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Abstract

Background: Lysine succinylation is a type of protein post-translational modification
which is widely involved in cell differentiation, cell metabolism and other important
physiological activities. To study the molecular mechanism of succinylation in depth,
succinylation sites need to be accurately identified, and because experimental
approaches are costly and time-consuming, there is a great demand for reliable
computational methods. Feature extraction is a key step in building succinylation site
prediction models, and the development of effective new features improves
predictive accuracy. Because the number of false succinylation sites far exceeds that
of true sites, traditional classifiers perform poorly, and designing a classifier to
effectively handle highly imbalanced datasets has always been a challenge.

Results: A new computational method, iSuc-ChiDT, is proposed to identify succinylation
sites in proteins. In iSuc-ChiDT, chi-square statistical difference table encoding is developed
to extract positional features, and has a higher predictive accuracy and fewer features
compared to common position-based encoding schemes such as binary encoding and
physicochemical property encoding. Single amino acid and undirected pair-coupled
amino acid composition features are supplemented to improve the fault tolerance for
residue insertions and deletions. After feature selection by Chi-MIC-share algorithm, the
chi-square decision table (ChiDT) classifier is constructed for imbalanced classification. With
a training set of 4748:50,551(true: false sites), ChiDT clearly outperforms traditional classifiers
in predictive accuracy, and runs fast. Using an independent testing set of experimentally
identified succinylation sites, iSuc-ChiDT achieves a sensitivity of 70.47%, a specificity of
66.27%, a Matthews correlation coefficient of 0.205, and a global accuracy index Q9 of
0.683, showing a significant improvement in sensitivity and overall accuracy compared to
PSuccE, Success, SuccinSite, and other existing succinylation site predictors.

Conclusions: iSuc-ChiDT shows great promise in predicting succinylation sites and is
expected to facilitate further experimental investigation of protein succinylation.

Keywords: Succinylation site, Chi-square statistical difference table, ChiDT, Imbalanced
dataset, Feature selection
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Background
Protein post-translational modifications (PTMs) regulate cellular physiology and signifi-

cantly increase protein diversity and complexity. Lysine succinylation is an evolutionar-

ily conserved PTM present in both prokaryotic and eukaryotic cells where a succinyl

group is covalently bonded to specific lysine residues by enzymatic or non-enzymatic

processes [1, 2]. Succinylation can promote remarkable changes in protein structure

and function, and plays a role in many diseases, such as tuberculosis [3], allergic derma-

titis [4], and inflammation [5]. Therefore, elucidating the molecular mechanism of suc-

cinylation will provide valuable information for both biomedical research and drug

development.

Accurate identification of succinylation sites is critical to succinylation research, and

because experimental methods are costly and time-consuming, and have been unable

to keep up with the exponential growth of the number of sequenced proteins, efficient

in silico methods are in great demand. To date, many predictors for identifying succi-

nylation sites have been developed, such as SucPred [6], SuccinSite [7], pSuc-Lys [8],

PSuccE [9] and so on, but with their limited overall accuracy and poor sensitivity, nu-

merous true succinylation sites remain undetected. Actually, what interested us more is

the information on true succinylation sites. Therefore, it is necessary to further improve

predictive accuracy, especially sensitivity. Two key components, feature extraction and

classifier construction, can greatly affect the accuracy of a computational method.

Commonly used features include positional features [7, 9–11], sequence composition

[7–11], evolutionary information [12–14], and protein secondary structure [13–15].

Positional information of amino acids is basic but important to a protein sequence.

While binary encoding [7, 9] is the most intuitive method to extract positional features,

the feature matrix is very sparse. The binary encodings are the same for the same resi-

due at different positions, and so it cannot reflect positional differences. Physicochemi-

cal property encoding [7, 9, 11] is another position-based amino acid encoding scheme

that is frequently used. The AAindex [16] database records 531 physicochemical prop-

erties of 20 standard amino acids. Since it is not known in advance which physico-

chemical properties are related to classification, physicochemical property encoding

means each position needs to be represented by 531 physicochemical properties, result-

ing in many irrelevant and redundant features.

