a random pair of

haplotypes, that are consistent with observed (ie, 80% or 99%

unmasked) genotypes, is assigned to each individual in the study

population in each iteration. A previously assigned number of

iterations (50 in the current study) are carried out, with the results

of each iteration being stored. Once the process is complete, the

most likely genotype is identified.

Imputation quality assessment
Once genotypes were assigned to the masked genotypes, these

were compared to the original genotypes. Two measures of

accuracy were used as implemented in MaCH [13]:

1) The proportion of genotypes that were correctly imputed

when the most likely genotype was taken, which was

calculated as follows: assuming a SNP has alleles A and B,

and I is the total number of iterations (i.e., (I) = nA/A+nA/B+
nB/B. where nA/A, nA/B, nB/B are the number of iterations

where each genotype is assigned), the most likely genotype is

taken (imputed genotype IG) as the one most commonly

observed over all iterations (e.g., AA, AB or BB). From this,

the proportion (P) where IG = true genotype is estimated. The

genotype error rate = 1 - P.

2) The average estimated r2 between the true and imputed

genotype is estimated by comparing the variance of genotype

scores between imputed genotypes and actual genotypes. This

is estimated as follows: looking at the number of copies of

allele A, the genotype score (g) = (2nA/A+nA/B)/I. The

variance of g (Var(g)) is then estimated and used in estimating

r2 of variances (ie, between Var(g) and expected variance if

genotype scores were observed without error).

The masking procedure implemented in MaCH masks individ-

ual genotypes and not entire SNPs. While one might expect

accuracy estimates to be comparable regardless of which approach

is used, in practice imputation is often performed for SNPs for

which no one in the study population is typed, for example, when

combining populations in a meta-analysis. To assess accuracy in

the context for which a SNP is not typed in the study population,

we assigned 1% of randomly selected SNPs as missing in the study

population, followed by imputation from the reference population.

We estimated error rates for the SNPs marked as missing by

comparing the most likely imputed genotype with the observed

genotype and by calculating the correlation between the expected

genotype, assessed by imputation, and its observed value. In other

words, the correlation between the ‘‘expected’’ genotype score

(g = (2nA/A+nA/B)/I) and the observed number of A alleles (coded

0, 1, 2) was calculated. Since the error rates calculated by this

method were comparable to the error rates observed when

individual genotypes were masked, and since masking individual

genotypes may provide a wider representation of the sample that is

not subject to individual SNP differences, we only report the

results for masking individual genotypes.

Results and Discussion

Figure 1 shows the results for the analyses with 1% and 20% of

SNPs masked, respectively. Using the HapMap reference popu-

lations, the MXL population gave the lowest genotype error rate,

followed by JPT+CHB and CEU. The YRI reference population

gave the highest error rate. Using the MXL population, when 1%

of SNPs were masked, the average genotype error rates ranged

from 7.24% to 8.85% depending on the chromosome being

analyzed. As might be expected, the error rates were slightly

higher when 20% of markers were missing with results ranging

from 7.97% to 9.97% in MXL, 11.22% to 13.98% in JPT+CHB,

11.74% to 13.65% in CEU, and 19.22% to 24.93% in YRI.

Figure 2 shows the r2 results by reference population and

chromosome. Using the MXL, JPT+CHB, and CEU reference

populations gave similar r2 values with averages of 0.73, 0.74, and

0.73 in the 1% masking analyses, respectively. The YRI

population showed much lower r2 values ranging from 0.49 to

0.58. A value of ,0.30 is often used as criteria to reject use of a

SNP. For the 1% masking analyses, an average of 17.96%,

15.89%, 16.26%, 35.96% of SNPs had r2,0.3 in MXL, JPT+
CHB, CEU, and YRI, respectively.

Genotype Imputation
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The results described above show that from the HapMap

populations, the MXL reference provides the most accurate

imputation results for Pima Indians compared to CEU, YRI, or

JPT+CHB. HapMap3 contains fewer markers than HapMap2

and it is possible that these panels may perform differently in

assigning haplotypes. To address the possibility of specific

differences between HapMap2 and HapMap3 being responsible

for the higher accuracy in MXL, we tested the CEU and JPT+
CHB HapMap3 data as well. The results were similar to those

obtained for HapMap2 (results not shown).

