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Abstract: Nutrimetabolomics is an emerging field in nutrition research, and it is expected to play a
significant role in deciphering the interaction between diet and health. Through the development of
omics technology over the last two decades, the definition of food and nutrition has changed from
sources of energy and major/micro-nutrients to an essential exposure factor that determines health
risks. Furthermore, this new approach has enabled nutrition research to identify dietary biomarkers
and to deepen the understanding of metabolic dynamics and the impacts on health risks. However,
so far, candidate markers identified by metabolomics have not been clinically applied and more
efforts should be made to validate those. To help nutrition researchers better understand the potential
of its application, this scoping review outlined the historical transition, recent focuses, and future
prospects of the new realm, based on trends in the number of human research articles from the early
stage of 2000 to the present of 2019 by searching the Medical Literature Analysis and Retrieval System
Online (MEDLINE). Among them, objective dietary assessment, metabolic profiling, and health risk
prediction were positioned as three of the principal applications. The continued growth will enable
nutrimetabolomics research to contribute to personalized nutrition in the future.
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1. Introduction

Nutrimetabolomics is an emerging field in nutrition research, and it is expected to
play a significant role in deciphering the interaction between diet and health as it continues
to develop [1–5]. Nutrition research has historically focused on individual nutrients and
specific foods in terms of their risk to human health. However, to understand the full role
of nutrients in the body, it is necessary to clarify the relationship between the intricately
intertwined dietary and biological factors that affect the uptake and utilization of nutrients.
Through the growth of “omics” technology since the beginning of this century, the definition
of food and nutrition has changed from sources of energy and macro/micro-nutrients to
an essential exposure factor to determine health risks. Furthermore, this new approach has
enabled nutrition research to identify biomarker candidates of several dietary factors as
well as to deepen the understanding of metabolic dynamics and impacts on health risks.

Omics science aims to analyze the interaction and function of large amounts of biologi-
cal information and to understand how they contribute to human health [6]. Metabolomics
is one of the principal elements in systems biology. The measurement subjects are low-
molecular compounds (molecular weight of up to approximately 1500) contained in bi-
ological fluids, such as blood and urine, mainly targeting sugars, amino acids, organic
acids, peptides, fatty acids, and their analogues. Initially, the concept of “metabonomics”
was defined by Nicholson in 1999 [7] as the first method to apply system biology to study
the metabolism; that is, “the quantitative measurement of the dynamic multiparametric
metabolic response of living systems to pathophysiological stimuli or genetic modification.”
Within this concept, “metabolomics” mainly focuses on the metabolic profiling of cells and
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organs, defined as “the comprehensive analysis of the whole metabolome (all metabolites
synthesized by an organism)” by Fiehn in 2002 [8]. The terminology “nutrimetabolomics”
was introduced by Zhang et al. [9] in their review article as one of the omics techniques to
be used in nutritional research.

Against this backdrop, nutrimetabolomics is expected to contribute to the application
of precision nutrition to disease prevention and management in the future, as the field has
the potential to predict individual metabolic dynamics with objective indicators [10,11].
However, so far, candidate markers identified by nutrimetabolomics have not been clini-
cally applied. One of the reasons for the stagnation may be that the rapid development of
the field has made researchers short-sighted and ad hoc. Therefore, a big picture perspective
is required to realize the future of precision nutrition.

Thus, the purpose of this scoping review was to provide a bird’s-eye view of the tra-
jectory and extent of dietary biomarker development in order to help nutrition researchers
better understand the potential of its application, including the historical development,
recent focuses, future prospects, and issues that remain to be overcome. To achieve this
goal, we conducted an extensive literature review of human studies in the field of nu-
trimetabolomics published over the last two decades to show the evolutionary trends of
this field based on the number of articles and notable studies.

2. Materials and Methods

To provide the outline of the growth of nutrimetabolomics, we carried out an extensive
literature search exploring human studies published in the past twenty years.

2.1. Search Strategy

The literature search strategy shown in Table 1 targeted human studies published in
English that were available between 1 January 2000 and 31 December 2019, contained in the
electronic database; the Medical Literature Analysis and Retrieval System Online (MED-
LINE) via PubMed. The study records were identified using the following two groups of
search terms: (1) metabolome approaches: “metabolomics” OR “metabonomics”; (2) di-
etary factors: “nutrition” OR “food” OR “diet” OR “meal” OR “intake” OR “consumption”,
and an AND search was performed on the two groups. These keywords were converted
to PubMed-defined transition terms including MeSH in the database search formula (see
Table S1 for details of the database search formula and transition terms). The literature
search was conducted on 23 February 2021.

Table 1. Literature search strategy 1.

Medline Search

Search engine PubMed

Keywords 1

Search formula
(metabolomics OR metabonomics) AND

(nutrition OR food OR diet OR meal OR intake OR consumption)

Species Humans

Publication date 2000–2019

Publication type Excluding: review/systematic review
1 Keywords were converted to PubMed-defined transition terms in the database search formula.

2.2. Selection Criteria

Studies for which the full text was not available, reviews, conference reports, and
study protocols were excluded. Non-human researches (plant and food, animal, and cell
researches), measurement methods and algorithms, non-metabolomics field researches
(researches of single-biomarkers or non-exhaustive metabolites, other omics researches,
and researches that were within the scope of general clinical testing), and metabolomics
researches whose main purpose was other than dietary factors (disease, diagnosis, exercise,
toxicity, drugs, and environment) were also excluded.
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2.3. Classification and Data Collection

The selected studies were categorized into study designs, biofluids, application fields,
and dietary factors. Furthermore, the categorized dietary factors were subcategorized
separately, and the targeted health risks were classified by disease group (details of the
classification are shown in Table S1). Additional information was also collected, including
the number and gender of subjects, measurement methods, and integrated epidemiological
research projects. The proportions of the total number of articles from 2000 to 2019 and
the annual transition from 2010 to 2019 were charted by category, and the transition was
analyzed for the number and percentage. For the definition of biomarkers, the classifica-
tions of Gao [12] were referred to. The article extraction, classification, and charting were
conducted by E.S., and T.T. supervised the entire search strategy and analysis.