Traditional classifiers including support vector machine (SVM) [6, 9–11, 13], random

forest (RF) [7, 8] and decision tree [12, 15] have been applied in succinylation site pre-

diction. The number of false succinylation sites (non-succinylated lysine residues) far

exceeds that of true sites, for example, the dataset from Hasan et al. [7] contains 5004/

53524 true/false succinylation sites (a ratio of positive to negative samples of about 1:

10). Training any traditional classifier with such highly imbalanced datasets could

strongly bias classification results [17], and the large number of training samples would

make the training time of some classifiers (e.g. SVM) unbearable. To address this, some

methods (e.g. SucPred, SuccinSite) balanced the class distribution by under-sampling

the negative samples, but this might lead to the loss of some potential classification

information due to the mass discarding of negative samples; some methods (e.g. pSuc-

Lys, PSuccE) designed classifier ensemble algorithms, however, they were still inte-

grated results of several individual classifiers trained with a balanced subset where posi-

tive samples were repeatedly used.
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Based on a highly imbalanced dataset, we developed an efficient approach called

iSuc-ChiDT for predicting succinylation sites. Firstly, the 2 × 20 contingency table of

each position was compressed based on local chi-square tests, and then the 9 key posi-

tions and a window size of 16 residues were determined. Next, chi-square statistical dif-

ference table encoding was used to characterize the 9 key positions, and amino acid

composition (AAC) and undirected pair-coupled amino acid composition (undirected-

PCAAC) features were incorporated. After applying the Chi-MIC-share [18] algorithm

for feature selection, the ChiDT classifier was finally designed to achieve imbalanced

classification. The flow chart of our method is shown in Fig. 1.

Methods
Datasets

From Uni-ProtKB/Swiss-Prot [19] database and NCBI protein sequence database [20],

Ning et al. [9] obtained 2322 succinylated proteins with 5009 experimentally verified ly-

sine succinylation sites by applying a 30% homology-reducing screening procedure with

CD-HIT [21]. Then 124 succinylated proteins were randomly selected to build an inde-

pendent testing set, and the remaining 2198 succinylated proteins were used as a train-

ing set. In this study, we used the same training and independent testing dataset as in

Ning et al., which were freely available via the web link [22]. Our training set, namely

Tr_data, contains 4748/50,551 true/false succinylation sites; and our testing set, namely

Te_data, contains 254/2977 true/false succinylation sites.

Each true/false succinylation site was represented by a sequence fragment with an initial

length of 51 amino acid residues, where the candidate site (lysine residue) was at the cen-

tral position 0, and the upstream positions were successively labeled as − 1, − 2, …, − 25,

and the downstream positions labeled 1, 2, …, 25. If the number of up- or downstream

residues of the candidate site was less than 25, amino acids were created through mirror

extension to make up the difference [8]. For example, the original sequence of the succi-

nylated protein “SP-P0ABS8” is “MLKNLAKLDQTEMDKVNVDLAAAGVAFKE …” .

The first lysine (K) is the candidate site and therefore the sequence fragment generated by

Fig. 1 Flow chart of iSuc-ChiDT
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mirror extension is “KFAVGAAALDVNVKDMETQDLKAMLKNLAKLDQTEMDKVN

VDLAAAGVAFK”. All sequence samples contain only the 20 standard amino acids.

Compression for the 2 × 20 contingency table of each position

The maximal information coefficient (MIC) [23] is a novel measure proposed to cap-

ture dependences between paired variables. The MIC score ranges from 0 to 1, and

only approaches 0 if two variables are statistically independent. To calculate the MIC

score of the paired variables x and y, the ApproxMaxMI [23] algorithm sets the nx ×

ny< B(n), where B(n) = n0.6 is the maximal grid size restriction, and n is the sample size,

and nx, ny are the number of partition bins on x and y, respectively. The MIC score for

two independent variables calculated by ApproxMaxMI depends on the ratio between

B(n) and n [24], and it is close to 0 only when n approaches infinity. For two independ-

ent variables under finite samples (especially for small sample size), ApproxMaxMI

leads to a large deviation between the calculated MIC score and 0, meaning that the

MIC will capture false associations. To address this drawback, Chen et al. [25] pro-

posed an improved algorithm, ChiMIC [25], which uses local chi-square test to deter-

minate optimal bin size for the calculating of MIC score. For two independent variables

with 100 sample points, ApproxMaxMI tends to fall into the maximal grid size

(1000.6 ≈ 16), and the corresponding grid partition is a 2 × 8 grid, and the MIC score is

0.24. With ChiMIC, the MIC score is only 0.06, and the corresponding grid partition is

a 2 × 2 or 2 × 3 grid. This shows that the grid partition searched by ChiMIC is more

reasonable and that compressing a 2 × 8 grid into a 2 × 2 or 2 × 3 grid is wise.