Figures 1 and 2 also show the genotype error rates and r2 when

using Pima Indians as a reference population (100 randomly

selected individuals from the GWAS study). Using Pima Indian

data significantly reduces the error rates and improves r2. An

average genotype error rate of 1.59% and 1.87% was observed

when 1% and 20% of SNPs were masked, respectively.

Furthermore, r2 of .0.98 was estimated in all cases.

Combining multiple HapMap populations has been proposed in

a previous study as the optimal approach for many populations,

including American Indians [10]. We tested this by using two sets

of populations: 1) combining CEU, YRI, and JPT+CHB from

HapMap2 and 2) combining CEU, YRI, JPT+CHB, and MXL

from HapMap3. Due to computational burden, we limited our

analyses to three chromosomes. The genotype error rates in all

cases were higher than those observed using the MXL population

alone or the Pima-specific reference, with average error rates of

11.37% and 9.76% for the combined HapMap2 and HapMap3

populations, respectively. Therefore, from all HapMap popula-

tions tested in the current study, use of data from the Mexican

American population alone would provide the most appropriate

reference for genotype imputation in Pima Indian populations.

Furthermore, the error rates observed in the present study in all

cases were higher than those observed in Pima Indians by Huang

et al in analyses that included data from eight Pima Indian

individuals [10]. Their small sample size might explain the

differing results with the current study. It is also possible that

maximizing the predictive properties for a given sample over

multiple reference populations can result in an overestimate of the

accuracy observed in a new sample.

In the present study, using Pima Indians as a reference

population significantly improves imputation accuracy. Therefore,

the ideal situation would be to have a population specific reference

group to accurately impute untyped genotypes. We further

explored the extent to which the number of individuals used in

the Pima reference population influenced accuracy. As we

described earlier, there were 120, 180, 120, and 104 haplotypes

in the CEU, JPT+CHB, YRI, and MXL reference populations.

To perform comparable analyses, we performed imputation

analyses using three reference groups (with 25, 50, or 100

individuals) of randomly selected Pima Indians from the original

GWAS study (N = 1266). Using these subsets of the Pima dataset,

average genotype error rates were 2.84%, 1.98%, 1.59%,

respectively for 25, 50, and 100 reference Pima individuals in the

1% masking analyses, with r2.0.97 in all cases. R2 values were

similar in the 20% masking analyses, with slightly higher

genotyping error rates (Figures 3 and 4). These results show that

imputation with a reference population of only 25 individuals was

considerably more accurate than with any of the HapMap

reference populations.

The Pima Indians for the GWAS were selected from sibships,

and the presence of closely related family members may result in

increased imputation accuracy. To evaluate this, we also assessed

the accuracy of imputation after removing first-degree relatives of

individuals in the reference population from the study population.

The results were similar whether or not these relatives were

included (results not shown).

To assess the potential implications of the present findings on

statistical power, we performed a power analysis using the genetic

power calculator [14] assuming singleton data from 1266

individuals. For a type 1 error rate of 1023, we estimated the

power to detect an association with a quantitative trait, assuming

that the SNP explains 1% of the variance. Average power for an

imputed SNP was estimated at 41% for MXL, CEU, and JPT+
CHB references, 25% for a YRI reference, 60% using a Pima

reference, and 61% assuming the SNP is directly genotyped (ie,

r2 = 1). To achieve 80% power, the variance explained by the

imputed SNP would have to be approximately 1.8% for MXL,

CEU, and JPT+CHB references, 2.5% for a YRI reference, and

1.35% using a Pima reference. This compares with 1.33%

assuming the SNP is directly genotyped.