3. Results and Discussion

In this scoping review, we aggregated the number of human metabolomics studies
focused on nutrition and diet to clarify the association between dietary factors and health
risks. Initially, the search engine identified 3112 records from the database. From the
records, we extracted 502 studies that met the criteria by screening the titles and abstracts
of records, halting those that could not be judged from the abstract. The full text was
evaluated to further verify that the articles met the criteria, and finally 452 studies were
included in this review (the flow of search and selection is shown in Figure 1).

Nutrients 2021, 13, x FOR PEER REVIEW 3 of 22 
 

 

researches whose main purpose was other than dietary factors (disease, diagnosis, exer-
cise, toxicity, drugs, and environment) were also excluded. 

2.3. Classification and Data Collection 
The selected studies were categorized into study designs, biofluids, application 

fields, and dietary factors. Furthermore, the categorized dietary factors were subcatego-
rized separately, and the targeted health risks were classified by disease group (details of 
the classification are shown in Tables S1). Additional information was also collected, in-
cluding the number and gender of subjects, measurement methods, and integrated epide-
miological research projects. The proportions of the total number of articles from 2000 to 
2019 and the annual transition from 2010 to 2019 were charted by category, and the tran-
sition was analyzed for the number and percentage. For the definition of biomarkers, the 
classifications of Gao [12] were referred to. The article extraction, classification, and chart-
ing were conducted by E.S., and T.T. supervised the entire search strategy and analysis. 

3. Results and Discussion 
In this scoping review, we aggregated the number of human metabolomics studies 

focused on nutrition and diet to clarify the association between dietary factors and health 
risks. Initially, the search engine identified 3112 records from the database. From the rec-
ords, we extracted 502 studies that met the criteria by screening the titles and abstracts of 
records, halting those that could not be judged from the abstract. The full text was evalu-
ated to further verify that the articles met the criteria, and finally 452 studies were included 
in this review (the flow of search and selection is shown in Figure 1). 

 
Figure 1. Flow diagram of search and article selection. 

Since the beginning of the 2000s, metabolomics research focused on nutritional and 
dietary factors had gradually begun to be applied to human studies. Thereafter, the num-
ber of reports exponentially increased from 2010, and in 2019, 114 research articles were 
published, approximately 70% more than the number published in the previous year (Fig-
ure 2). The high expectations for nutrimetabolomics in nutritional research have been 
demonstrated by this rapid increase in the number of reports in the last 10 years, taking 
advantage of the introduction of high-sensitivity detection methods such as mass spec-
trometry (MS) in addition to the initial nuclear magnetic resonance (NMR) [3,4]. 

Looking at the development of this field, the topics of interest have changed through-
out the early (I 2000–2009), middle (II 2010–2014), and recent (III 2015–2019) periods. Par-
ticularly in the recent period, there have been signs of growth in studies applying dietary 
pattern and disease risk prediction. Summaries of the notable trends are shown in Table 
A1 and Table A2 (details of aggregated results are shown in Table S2). 

Figure 1. Flow diagram of search and article selection.

Since the beginning of the 2000s, metabolomics research focused on nutritional and
dietary factors had gradually begun to be applied to human studies. Thereafter, the
number of reports exponentially increased from 2010, and in 2019, 114 research articles
were published, approximately 70% more than the number published in the previous
year (Figure 2). The high expectations for nutrimetabolomics in nutritional research have
been demonstrated by this rapid increase in the number of reports in the last 10 years,
taking advantage of the introduction of high-sensitivity detection methods such as mass
spectrometry (MS) in addition to the initial nuclear magnetic resonance (NMR) [3,4].

Looking at the development of this field, the topics of interest have changed through-
out the early (I 2000–2009), middle (II 2010–2014), and recent (III 2015–2019) periods.
Particularly in the recent period, there have been signs of growth in studies applying
dietary pattern and disease risk prediction. Summaries of the notable trends are shown in
Tables A1 and A2 (details of aggregated results are shown in Table S2).
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3.1. Pioneering Studies (2000–2009)

Before the concept of metabonomics was defined by Nicholson in 1999, there was a
pioneering observational study of dietary factors and metabolites by Zuppi et al. (1998) [13],
which reported a comparison between different populations in Rome and at arctic latitudes
in Svalbard. Following this landmark study, during the early stages of nutrimetabolomics
research between 2000 and 2009, only a few studies were published each year. Studies
during the early period mainly analyzed urine samples with NMR by non-randomized
clinical trials (NRCTs) or crossover studies of randomized controlled trials (RCTs) for
small-scale populations; then, studies with blood samples by MS-based methods in larger
studies increased in the later years (Table 2). Some focused on basic fluctuation in biofluids
that underpinned subsequent studies [14–16], and others explored on beverages and foods,
which are rich in phytochemicals including various types of tea [17,18], coffee [19,20], and
cocoa [21], as well as phytochemicals themselves [22,23].

Table 2. Pioneering human studies of the nutrimetabolomics (2000–2009).

Year Author Research Focus Design 1 n2 Sex Biofluid 3 Method 4 Ref.

2003 Lenz, et al. Biofluid comparison NRCT 12 M U, P NMR [14]
Solanky, et al. Isoflavone intake NRCT 5 F P NMR [22]

2004 Teague, et al. Alcohol (ethyl
glucoside) consumption NRCT 2 FM U NMR [24]

Lenz, et al. Diurnal fluctuation/
regional difference CSR/CS 30/120 FM U NMR [15]

2005 Wang, et al. Chamomile tea consumption NRCT 14 FM U NMR [17]
Solanky, et al. Isoflavones intake NRCT 9 F U NMR [25]

2006 Van Dorsten, et al. Green tea/black
tea consumption RCT-CO 17 M U NMR [18]

Stella, et al. Meat diet/vegetarian RCT-CO 12 M U NMR [26]
Walsh, et al. Biofluid comparison NRCT 30 FM U, P, SV NMR, MS [16]

2007 Rezzi, et al. Dietary preferences RCT-CO 22 FM U, P NMR [27]

Bertram, et al. Milk/meat protein for
child nutrition RCT-P 24 M U, S NMR [28]

Walsh, et al. Phytochemical intake NRCT 21 FM U NMR, MS [23]

2008 Law, et al. Data comparison between
different analytical methods NRCT 8 M U

NMR,
LC-MS,
GC-MS

[29]
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Table 2. Cont.

Year Author Research Focus Design 1 n2 Sex Biofluid 3 Method 4 Ref.