Similarly, for each position in succinylation site-containing sequences, we can con-

struct a 2 × 20 contingency table by respectively counting the occurrence frequencies of

the 20 standard amino acids in the positive and negative samples. For instance, Fig. 2

gives the 2 × 20 table of position − 10 in Tr_data. What we need to investigate is

whether the 2 × 20 Table (2 × 20 grid) is reasonable, and could it be compressed into a

2 × 10, or even a 2 × 2 table? A similar attempt was made in donor splice site predic-

tion. For each position in donor site-containing sequences, a 2 × 4 contingency table

can be built by counting the frequencies of 4 bases in the positive and negative samples.

Following on from ChiMIC, Zeng et al. [26] compressed the 2 × 4 table of each position

into a 2 × l (2 ≤ l ≤ 4) table using local chi-square test, and developed a high-

performance approach to predict donor splice sites based on this compression strategy.

Encouraged by the successful application of the compression strategy on nucleotide

sequences, we applied it to protein sequences. For the 2 × 20 contingency table for each

position in succinylation site-containing sequences, the compression procedure is de-

scribed below.

Step 1: Set the initial value of r (r is an integer) to 20.

Step 2: The 2 × r contingency table is compressed by merging two columns corre-

sponding to two different residues, and some 2 × (r-1) contingency tables are obtained,

then select a 2 × (r-1) contingency table with the maximum chi-square value, denoted

as max2 × (r-1).

Step 3: A local 2 × 2 contingency table is constructed based on the merged residues

in max2 × (r-1) and perform a chi-square test. If the p-value is lower than a given thresh-

old, max2 × (r-1) is unreasonable and will be backtracked to the 2 × r contingency table
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and the compression procedure is terminated. If the p-value is greater than a given

threshold, max2 × (r-1) is reasonable, and a further compression of max2 × (r-1) is

attempted following these steps: 1) set r = r-1; 2) if r ≥ 3, repeat Step 2 ~ 3; otherwise,

terminate compression.

Tc − 10 in Tr_data as an example, its 2 × 20 contingency table was finally compressed

into a 2 × 3 table (Fig. 2). The 20 original status values of position − 10 were therefore

turned into 3 status values, i.e., “ARDGTV”, “NQEHILKM” and “CFPSWY”, where,

“ARDGTV” indicated that A, R, D, G, T, V at position − 10 were regarded as the same

status value, and the others were similar.

Key positions selection and window size determination

For each position in the sequences with 51 residues, a 2 × r (2 ≤ r ≤ 20) contingency

table can be obtained after compression based on the training set. A chi-square test

was then performed on the 2 × r contingency table and the corresponding chi-square

value was calculated. Higher chi-square values indicate that the corresponding positions

Fig. 2 Illustration of compression procedure (position − 10 in Tr_data)
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are more important for discriminating positives from negatives. Figure 3 shows the chi-

square values of 50 positions (− 25 ~ + 25, excluding position 0) in Tr_data, and the

chi-square tests of all the positions are significant. We calculate the average of the chi-

square values of all the positions, denoted as χ2ave, then set χ2ave as the threshold to select

key positions. The chi-square values of positions − 8, − 4 ~ − 1, 1, 2, 5, 7 are above χ2ave
¼ 92:797 (see the red line in Fig. 3), therefore these 9 positions are regarded as the key

positions. Furthermore, the contiguous 16 residues (positions − 8 ~ + 7) are determined

as the window size.

Positional feature extraction

A new position-based amino acid encoding scheme, chi-square statistical difference

table encoding, was developed for position characterization. For the 9 key positions in

each sequence sample, we extracted 9 positional features based on chi-square statistical

difference table encoding, denoted as P− 8, P− 4, P− 3, P− 2, P− 1, P1, P2, P5 and P7 respect-

ively, where, P− 8 represents the positional feature of position − 8, P− 4 represents the

positional feature of position − 4, and so forth.

In the training set, the occurrence frequencies of the 20 standard amino acids were

counted at the ith (i = 1, 2, …, 9) position in the positive and negative samples, and then

a 2 × 20 contingency table was built (Table 1).

In Table 1, f þi; j represents the frequency of the jth (j = 1,2, …,20) residue at the ith pos-

ition in the positive samples, f −i; j represents the corresponding frequencies in the nega-

tive samples, f þi and f −i represent the total number of positive and negative samples,

and N represents the total number of samples. The chi-square value corresponding to

the ith position is calculated by:

χ2 ¼ N2

f þi � f −i

X20
j¼1

f þi; j
2

f i; j
−
f þi

2

N

" #
ð1Þ

If a new training sample is added, and the jth residue appears at the ith position, first

assume this sample is positive, replace f þi; j with f þi; j þ 1, and calculate a chi-square value

Fig. 3 Chi-square values for different positions in Tr_data
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χ2þi; j using formula (1); then assume this sample is negative, replace f −i; j with f −i; j þ 1,

and calculate a chi-square value χ2−i; j using formula (1). The score for the chi-square

statistical difference table with the jth residue at the ith position is defined as:

Δχ2i; j ¼ χ2þi; j −χ
2−
i; j ð2Þ

Next, build a 20 × 9 chi-square statistical difference table (Table 2). Table 2 gives the

scores of the various amino acid residues at each position. If the jth residue appears at

the ith position, the ith positional feature will be assigned a value of Δχ2i; j . Table S1

(Additional file 1) shows the 20 × 9 chi-square statistical difference table constructed

based on 9 key positions in Tr_data.