In the absence of a closely related reference population that is

densely typed for many markers, investigators will often choose the

most closely-related HapMap population, or a combination of

HapMap populations, as a reference for imputation. However, the

magnitude of imputation inaccuracy observed in the present study

suggests that this approach will result in a significant loss of power,

and, thus, it may be worthwhile to develop a population-specific

reference panel. Power of genome-wide association studies using

imputed genotypes has been assessed in previous studies [15,16].

In a study looking at the relationship between imputation error

rate and sample size requirements, Huang et al showed that error

Figure 1. Genotype error rates according to reference popu-
lation when a) 1% or b) 20% of genotypes were masked.
doi:10.1371/journal.pone.0102544.g001

Figure 2. R2 according to reference population when a) 1% or
b) 20% of genotypes were masked.
doi:10.1371/journal.pone.0102544.g002

Figure 3. Genotype error rates according to Pima Indian
reference population size when a) 1% or b) 20% of genotypes
were masked.
doi:10.1371/journal.pone.0102544.g003

Genotype Imputation
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rates of 2–6% allelic error rate can result in up to 40–60% increase

in sample size to achieve the same power if the SNPs were directly

genotyped [16]. Their estimate of the sample size inflation rate in

Mexican Pima Indians was ,1.25 based on eight individuals from

the Human Genome Diversity Cell Line Panel. However, they

estimated allelic error rates of ,3%, which are lower than seen in

the current study. Therefore, it seems reasonable to assume that

given the high error rates observed in the current study for a

majority of HapMap reference populations, the sample size

required to achieve good power would greatly increase.

We recognize that the current imputation study has some

limitations. The use of genotype data from this genome-wide

association study might not be ideal as a reference population since

the individuals were not randomly selected, but were chosen based

on a clinical phenotype. It might be more appropriate to include

an independent Pima Indian population genotyped for the same

SNPs available in HapMap2 or HapMap3 [8,9].

Furthermore, the data were obtained from the Affymetrix array,

and it is possible that other SNPs would have different

characteristics. A potential concern is that markers present on

the Affymetrix array, but not included in HapMap2 and

HapMap3, are only available in the Pima reference sample, and

these additional markers may account in part for the improved

accuracy for the Pima reference compared with the other

reference populations. To address this possibility, we re-analyzed

the data and performed imputation using only those SNPs that

overlapped in all HapMap populations and the Pima Indian

population. These analyses showed the same order of accuracy (ie,

Pima reference populations gave the lowest error rate followed by

Mexican Americans, with the other HapMap populations showing

higher error rates). Furthermore, in all cases, the genotype

accuracy rates were on average only slightly decreased due to

the use of a smaller SNP set. Finally, with our present data we

cannot determine the accuracy of any of the reference populations,

including MXL and Pimas, for imputation in other American

Indian populations.

While genotype imputation has resulted in increased informa-

tion in association studies, there is a need for caution in some

cases. This was illustrated in a paper by Beecham et al describing

joint analysis of multiple studies using genotypes from different

platforms [17]. The joint analysis showed no evidence for

association between late-onset Alzheimer disease and the apolipo-

protein-e (APOE) gene, a locus that has been replicated in numerous

studies [18]. The reason for this discrepancy was due to the weak

linkage disequilibrium of SNPs near the APOE locus. The authors

proposed that genotype uncertainty should be accounted for in the

meta-analysis [17].

In addition to imputation of common variants, which are

generally used in genome-wide association studies, there is

increasing interest in imputation of rare variants from sequencing

data. Fridley et al. have explored cost-effective ways to impute rare

variants and suggest using sequence data from the 1000 genomes

project and possibly combining this information with actual

sequence data from a subset of the population being studied [19].

This approach might work in Pima Indians. However, given that

high error rates observed with HapMap reference populations, it is

likely that error rates using data from the 1000 genomes project

will also be high given the lack of representation of American

Indians. Therefore, it would be preferable to sequence a small

number of Pima Indians as a reference population, which will

allow imputation of both common and rare variants in this

population.

In conclusion, using Pima Indians as a reference population

significantly improves imputation accuracy when compared to

HapMap populations. There is a need to also develop a American

Indian reference panels to accurately impute untyped genotypes in

these populations.
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