2009 Martin, et al. Dietary preferences and
anxiety trait RCT-P 30 U, P NMR, MS [30]

Stalmach, et al. Coffee consumption NRCT 11 FM U, P LC-MS [19]
Llorach, et al. Cocoa consumption RCT-CO 10 FM U LC-MS [21]

Ong, et al. Energy restriction on
breast cancer RCT-P 19 F U, S GC-MS [31]

Altmaier, et al. Coffee consumption CS 284 M S LC-MS, MS [20]
1 RCT-P: randomized controlled trial-parallel, RCT-CO: RTC-crossover, NRCT: non-randomized clinical trial, CS: cross-sectional, CSR: case
series. 2 Number of subjects in the study. 3 P: plasma, S: serum, U: urine, SV: saliva. 4 NMR: nuclear magnetic resonance, MS: mass
spectrometry, LC: liquid chromatography, GC: gas chromatography.

The pioneering researchers initially had to examine the influences of lifestyle and
individual variation on metabolite changes using biofluids to determine the feasibility
of the analysis and the data-comparability for studies conducted in different regions.
Lenz [14] reported that urinary samples demonstrated relatively large inter-individual
variability, while plasma samples showed small inter/intra-individual variability. Their
further comparative study of biofluids [15] clarified the difference in the reactivity of
metabolic changes in food intake between participants in the United Kingdom and Sweden,
revealing that metabolic profiling was susceptible to distinct cultural and extreme diets.
Walsh [16] also examined the responsiveness of the metabolic profile to acute dietary effects
using urine, plasma, and saliva, highlighting the importance of adjusting factors such as
recent dietary intake or time of sample collection, in protocol planning.

3.2. Study Design

Intervention studies accounted for two-thirds of the total, while observational studies
accounted for the rest (Figure 3a).

The number of subjects in intervention had a median (IQR) of 30 (15-59), with the
largest study having 983 subjects, which was related to the Mediterranean diet (MED)
and cardiovascular disease (CVD) in the Prevención con Dieta Mediterránea (PREDMED)
study [32], while the number of subjects in the observational studies had a median (IQR)
of 229 (70-654) with the largest study having 5620 subjects, which was a cross-sectional
research related to coffee consumption and the thyroid function in the Inter 99 study [33].

The most common study design was RCT parallel-group comparison studies, ac-
counting for 28% of the total. In addition, since the washout period is generally short in
dietary intervention tests, RCT crossover studies (25%) that could be applied to a small
number of subjects were also pragmatic choices. As sample sizes in nutritional intervention
remain relatively small and are usually implemented in a controlled setting, the identified
dietary biomarkers cannot directly be extrapolated to free-living individuals. Thus, to
detect associations between metabolites and disease, epidemiological studies with large
but attainable sample sizes may be required.

Observational studies are useful designs for investigating metabolite changes under
habitual diet. Cross-sectional studies, including cohort baseline studies, accounted for 18%
of the total, whereas cohort follow-up studies were a few (5%). Guertin [5] proposed the
required sample size of 80% power to detect an association in a 1:1 case-control study; for a
large effect, samples of around 200–400 individuals would be sufficient for most metabo-
lites, while smaller effects can only be detected in larger samples of 1100–3000 subjects.
With the aim of achieving such scale effects, large-scale epidemiological studies based on
nutrimetabolomics findings have been widely conducted, varying from dietary assessment
to metabolic profiling and risk prediction (see Table 3 for details).
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Table 3. Large-scale epidemiological studies with nutrimetabolomics focus (2000–2019).

Large-Scale Epidemiological Study Population Nutrimetabolomics Focus

Alpha-Tocopherol, Beta-Carotene Cancer
Prevention study (ATBC) Finland Beta -carotene (2013), vitamin D (2016), diet indexes (2017)

Atherosclerosis Risk in Communities
Study (ARIC) USA Dietary habits among African Americans (2014), alcohol (2016)

Cancer Prevention Study-II Nutrition Cohort
(CPS- II Nutrition) USA Food group (2018), dietary indexes (2019)

Cardiovascular disease, Living, and Ageing in
Halle (CARLA) Germany Effects of fasting time (2018)

Cooperative Health Research in the Region
Augsburg (KORA) Germany Self-reported dietary habits (2011), fecal sterols (2019)
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Table 3. Cont.

Large-Scale Epidemiological Study Population Nutrimetabolomics Focus

European Prospective Investigation into
Cancer and Nutrition (EPIC)

10 European
countries

Dietary pattern (2013, 2015, 2017), wholegrains (2014),
meat/fish (2015,2017), alcohol (2018, 2019), coffee (2019),

smoked meat (2019)

Finnish Dietary, Lifestyle, and Genetic
Determinants of Obesity

and Metabolic Syndrome (DILGOM)
Finland Food neophobia (2019)

International Study on Major Nutrients and
Micronutrients and Blood

Pressure (INTERMAP)

UK, USA,
China, Japan

Phenotype diversity (2008), fruit/proline betaine (2010),
Chinese population (2010), African Americans (2013), WHO

healthy (2019)

Nurses’ Health Study (NHS) USA Branched-chain amino acids (2018), nuts (2019)

Prevención con Dieta
Mediterránea (PREDIMED) Spain

MED effects (2015), CVD risk (2016, 2017), nuts (2014),
pulse (2017), coffee/cocoa (2015, 2019), red wine (2019),

choline pathway (2017)

Special Turku Coronary Risk Factor
Intervention Project (STRIP) Finland Dietary counseling (2018)

STORK-Groruddalen cohort study (STORK) Norway Breastfeeding (2014)

Systems biology in Controlled Dietary
Interventions and Cohort Studies (SYSDIET)

5 Nordic
countries Healthy Nordic diet (2019)

TwinsUK Study (TwinsUK) UK Food preference (2015), self-reporting (2016), dairy (2017),
omega-3 fatty acid (2017), gut microbiota (2017)

MED, Mediterranean diet. CVD, cardiovascular disease.

3.3. Biofluid Samples

Since it is difficult to distinguish diet-induced changes in the metabolic profile from
normal physiological changes, the type of biofluid sample should be carefully selected
according to the required information and purpose. For the overall trend, the biofluid
samples mainly used in the analysis were blood plasma or serum (n = 300; 56%) and urine
(n = 169; 32%) (Figure 3b). In the early stages of development, studies using urine samples
were predominant; however, since 2010, the number of studies using blood samples has
increased significantly, and the proportion of studies reached 51% in 2010–2014 and 59% in
2015–2019; the proportions of studies using urine samples were 38% and 28% respectively,
for these periods. In recent years, the number of studies on fecal samples (n = 41; 8%) has
been growing, while human milk samples (n = 17; 3%) have remained steady and there
have been only a few studies on saliva samples (n = 3; 1%).