Compositional feature extraction

Despite positional features could distinguish highly similar positive and negative sam-

ples, they lack fault tolerance when there are residue insertions and deletions in protein

sequences. Compositional features can capture the context correlation while reflecting

sequence composition, and they are more fault-tolerant. Giving an example as follows:

Position: 1 2 3 4 5 6 7 8 9 10 11 12

Original sequence segment: R F L A N Y V T K A G K

Mutated sequence segment: R F L E A N Y V T K A G

The mutated sequence segment is caused by the insertion of residue E at position 4

of the original sequence segment. Obviously, the positional features changed a lot after

residue inserting, but the sequence components changed little. Therefore, we

supplement compositional features in hope of improving the algorithm’s robustness to

residue insertions and deletions.

For each sequence sample with a window size of 16 residues, 230 compositional

features were extracted, including 20 AAC features and 210 undirected-PCAAC

features.

Table 1 Frequency distribution of amino acids at the ith position

Sample Amino acid residue Total

1 2 … j … 20

Positive fþi;1 fþi;2 … fþi; j … fþi;20 fþi

Negative f −i;1 f −i;2 … f −i; j … f −i;20 f −i

Total fi, 1 fi, 2 … fi, j … fi, 20 N

Table 2 20 × 9 chi-square statistical difference table

Amino acid
residue

Position

1 … i … 9

1 Δχ21;1 … Δχ2i;1 … Δχ29;1

… … … … … …

j Δχ21; j … Δχ2i; j … Δχ29; j

… ... … … … …

20 Δχ21;20 … Δχ2i;20 … Δχ29;20
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The AAC features are defined as the occurrence frequencies of the 20 standard

amino acids in the sequence, respectively denoted as fA, fR, …, fV, where, fA represents

the frequency of alanine (A), fR represents the frequency of arginine (R), and so forth.

The individual amino acid components are independent of each other, so the AAC

features cannot reflect any correlation between amino acids. The pair-coupled amino

acid composition [27] (PCAAC) features are composed of the occurrence frequencies

of pairwise coupling between two adjacent residues, which can reflect both sequence

components and the most preliminary association effect. To reduce feature dimension

and solve the sparse problem of feature matrix, we assume that the pairwise coupling

has no direction. For example, A-R coupling is treated the same as R-A coupling, and

the corresponding pair-coupled component will be expressed by either fAR or fRA, where

fAR (fRA) is the sum of AR pair occurrence frequency and RA pair occurrence frequency

found in a sequence.

Feature selection based on chi-MIC-share

In order to eliminate irrelevant features and redundant features in the original feature

set and reduce the number of features, we decided to perform feature selection.

Minimum redundancy maximum relevance (mRMR) [28] is a popular feature selection

method. However, relevance measure and redundancy measure in mRMR are not

comparable, mRMR only gives the order of feature introduction and it is time-

consuming to perform cross-validation in training sets to get the optimal feature sub-

set. To address this, Li et al. [18] used ChiMIC as the unified measure of relevance and

redundancy, and designed a redundancy sharing strategy to propose a novel feature se-

lection method, Chi-MIC-share. Here, we applied Chi-MIC-share for feature selection.

Given an original feature set Ω = {X1, X2, …, Xi, …, Xn}, |Ω| is the number of

elements in Ω, and |Ω| = n. If the introduced feature set is represented by S, the

complement of S is represented as ΩS =Ω-S. Denoting the response variable as Y, the

Chi-MIC-share algorithm is described as follows.

For an introduced feature Xi in S, the score after redundancy sharing is calculated by:

Chi‐MIC‐share Xið Þ ¼
X
X j∈S

Chi‐MIC Xi;Yð Þ
Chi‐MIC Xi;X j

� � ð3Þ

The total score of all features in S after redundancy sharing is:

Chi‐MIC‐share Sð Þ ¼
X
Xi∈S

Chi‐MIC Xi;Yð ÞX
X j∈S

Chi‐MIC Xi;X j
� � ð4Þ

If the next introduced feature is Xnext, set E = S+{Xnext}, then |E| = |S| + 1. The

criterion for introducing the next optimal feature is:

max
Xnext∈ΩS

Chi‐MIC‐share Eð Þ½ � ¼
X
Xi∈E

Chi‐MIC Xi;Yð ÞX
X j∈E

Chi‐MIC Xi;X j
� � ð5Þ

If a new introduced feature no longer makes the total Chi-MIC-share score increase,

this feature will be discarded and feature selection will be automatically terminated.

Thus, the criterion for terminating feature introduction is:
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Chi‐MIC‐share Eð Þ≤Chi‐MIC‐share Sð Þ ð6Þ

Furthermore, feature introduction can be forced to terminate according to the

following criterion:

Chi‐MIC‐share Eð Þ−Chi‐MIC‐share Sð Þ
Chi‐MIC‐share Sð Þ ≤0:01 ð7Þ

Classifier construction

To efficiently achieve imbalanced classification, a classifier called ChiDT is designed as

follows.

Compress the 2 ×m contingency table of each retained feature

For each feature retained by the Chi-MIC-share feature selection, its 2 ×m contingency

table (m is the number of original status values of the feature) was compressed accord-

ing to the previously described procedure to obtain a 2 × r contingency table (r is the

number of new status values of the feature, 2 ≤ r ≤m). During the compression process,

since the status values of each retained feature are continuous, only adjacent status

values could be merged together.

Introduce the retained features one by one

Supposing the proportion of the kth class samples in sample set D is pk (k = 1, 2), the

information entropy of D is defined as:

H Dð Þ ¼ −
X2
k¼1

pk log2pk ð8Þ

Given a Chi-MIC-share retained feature Xi, supposing it has r new status values as

{s1, s2, …, sj, …, sr} after compressing, then the information gain that Xi brings for D

can be calculated by:

Gain D;Xið Þ ¼ H Dð Þ−
Xr

j¼1

j Dj j
j D j H Dj

� � ð9Þ

where Dj represents the samples in D whose Xi takes the status value as sj (1 ≤ j ≤ r),

while H (Dj) is the information entropy of Dj.

From the features whose information gains are above the average, pick out the one

with the highest gain ratio to be the first introduced feature. Here, the gain ratio of Xi

is defined as:

GainRatio D;Xið Þ ¼ Gain D;Xið Þ
IV Xið Þ ð10Þ

where

IV Xið Þ ¼ −
Xr

j¼1

Dj
�� ��
Dj j log2

Dj
�� ��
Dj j ð11Þ

and IV (Xi) is the intrinsic value of Xi.

Next, the remaining features are introduced one by one with the following steps.
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Step 1: Under the conditions in which the introduced features have existed, the 2 × r

contingency table of each remaining feature is further compressed. If the r columns of

the 2 × r contingency table are compressed into one column, the remaining feature

cannot be introduced; if the r columns are not compressed into one column, the

remaining feature will be considered as a candidate feature to be introduced.

Step 2: Calculate the information gain of every candidate feature. From the candidate

features whose information gains are above the average, the one with the highest gain

ratio is selected to be the next introduced feature.

Step 3: Repeat Step 1 ~ 2 until no further features can be introduced.

After this, the introduced features with their status values generate various rules.

Taking Tr_data as an example, 10 Chi-MIC-share retained features were finally intro-

duced and 137 rules were generated (see Additional file 2: Table S2).

Construct a balanced decision table for decision-making

We counted the number of positive and negative training samples conforming to each

rule then constructed a 2 × 137 imbalanced decision table (Table 3).

The number of negative samples far exceeds the positives. To resolve the imbalanced

classification problem, based on cost-sensitive learning [29], we adjust the decision

weight of negative samples in each column of the imbalanced decision table, by multi-

plying the number of negative samples in each column of Table 3 by θ, where θ is de-

fined as the ratio of the total number of positive and negative training samples, here,

θ = 4748/50551. Then, a 2 × 137 balanced decision table is obtained (Table 4).

Then the balanced decision table (Table 4) is used for decision-making. Suppose that

a testing sample meets the rule “(P-1=-2.028) ˄ (-0.907≤P2≤0.501) ˄ (-0.715≤P-8≤0.066)”.

First, we assume that it is positive and replace 23 with 23 + 1, then calculate the corre-

sponding chi-square value χ2þ . We then assume that it is negative and replace 273.04

with 273.04 + 1, then calculate the corresponding chi-square value χ2− . If χ
2
þ > χ2− , the

testing sample is predicted to be positive, if not, it is negative.