3.3.1. Blood (Plasma/Serum)

Recently, blood samples have become predominant compared to urine samples. Some
of the obvious differences between blood and urine are the ratio of external to internal
metabolites as well as concentration of non-nutrient substances [1,2]. Blood is rich in nutri-
ents and metabolites being transported from one organ to another, and these metabolically
active substances are sustained in the blood for a relatively long period of time, raising
their blood levels. They are released into the urine only when the relevant renal threshold is
exceeded. Due to this reason, the blood can contain a higher concentration of metabolically
active compounds than urine. In addition, fat-soluble substances can be found in blood
but not in urine. Therefore, as we can see in this survey, despite their invasiveness, blood
samples are currently likely to be considered the most applicable biofluid to obtain robust
metabolic signatures of dietary effects.
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3.3.2. Urine

The main aim of producing urine is to process unnecessary compounds in the body,
and as a result, the concentration of internal metabolites as well as non-nutrients such as
phytochemicals and compounds produced by chemical changes due to cooking [34] are
likely to be higher in urine than in blood; thus, urinary samples are more suitable to assess
these substances [1,2]. In addition, most of the urinary metabolites are excreted faster
than the metabolites in the blood. In fact, the pioneering study by Walsh [16] compared
diet-induced changes in metabolic profile among urine, plasma, and saliva, and only the
urine showed a sensitive metabolic profile that reflected acute dietary intake. While urine
can be obtained non-invasively, its handling may be complicated in terms of interpretation
of metabolome variation because of the influence of spot urine and the difference in renal
function. Several xenobiotics, medications, and medical conditions may also interfere with
the metabolism and excretion of nutrients [35]. Due to these complexities, the number of
studies remained below 30 per year throughout the entire period.

3.3.3. Feces

Feces are promising biological samples to explore gut flora and its influence on dietary
effects. In addition to its non-invasive sampling, the metabolic changes in blood and urine
described above are likely to be associated with exogenous metabolites not only from
digested and absorbed food-derived components but also from intestinal microbial flora
metabolism, which is affected by diet and other health factors [4]. In fact, in our survey,
studies using fecal samples were the third most common type of study after those using
blood and urine samples, and as of 2019, the total number of researches by fecal samples
reached almost two-thirds of those using urinary samples. That said, as the metabolites
of the gut microbiota are not be directly related to the digestive and absorptive processes
of the human body, the results should be analyzed in an integrated manner with those
obtained by metabolomics of other biofluids such as blood and urine.

3.3.4. Saliva

While saliva has not been widely used in the nutrimetabolomics field, it is expected to
be a useful tool for monitoring changes in metabolic profile induced by diet [36]. This is
because saliva is rich in oral microbial compositions as well as various hormones, which can
provide important metabolic information [37,38]. This type of biofluid is also a non-invasive
and easily collectable sample. Mounayar [39] reported that participants with high and low
sensitivity to the taste of fat differed in salivary response to oleic acid. De Filippis [38]
investigated whether eating habits could affect the formation of salivary bacteria flora and
metabolomes among omnivore, ovo-lacto-vegetarians, and vegans, providing potential
population-identifiable microbiota and metabolic markers.

3.3.5. Human Milk

Nutrimetabolomics studies using human milk samples have been focused on because,
in addition to being non-invasive and easy to collect, fetal and infancy nutritional statuses
may affect their subsequent growth, health risk, or genetic modification. In fact, reports
included not only studies on changes in perinatal milk composition, but also studies
investigating links between maternal obesity and human milk metabolites [40] as well as
risks of postnatal weight gain [41].

3.4. Fields of Application

The application fields of nutrimetabolomics are categorized into dietary assessment,
metabolic profiling, risk prediction, gut microbiota diversity, genetic interaction, Human
milk profiling, and diet sensitivities. The number and proportion of published studies
were as follows: dietary assessment (n = 91; 20%), metabolic profiling (n = 191; 42%),
risk prediction (n = 101; 22%), gut microbiota diversity (n = 30; 7%), genetic interactions
(n = 7; 2%), human milk profiling (n = 15; 3%), and diet sensitivity (n = 17; 4%) (Figure 3c).
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Metabolic profiling, which explores biochemical changes caused by dietary intake, was
predominant throughout the research period. On the other hand, there has recently been a
significant growth in risk prediction, which investigates the direct impact on disease risks,
and the number of these studies increased from 13% in 2010–2014 to 26% in 2015–2019 and
ranked first among all application fields in 2019.

3.4.1. Dietary Assessment

Studies on dietary assessment play a vital role in nutritional metabolomics, and a
certain number of papers have been constantly reported. The focus of studies includes food
compound intake biomarkers, food intake biomarkers, and dietary pattern biomarkers.
Population-based nutritional studies, in which food intake is not accurately defined and
controlled, have traditionally evaluated the nutritional status using practical self-reporting
tools such as food intake frequency questionnaires (FFQs), dietary records, and 24-h re-
call. However, all of these have inherent limitations subjected to random and systematic
errors [3]. Another issue in interpreting the findings of dietary intervention is compliance
assessments. That is, how well participants adhered to the definition of the assigned
diet, and if not, researchers cannot draw meaningful conclusions from the particular diet.
However, these limitations caused by conscious or unconscious distortion can be overcome
to some extent by objective assessment with metabolomics approaches. Altmaier [42] exam-
ined whether self-reported intake reflects de facto changes in metabolic profiling, showing
the possibility of quality assessment of self-reports by comparing with metabolome data.

3.4.2. Metabolic Profiling

Metabolic profiling with unknown biological consequences is one of the most promis-
ing ways to explore the potential health benefits of diet and has been the mainstream of
nutrimetabolomics researches. The focus of studies includes effect biomarkers, which are
indicators of response to a certain diet or dietary exposure of target function/biological
response. Reports on this category have spanned a wide range of subcategories, especially
focusing on food groups such as fruits, coffee/cocoa/tea, cereal/grains, dairy products,
alcohol, and human/formula milk; dietary patterns such as energy-restricted diets, fasting,
and wholegrain diet; and health risks such as metabolic syndrome (MetS), CVD, and cancer.
These studies have been extensive and exploratory and are likely to correlate directly or
indirectly with health risk and reach future disease risk prediction researches.