Performance evaluation

Sensitivity (SN), specificity (SP) and Matthews correlation coefficient (MCC) as the

common indexes for evaluating binary classification are defined as follows:

SN ¼ TP
TP þ FN

ð12Þ

SP ¼ TN
TN þ FP

ð13Þ

Table 3 Imbalanced decision table

Sample Rule* Total

(P−1 = − 2.028) ˄ (− 0.907 ≤ P2 ≤ 0.501)
˄ (− 0.715 ≤ P− 8 ≤ 0.066)

… (P− 1 = 1.839) ˄ (P1 = 2.060)

Positive 23 … 32 4748

Negative 2907 … 83 50,551

*For instance, “(P−1 = −2.028)˄(−0.907 ≤ P2 ≤ 0.501)˄(− 0.715 ≤ P− 8 ≤ 0.066)” represents P− 1 taking a value of − 2.028 and P2
ranging from − 0.907 to 0.501 and P− 8 ranging from − 0.715 to 0.066, where, “˄” denotes the logical conjunction
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MCC ¼ TP � TN−FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TP þ FPð Þ � TN þ FPð Þ � TN þ FNð Þp ð14Þ

Here, TP, FP, TN, and FN denote the numbers of true positives, false positives, true

negatives, and false negatives. MCC is a balanced statistical index that considers SN

and SP, but it is sensitive to class distribution in a testing set. As shown in Table 5,

when a prediction model has a SN of 93% and a SP of 95%, as the imbalance degree of

the testing set grows, the MCC value declines. This shows that a low MCC value does

not always indicate poor prediction performance as it may be caused by a highly

imbalanced testing set.

The content-balancing accuracy index Q9 [30] is independent of the class distribution

of the dataset and has been widely used to evaluate performance of many prediction

programs including gene-finding, splice site prediction and protein secondary structure

prediction [31–33]. As Table 5 shown, the value of Q9 remains unchanged across dif-

ferent ratios of positives to negatives. In this study, we introduced Q9 as the measure of

global accuracy to evaluate the prediction performance of models in case of an imbal-

anced testing set. Q9 is defined as:

Q9 ¼ 1þ q9
� �

=2 ð15Þ

where

q9 ¼
TN‐FPð Þ= TNþ FPð Þ; if TPþ FN ¼ 0
TP‐FNð Þ= TPþ FNð Þ; if TNþ FP ¼ 0

1‐
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FN= TP þ FNð Þ½ �2 þ FP= TN þ FPð Þ½ �2

q
; if TPþ FN≠0 and TNþ FP≠0

8><
>:

The value of Q9 ranges from 0 to 1, and the larger the Q9 value, the better the

prediction performance.

Results and discussion
Features retained by chi-MIC-share

Based on Tr_data, the Chi-MIC-share feature selection was performed on 239 original

input features (9 positional features and 230 compositional features). As shown in Fig. 4,

when the 37th feature was introduced, the Chi-MIC-share score peaked (0.12544), after

Table 4 Balanced decision table

Sample Rule Total

(P−1 = − 2.028) ˄ (− 0.907 ≤ P2 ≤ 0.501)
˄ (− 0.715 ≤ P− 8 ≤ 0.066)

… (P− 1 = 1.839) ˄ (P1 = 2.060)

Positive 23 … 32 4748

Negative 273.04 … 7.80 4748

Table 5 Various evaluation indexes on different ratios of positives to negatives

Positives/Negatives* SN (%) SP (%) MCC Q9

100/100 93.00 95.00 0.880 0.939

100/1000 93.00 95.00 0.752 0.939

100/10000 93.00 95.00 0.371 0.939

*positive testing sample size/negative testing sample size
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which is began to decline and feature selection was automatically terminated. To im-

prove computational efficiency, forced termination criteria were adopted and 10 fea-

tures were retained (see the red line in Fig. 4). Table 6 describes the retained features

in detail. It can be seen that positional features contribute 80% of all the retained fea-

tures, indicating that positional features have an important contribution to succinyla-

tion site prediction.

No. denotes the order of feature introduction.

Comparison of different classifiers

Based on the same input features (10 features retained by Chi-MIC-share), the ChiDT

classifier was compared to traditional classifiers including RF, artificial neural network

(ANN) and relaxed variable kernel density estimator (RVKDE) [34]. We choose RVKDE

for the comparison because it delivers the same level of accuracy as SVM when the

number of training samples exceeds 10,000, with a significantly lower average time

complexity of O (nlogn) [34], n denotes the number of training samples. RF and ANN

classifiers were built with Weka 3.8.1 and the neural network toolbox in Matlab

R2015a, respectively, and all parameters took the default values. The independent tests

based on Tr_data and Te_data were performed for comparison (Table 7).