3.4.3. Risk Prediction

Risk prediction in nutrimetabolomics aims to characterize the susceptibility to dis-
eases induced by dietary factors. The focus of studies includes physiological or health
status biomarkers, which reflect current risk of disease. The number of articles has been
increasing notably from only three in 2010 to 38 in 2019. This likely means the field of
nutrimetabolomics has entered the stage of clarifying the more direct role of dietary factors
in the aspects of health and disease. The association between food and dietary patterns and
disease risks has been mainly investigated in CVD, obesity, prediabetes/diabetes, and can-
cer. However, it is not easy to interpret the mechanism of identified risk markers and prove
the causal relationship, as the effects of half-life of excretion and inter/intra-fluctuations
are not yet fully clarified [10,43]. Thus, at this moment, the markers can be used to predict
only specific aspects of individuals’ risks.

3.4.4. Gut Microbiota Diversity

The gut microbiota interacts with dietary effects as a mediator between food intake
and digestion and absorption into the human body, adding an even higher level of com-
plexity to the overall picture of nutrimetabolomics. Therefore, in recent years, the focus of
nutritional research is shifting from clarifying the direct effects of each dietary component
to understanding the comprehensive dietary effects such as interactions with the microbiota
or host microbial ecology, which indirectly affects metabolic changes. The focus of studies
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includes effect biomarkers and susceptibility biomarkers. Indeed, the structure and compo-
sition of the fecal microbiome have been shown to be closely associated with both human
health and diseases [44]. Recent nutrimetabolomics efforts include the contribution of gut
microbiota to host metabolism in vegetarians [45], differential effects of typical Korean
versus American-style diets on gut microbial composition and metabolic profile [46], and
the impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes
in obesity [47].

3.4.5. Genetic Interaction

Studies of this field focus on susceptibility biomarkers such as host factor biomarkers.
Despite the small number of research reported, understanding the interrelationships of
genotypes with metabolic changes is indispensable for precision nutrition in identifying
individuals who may benefit the most from specific dietary strategies. This is because
genetic interaction can affect a variety of biochemical processes such as nutrient digestion
and absorption, metabolism, turnover, and excretion [48]. For example, Lai [49] elucidated
the interaction of the apolipoprotein A-II (APOA2) genotype with saturated fat uptake,
which is a risk factor for obesity, demonstrating the link between epigenetic status and
metabolic networks. Kakkoura [48] also found the interactions of nine breast cancer-related
polymorphisms with the dietary pattern of the MED. In a study of high glucoraphanin
broccoli on cancer prevention [50], the plasma metabolite profiles were adjusted for the
interaction of the Poly(A) polymerase gamma (PAPOLG) genotype affecting mitochondrial
function, fixing inconsistencies of the results of study.

3.4.6. Human Milk Profiling

As mentioned above, human milk is not only an essential source of nutrition for
infants but also an indispensable biofluid for providing information on maternal health
as well as predicting health risks for infants’ subsequent growth during lactation and
after weaning. The focus of studies includes effect biomarkers and host factor biomarkers.
The research exploring human milk composition is not a new field, but comprehensive
metabolomics approaches provide deeper insights into the nutritional requirements of
developing infants, including the influence of gestational age, disease and its treatment,
and the mother’s habitual diet.

3.4.7. Diet Sensitivity

Since dietary biochemical reactions are multifaceted in our body, the targeted applica-
tion fields have widened from direct effects of food consumption itself to sensitivity and
preferences in diet as well as its sensory effects. The focus of studies includes individual
variability biomarkers and biomarkers of phenotypic traits. These distinctive metabolomics
studies included influences of anxiety traits and microbiota in dietary preferences [30,51],
taste perception phenotype in sensitivity to taste of fat [39], food preference patterns in a
twins’ cohort [52], and cognitive and hedonic responses to meal ingestion [53]. Details of
these topics are shown in Table A3.

3.5. Dietary Factors

Dietary factors are classified into nutrients, food groups, and dietary patterns (Figure 3d).
Throughout the whole period, the most commonly reported were food groups (n = 204;
48%), followed by dietary patterns (n = 125; 29%) and nutrients (n = 99; 23%). Studies
on dietary patterns showed a significant upward trend from 20% in 2010–2014 to 33% in
2015–2019, while food groups decreased from 56% to 44%, yet remained top-ranked. The
detailed trends of the dietary factors are shown in Figure 4.
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3.5.1. Nutrients

While the number of articles in this category has not increased so much recently, stud-
ies of how individual nutrients affect metabolic changes are basic nutritional approaches to
clarifying the causal relationship between health and diet. Lipids (n = 25; 25%), vitamins
(n = 20; 20%), and non-nutrients (n = 24; 23%) were the main research categories (Figure 4a).
In particular, there has been a marked increase in the number of studies on non-nutrition
over the past five years.

For lipids, reports of ω-3 fatty acids have been the mainstream, constituting 16 of
25 total articles in this category. The impact of trans fatty acids (TFA) related to CVD and
the mechanisms of TFA-induced disease were also explored, revealing elevated levels of
specific polyunsaturated long-chain phosphatidylcholines and a sphingomyelin [54].

Regarding vitamins, vitamin D, which can have multifaceted effects in the preven-
tion of risks such as osteoporosis, MetS, and atherosclerosis, has constantly been the
main topic in the category. O’Sullivan [55] suggested that responsiveness to vitamin D
supplementation in terms of MetS was mediated in part through modulation of lipid
metabolism. Fernández-Arroyo [56] also investigated the effect of vitamin D on the post-
prandial lipidomic profile in obese patients to clarify the mechanism underlying the im-
provement of CVD risk.

The recent increasing category was non-nutrients, including bioactive compounds,
mainly focusing on the dietary effects and its metabolic mechanisms of phytochemicals
such as polyphenols and flavonoids. Edmands [57] investigated 6 polyphenol-rich foods
(coffee, tea, red wine, citrus fruit, apples, pears, and chocolate), identifying more than
80 polyphenol metabolites associated with the selected foods. In addition, various inter-
ventions using polyphenols have also been reported, including rice bran [58], a seaweed
polyphenol extract [59], bean genistein [60], pomegranate urolithin [61], limonene in citrus
peel [62], and secoiridoids from a seed/fruit extract [63]. Another non-nutrient of interest
was trimethylamine-N-oxide (TMAO), which can be an indicator of increased CVD risk
from meat and dairy intake [64,65], although the levels may also be individually associated
with fish intake [66].

3.5.2. Food Groups

A wide range of food groups have been reported from the early stage of the nu-
trimetabolomics field. Among them, studies related to fruit (n = 31; 15%), coffee/cocoa/tea
(n = 28; 14%), alcohol (n = 21; 10%), human/formula milk (n = 18; 9%), and cereal/grains
(n = 16; 8%) have been continuously reported over the period (Figure 4b).

The associations of metabolite levels with extensive food groups have been inves-
tigated [67]. Guertin [5] identified a total of 39 serum biomarkers of 36 food groups,
such as peanuts with tryptophan betaine, coffee with trigonelline-N-methylnicotinate and
quinate, and alcohol with ethyl glucuronide. Playdon [68] also reported the difference of
metabolomic markers between serum and urine, associated with 46 food groups.

Studies reporting other remarkable food groups such as fruits and coffee/cocoa/tea,
which are rich in phytochemicals, have also provided significant clues to the associa-
tion between food intake and health risks. For example, proline betaine in citrus fruits
has beenregarded as one of the most reliable metabolic signatures among potential food
mark-ers [69,70]. Many studies focusing on berries and the effects of reducing metabolic
risk [71,72] have also been reported. As for coffee, trigonelline, caffeine and its deriv-atives,
and quinic acid can be highly correlated with its intake [73,74].

Regarding cereal and grains, studies of wholegrains have been continuously reported
since 2010. While epidemiological findings have constantly supported the fact that whole-
grains reduce the risks of chronic disease and cancer, the basic mechanism of the health
effects has not been elucidated. Therefore, metabolic changes by wholegrain wheat, which
characterizes the MED [75], and wholegrain rye, which characterizes the healthy Nordic
diet [76], have been chiefly investigated.
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Since meat intake may increase the risk of chronic diseases such as MetS and various
types of cancer, nutrimetabolomic approaches would be crucial to understand its biological
effects. Cuparencu [77] identified nine red meat, four white meat, and eight common
meat biomarker candidates, from collagen degradation, flavor compounds, and amino
acid metabolism. Cheung [66] also found potential markers including anserine pecified
for chicken intake, as well as carnosine and three acylcarnitines for meat intake in general.
As meat processing methods may also have cancer risks, Wedekind [34] investigated
the effects of smoked meat intake (e.g., bacon, salami, and hot dogs) and identified four
syringol sulfates as its biomarkers. A study by Wei [78] highlighted metabolic signs of
host-microbiota interaction in meat intake supporting the role of gut microbiota.

3.5.3. Dietary Patterns

Due to the recent expectation that dietary patterns can play a major role in the effects
on health [32,79], there has been a particularly increasing number of research reports
applying metabolomics to elucidate the association between dietary patterns and metabolic
changes. In 2019, the number of articles (n = 41) was almost double that of the previous year
(n = 22), and it was ranked first in the application fields. While the number of MED-related
research, which attracted early attention as a healthy diet [32], was the highest overall
(n = 15; 12%), various derivative patterns have recently been advocated, and the range of
research has expanded (Figure 4c). Typical other dietary patterns include plant-based diet
(vegetarian/vegan diet; n = 10; 8%), wholegrain/low-glycemic index diet (n = 9; 7%), the
New Nordic diet (n = 6; 5%), the Dietary Approaches to Stop Hypertension (DASH) diet
(n = 4; 3%), the Health Eating Index (HEI)/alternate Health Eating Index (aHEI) (n = 3; 2%),
and the WHO Healthy Diet Indicator (HDI) (n = 2; 2%).

Healthy dietary patterns that comply with national dietary guidelines are especially
expected to have positive health effects with clear evidence. Playdon [79] examined the
correlation between serum metabolomics and dietary patterns based on HEI-2010, alternate
MED (aMED), HDI, and Baltic Sea Diet (BSD), showing that lysolipids and plant xenobiotic
pathways are most strongly associated with dietary quality. McCullough [80] also identified
serum metabolomic markers including metabolites such as sphingomyelin, hydroxy-CMPF,
β-cryptoxanthin, and docosahexaenoate, to discriminate four dietary patterns based on the
aMED, aHEI, HEI, and DASH.

While it may be conceivable to recommend a wholegrain and low glycemic load
diet [81,82] with more vegetables, the application of an entirely plant-based diet is still
being discussed. To provide a proper basis for this argument, recent studies [83–85]
analyzed vegan, vegetarian, and omnivore subjects and showed that different metabolic
patterns could discriminate between animal foods diets and plant-based diets.

Extensive comparisons of metabolite profiling have revealed that metabolite changes
are affected by region-specific dietary habits. Studies involved a comparison of urine
metabolites of northern and southern Chinese populations [86], plasma and urine metabo-
lites of European populations [87], and fecal metabolites of Korean and American-style diet
populations [46]. Nutrimetabolomics was also applied to predict health risks in poverty-
stricken areas. An investigation of urine metabolic changes among people at risk-of-poverty
in European populations provided biomarkers of undernutrition [88].

3.6. Targeted Health Risks

Recently, nutrimetabolomics studies have focused more on specific metabolites and
pathways to prevent the development of health risks and their complications. The trend can
lead to elaborate subclassification of health risks and personalized nutrition according to
individuals’ metabolic characteristics. Thus, the range of targeted risks has been expanding
annually. Throughout the survey period, lifestyle-related diseases risks were mainly
reported, including prediabetes/diabetes (n = 37; 15%), obesity (n = 24; 10%), MetS in
general (n = 18; 8%), and hypertension (n = 10; 4%). The numbers of studies targeting CVD
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(n = 35; 15%), cancer (n = 19; 8%), and maternal and pediatric health (n = 26; 11%) have
also increased (Figure 4d).