The results show that: 1) ChiDT achieved a significantly higher predictive accuracy

and effectively realized imbalanced classification. When the training set was

imbalanced (4748 positives/50,551 negatives), the prediction results of RF, ANN and

RVKDE were biased to negative samples, resulting in poor sensitivities (SNs < 10%).

Fig. 4 Chi-MIC-share scores after introduction of each feature. The red line represents the forced
termination of feature introduction

Table 6 Features retained by Chi-MIC-share

No. Retained features Type No. Retained features Type

1 P− 1 position 6 P7 position

2 P1 position 7 fR AAC

3 P−2 position 8 fK AAC

4 P5 position 9 P2 position

5 P−8 position 10 P−3 position
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With ANN, while specificity was up to 99.9%, sensitivity was equal to 0. This meant

that all positive samples were predicted to be negative and thus the global accuracy of

ANN was the lowest (Q9 = 0.293). ChiDT built a balanced decision table through

weighted correction strategy to perform imbalanced classification and obtained the

highest accuracy (Q9 = 0.683). 2) ChiDT has a satisfactory calculation speed and can be

applied to large samples. All simulations were run on an Intel Core i5-3320M 2.6 GHz/

8 GB RAM system, and the elapsed time of ChiDT and RVKDE were 17 s and 18 min,

respectively. ChiDT’s high speed is achieved because there is no need for parameter

optimization.

Comparison of different position-based encoding schemes

For the 9 key positions in Tr_data (here using 4748 positive samples and 4748 negative

samples), we respectively used binary encoding, physicochemical property encoding

(including 531 physicochemical properties [7] and 10 physicochemical properties [9]

for encoding) and chi-square statistical difference table encoding to extract positional

features, and then employed ChiDT classifier for prediction. The results of 5-fold cross

validation showed that chi-square statistical difference table encoding achieved the

highest predictive accuracy and the fewest features (Table 8).

Binary encoding means that each position is represented by 20 0/1-features and the

corresponding feature matrix is therefore very sparse. When using binary encoding

scheme, the encodings of the same residue at different positions are the same, which

does not reflect positional difference, and for different residues at the same position, it

does not reflect the degree of difference between residues. For example, the amino acid

polarity indexes of residue S, T and R at the same position are 1.67, 1.66 and 52,

respectively, indicating that the polarity difference between S and T is small, and

between T and R is large, but the hamming distances of both S-T and S-R are equal to

2 when using binary encoding. As for physicochemical property encoding, when 531

amino acid indices in AAindex were all considered for sequence characterization, the

number of features reached 531 × 9 = 4779 (Table 8), and a lot of irrelevant and redun-

dant features would be seen. Ning et al [9] ranked 531 physicochemical properties ac-

cording to their abilities to distinguish between true and false succinylation sites, then

Table 7 Independent test accuracy for different classifiers based on the same input features

Classifier SN (%) SP (%) MCC Q9

RF 2.75 99.83 0.115 0.312

ANN 0 99.90 −0.009 0.293

RVKDE 9.84 97.25 0.106 0.362

ChiDT 70.47 66.27 0.205 0.683

Table 8 5-fold cross accuracy for different encoding schemes based on ChiDT classifier

Encoding scheme Feature dimension SN (%) SP (%) MCC Q9

Binary 180 63.20 62.41 0.258 0.623

Physicochemical properties(531) 4779 58.86 60.39 0.188 0.593

Physicochemical properties(10) 90 59.77 62.59 0.225 0.607

Chi-square statistical difference table 9 65.94 62.91 0.290 0.641
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chose the top 10 physicochemical properties for sequence encoding, so that the feature

dimension was greatly reduced. However, as shown in Table 8, no matter whether 531

or 10 physicochemical properties are used, the predictive accuracy is always lower than

that of chi-square statistical difference table encoding.

Chi-square statistical difference table encoding reflects the difference of the same

residue at different positions, as well as the degree of difference between different

residues at the same position, thus, it could differentiate between the highly similar

positive and negative samples. Another benefit of chi-square statistical difference table

encoding is that it has a low feature dimension, low redundancy, and a non-sparse fea-

ture matrix.