As diabetes and CVD are chronic diseases that can be closely associated with dietary
factors, many nutrimetabolomics studies have been reported. Meyer [89] provided a model
to predict insulin sensitivity improvements using baseline blood metabolomics, after a
6-month-low-calorie diet in overweight subjects. Zheng [90] suggested that a sugar-rich
dietary pattern may be partially attributed to oxidative stress and disordered lipidomic
profiles when analyzing metabolic profiles of African Americans with CVD risks.

Specific food intake and dietary patterns are regarded as potential preventive or
risk factors of various cancers [91]. For instance, consuming foods, such as whole-grain
rye [92,93], coffee [74], navy beans [93], and black raspberries [94], induced metabolomic
changes, preventing prostate, colorectal, and lung cancers. Playdon [95] investigated
the relationship between 55 food groups and breast cancer risk, revealing that 3 specific
metabolites were associated with overall breast cancer risk, and 19 were associated with
estrogen receptors. A study on prostate cancer risk by Beynon [96] also reported that
dietary lycopene decreased serum levels of pyruvate, whose elevation can be causally
related to the cancer risk. Dietary patterns that affect the cancer risks and its metabolic
changes were also investigated by several studies, including the relationship between
genetic interactions with MED and breast cancer risk [48] and between energy-restriction
diet and metabolic changes reducing gene expression associated with breast cancer [31].

3.7. Future Aspects and Issues

Nutrimetabolomics can contribute to the application of precision nutrition for the
management of diets and risks in the future, as the field has the possibility to predict
individual metabolic dynamics with objective assessments. As surveys of individual
nutrients and food groups are not sufficient to unravel the causal relationship between
complex eating behaviors and health risks, focus should be placed on research of dietary
patterns describing comprehensive dietary habits. Further, in recent years, the field of
nutrimetabolomics has entered the stage of clarifying the direct relationship between diet
and disease risks. Therefore, it is crucial to elucidate interactions with genotypes and its
epigenetic effects, and with the gut microbiota. Further investigation of diet sensitivity and
sensory effects on metabolic changes are also expected.

For this new field to be positioned in the mainstream of nutritional science as practical
indicators, several issues need to be overcome including validating and reproducing
candidate metabolites, causal verification, elucidation of inter/intra-fluctuations, half-life
duration of excretion [97], methodologies in study design, and advanced data analysis.
For instance, although non-targeted approaches that enable exploratory research are more
suitable to detect unknown compounds and generate new hypotheses, the high cost of
advanced devices, densification of acquired data, and complex statistical analysis are
required. On the other hand, targeted approaches follow conventional hypothesis-driven
research, but are suitable for quantification. Landberg [97] suggested that ideally, for the
detected set of metabolic signatures to be practically applicable to dietary biomarkers,
targeted and non-targeted approaches should complement each other.

Systematic approaches to define and classify biomarkers due to standardized crite-
ria and their intended use were also critical for validation of the markers as applicable
assessment tools [98–100]. The Hohenheim Conference’s consensus statement on the defi-
nition of biomarkers in nutrition defined “test results related to exposure, susceptibility
or biological effects” [101]. The joint programming initiative “Healthy Diet for a Healthy
Life” (JPI-HDHT) under Food Biomarker Alliance (FoodBAll), which aims to support the
systematic evaluation of new biomarkers, proposed a classification scheme for biomark-
ers [101] dividing nutritional biomarkers into food intake or nutritional status (recent or
long-term) biochemical indicators, nutritional metabolism indicators, and biochemicals
for food intake. To describe in detail the dietary and health field, Gao [12] suggested an
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improved scheme for dietary biomarker classification consisting of exposure biomarkers,
effect biomarkers, and susceptibility biomarkers, with six subclasses.

3.8. Limitations

As the purpose of this scoping review was to provide an overview of development
trends from a broad perspective over a long period of time, we used the single data source
of MEDLINE, which is the most practical database in the biomedical field in terms of
comprehensiveness and extraction efficiency. However, based on this scoping review, it is
essential to make thorough searches from multiple data sources when conducting system-
atic reviews with qualitative evaluation and comprehensiveness in further researches.

In addition, since this scoping review mainly aimed to exploratorily examine the extent,
variety, and characteristics of the evidence on the application fields of nutrimetabolomics
with a visual representation of results, we did not critically appraise a cumulative body of
evidence. Thus, it is indispensable to consider these evaluations in order to strengthen the
levels of the evidence for future in-depth reviews focusing on individual application areas.

Since the years 2020 to 2021 were affected by COVID-19, the past 20 years up to 2019
were surveyed in order to ensure the continuity for tracking the annual transition of the
number of publications. Furthermore, although the relevant papers published in journals
are mostly covered, the so-called “gray papers” were not included, and the publication
bias may also have curbed the number of studies that had conclusions that were not
expected. However, we believe that our initial goal of overviewing developments of the
nutrimetbolomics from a long-term perspective has been achieved.

4. Conclusions

Nutrimetabolomics, which can elucidate unknown mechanisms in the relationship
between diet and health, has been rapidly gaining attention as one of the essential omics
approaches. This scoping review outlined the transition of development, recent focuses,
and future aspects of this new field from the early stages of the development to the present
over the last two decades. The growth trend of the field was proven by the remarkable
expansion in the number of articles. Among them, objective dietary assessment, metabolic
profiling, and disease risk prediction were positioned as three of the principal applications
of nutrimetabolomics. Particularly, there have been signs of surges in studies applying the
dietary pattern and the disease risk prediction. Investigations of the relationship with gut
microbiota diversity, genetic interactions, and diet sensitivity will also be expected research
areas. The accumulation of these advances will enable nutrimetabolomics to contribute to
personalized nutrition in the future.
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Appendix A

Table A1. Summary of survey results—Main categories with notable trends 1.

I 2000–2009 II 2010–2014 III 2015–2019 Total

Total Number of Articles n = 18 n = 105 n = 329 n = 452

Study design
NRCT 9 47% RCT parallel 31 30% RCT parallel 92 28% RCT parallel 126 28%

RCT crossover 4 21% RCT crossover 31 30% RCT crossover 78 24% RCT crossover 113 25%
RCT parallel 3 16% NRCT 18 17% Cross-sectional 65 20% Cross-sectional 84 18% ↑ 2

Biofluid
Urine 16 59% Blood 60 51% Blood 230 59% Blood 300 56% ↑
Blood 10 37% Urine 45 38% Urine 108 28% Urine 169 32%
Saliva 1 4% Feces 5 4% Feces 36 9% Feces 41 8% ↑

Human milk 5 4%

Application field
Metabolic profiling 11 61% Metabolic profiling 55 52% Metabolic profiling 125 38% Metabolic profiling 191 42%

Diet sensitivity 4 22% Dietary assessment 20 19% Risk prediction 86 26% Risk prediction 101 22% ↑
Dietary assessment 2 11% Risk prediction 14 13% Dietary assessment 69 21% Dietary assessment 91 20% ↑

Dietary factor
Food group 11 69% Food group 56 56% Food group 136 44% Food group 203 47%

Nutrient 3 19% Nutrient 24 24% Dietary pattern 104 33% Dietary pattern 126 29% ↑
Dietary pattern 2 13% Dietary pattern 20 20% Nutrient 72 23% Nutrient 99 23%

NRCT, non-randomized clinical trial. RCT, randomized controlled trial. 1 The top three items in the number of articles are shown with the number and percentage. Studies are categorized by the main subject
described in the article and are placed in multiple categories when multiple items are the main target. 2 The arrow shows an upward trend in which the percentage of articles increased from the middle period
(2010–2014) to the recent period (2015–2019).

Table A2. Summary of survey results—Subcategories with notable trends 1.

I 2000–2009 II 2010–2014 III 2015–2019 Total

Nutrient
Non-nutrients 3 100% Lipids/fatty acids 6 24% Lipids/fatty acids 19 26% Lipids/fatty acids 25 25% ↑ 2

- - - Vitamins/coenzymes 6 24% Non-nutrients 17 24% Non-nutrients 24 24% ↑
- - - Fibers/pre-/probiotics 6 24% Vitamins/coenzymes 14 19% Vitamins/coenzymes 20 20%
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Table A2. Cont.

I 2000–2009 II 2010–2014 III 2015–2019 Total

Food group
Coffee/tea/cocoa 6 50% Fruit 11 20% Fruit 20 14% Fruit 31 15%

Meat 2 17% Multiple food groups 8 14% Coffee/tea/cocoa 16 12% Coffee/tea/cocoa 28 14% ↑
Confectionary/soda 2 17% Cereal/grains 7 13% Alcohol 16 12% Alcohol 21 10% ↑

Dairy products 1 8% Nuts 6 11% Human/formula milk 15 11% Multiple food groups 21 10%
Alcohol 1 8% Coffee/tea/cocoa 6 11% Dairy products 13 9% Human/formula milk 18 9% ↑

- - - Vegetables 5 9% Multiple food groups 13 9% Cereal/grains 16 8%

Dietary pattern
Calorie restriction 1 50% Western/high-fat 3 15% Mediterranean 15 14% Mediterranean 15 12% ↑

Region 1 50% Wholegrain/low-GI 3 15% Undernutrition 10 9% Western/high-fat 12 9%
- - - Vegetarian/vegan 2 10% Calorie restriction 9 8% Calorie restriction 11 8% ↑
- - - Fasting 2 10% Western/high-fat 9 8% Undernutrition 11 8% ↑
- - - Region 2 10% Vegetarian/vegan 8 7% Vegetarian/vegan 10 8%
- - - 6 items (respectively) 1 5% New Nordic 6 5% Wholegrain/low-GI 9 7%

Wholegrain/low-GI 6 5%
Fasting 6 5%

Targeted health risks
Mental/preference 2 50% CVD 8 17% Diabetes 33 17% Diabetes 37 15% ↑

MetS in general 1 25% Maternal/pediatric 7 15% CVD 27 14% CVD 35 15%
Cancer 1 25% Obesity 6 13% Maternal/pediatric 19 10% Maternal/pediatric 26 11%

- - - MetS in general 5 11% Obesity 18 10% Obesity 24 10%
- - - Diabetes 4 9% Cancer 15 8% Cancer 19 8% ↑
- - - Cancer 3 7% MetS in general 12 6% MetS in general 18 8%

Bone and muscle 3 7%
Mental/sensory 3 7%

GI, glycemic index. MetS, metabolic syndrome. CVD, cardiovascular disease. 1 The top three of nutrients and the top six of other categories in the number of articles are shown with the number and percentage.
Studies are categorized by the main subject described in the article and are placed in multiple categories when multiple items are the main target. 2 The arrow shows an upward trend in which the percentage of
articles increased from the middle period (2010–2014) to the recent period (2015–2019).
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Table A3. Distinctive studies related to diet sensitivity and sensory effects.

Author Year Research Topic Design 1 n Biofluid 2 Ref.

Rezzi, et al. 2007 Metabolic phenotypes in specific dietary preferences RCT-CO 22 U, P [27]
Martin, et al. 2009 Dietary preferences and anxiety trait RCT-P 30 U, P [30]
Martin. et al. 2012 Dietary preferences linked to differing gut microbiota RCT-P 20 U, P [51]

Heinzmann, et al. 2012 Stability and robustness in response to sequential
food challenges NRCT 7 U [102]

Dror, et al. 2013 Impact of refeeding on blood profiles in elderly patients NRCT 53 B [103]
Mounayar, et al. 2014 Taste perception phenotype in sensitivity to taste of fat RCT-CO 73 SV [39]

Pallister, et al. 2015 Food preference patterns in a UK Twin cohort CS 1491 P, S [52]

Badoud, et al. 2015 Difference in responses to a calorie challenge among
obese people RCT-P 30 P, S [104]

Liu, et al. 2015 Postprandial change in insulin resistance NRCT 30 S [105]
Malagelada, et al. 2016 Cognitive and hedonic responses to meal ingestion NRCT 18 B [53]

Geidenstam, et al. 2016 Changes in glucose-induced metabolite response after
weight loss NRCT 14 S [106]

Shrestha, et al. 2017 Metabolic responses from fasting state to postprandial NRCT 19 S [107]
Fiamoncini, et al. 2018 Postprandial state with susceptibility to weight-loss RCT-P 72 P [108]
Malagelada, et al. 2018 Metabolomic signature of the postprandial experience NRCT 32 P, S [109]
Takahashi, et al. 2018 Meal timing on postprandial glucose metabolism RCT-CO 16 S [110]

1 RCT-P: randomized controlled trial-parallel, RCT-CO: RCT-crossover, NRCT: non-randomized clinical trial, CS: cross-sectional. 2 B: blood,
P: plasma, S: serum, U: urine, SV: saliva.
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