Comparison of different window sizes

Based on Tr_data and Te_data, independent tests were performed to compare the

prediction performance of the determined window size (− 8 ~ + 7) with longer (e.g. -25

~ + 25, − 15 ~ + 15) and shorter window sizes (e.g. -5 ~ + 5). Specifically, under each

window size, we extracted 9 positional features based on statistical difference table

encoding (7 positional features for the window size of − 5 ~ + 5, as it includes only 7

key positions) and 230 compositional features (including 20 AAC features and 210

undirected-PCAAC features), after Chi-MIC-share feature selection, incorporated

ChiDT classifier for prediction. The results (Table 9) show that the proposed model

with a window size of 16 residues (− 8 ~ + 7) can achieve higher independent test accur-

acy compared to other window sizes. This indicates that an overly long window size

may introduce some irrelevant information, while too short a window may lead to in-

sufficient information collection, both of which reduce predictive accuracy. This con-

firms that our window size determination is reliable.

Necessity of chi-MIC-share feature selection

Based on Tr_data and Te_data, the independent test results with or without Chi-MIC-

share feature selection are shown in Table 10. They show that feature selection based

on Chi-MIC-share can: 1) improve predictive accuracy, with the Q9 value improving

from 0.663 to 0.683, and 2) reduce feature dimension and save computational time.

After feature selection, the number of original input features was reduced from 239 to

10, and the elapse time of ChiDT was reduced by 95%. Therefore, it is necessary and

beneficial to perform a Chi-MIC-share feature selection.

Comparison with existing methods

To further evaluate the performance of our method (iSuc-ChiDT), we compared it with

existing succinylation site predictors, SucPred, iSuc-PseAAC [10], SuccFind [11],

Table 9 Independent test accuracy based on different window sizes

Window size SN (%) SP (%) MCC Q9

51(− 25 ~ + 25) 68.50 61.10 0.162 0.646

31(− 15 ~ + 15) 64.57 66.48 0.174 0.655

16(−8 ~ + 7) 70.47 66.27 0.205 0.683

11(−5 ~ + 5) 62.20 65.03 0.152 0.636
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SuccinSite, iSuc-PseOpt [35], pSuc-Lys, Success [13] and PSuccE, using the same inde-

pendent testing set (Te_data). The results show that iSuc-ChiDT had a superior overall

accuracy (Q9 = 0.683) and sensitivity (70.47% vs. 12.20% ~ 37.50%) (Table 11).

Positional information of amino acids is valuable for succinylation site prediction.

Most compared methods used binary encoding or physicochemical property encoding

to extract positional features. iSuc-ChiDT used chi-square statistical difference table

encoding and the experiments showed that it was superior to these two encoding

schemes (see Table 8). Moreover, iSuc-ChiDT combined positional features and com-

positional features to characterize samples. Using the independent tests based on Tr_

data and Te_data, the MCC values of 9 positional features, 230 compositional features

and 239 combinational features-based models were 0.167, 0.099 and 0.182, respectively,

confirming that feature fusion improved predictive accuracy. The ChiDT classifier out-

performed traditional classifiers when dealing with imbalanced datasets (see Table 7),

further supporting the observation that iSuc-ChiDT could achieve better prediction

performance.

Conclusion
Accurate and rapid prediction of succinylation sites helps researchers to understand

the molecular mechanism of succinylation. In this study, we proposed a novel method,

iSuc-ChiDT, to identify succinylation sites by incorporating chi-square statistical differ-

ence table encoding and the ChiDT classifier. Chi-square statistical difference table en-

coding is superior to binary encoding and physicochemical property encoding in terms

of predictive accuracy and feature dimensions. The ChiDT classifier achieves efficient

prediction with a highly imbalanced dataset. iSuc-ChiDT greatly improved sensitivity

and overall accuracy compared to previous predictors, and it will serve as an useful

complementary tool for detecting potential succinylation sites in proteins. In future

studies, we aim to explore more valuable features (e.g. evolutionary information, struc-

tural information) for characterizing succinylation sites, in pursuit of better prediction

performance.

Table 10 Independent test accuracy with or without Chi-MIC-share

Feature selection Feature dimension SN (%) SP (%) MCC Q9 Time (mm:ss)

No feature selection 239 70.08 62.95 0.182 0.663 06:14

Chi-MIC-share 10 70.47 66.27 0.205 0.683 00:17

Table 11 Independent test accuracy for different methods

Method SN (%) SP (%) MCC Q9

SucPred 27.20 67.30 − 0.030 0.436

iSuc-PseAAC 12.20 88.70 0.013 0.374

SuccFind 25.20 79.20 0.029 0.451

SuccinSite 37.10 88.20 0.199 0.548

iSuc-PseOpt 30.30 75.80 0.038 0.478

pSuc-Lys 22.40 82.60 0.036 0.436

Success 14.20 86.80 0.007 0.386

PSuccE 37.50 88.60 0.204 0.551

iSuc-ChiDT 70.47 66.27 0.205 0.683
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