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Abstract: Green cardamom (Elettaria cardamomum) is an outspread spice native to Asia, which is well
appreciated for its sensory characteristics, delicate aroma, and unique taste. Currently, the main
cardamom extracts are essential oils (EOs), and regarding current market tendencies, this market is in
high growth. For this reason, technologies such as the instant controlled pressure drop (DIC) have
been applied to reach higher yields and better quality of EO. Then, this study explores the impact of
DIC as a pretreatment before hydrodistillation (HD) on the EO yield and their antioxidant activity.
Obtained results showed that the coupling of DIC-HD increased the yield of essential oil and also
had a positive impact on their antioxidant capacity. The EO yield of DIC-HD (140 ◦C and 30 s) was
4.43% vs. 2.52% for control; the AOX of DIC-HD (165 ◦C and 30 s) was 86% inhibition vs. 57.02% for
control, and the TEAC of DIC-HD (140 ◦C and 30 s) was 1.44 uMTE/g EO vs. 13.66 uMTE/g EO.

Keywords: cardamom; essential oil; antioxidants; instant controlled pressure drop; ABTS;
DPPH; hydrodistillation

1. Introduction

Green cardamom (Elettaria cardamomum) is a widespread spice native to the Asian
continent which is often referred to as the queen of spices due to its very pleasant, mild
aroma and taste that is appreciated for its organoleptic characteristics for culinary purposes
or its properties in traditional medicine [1,2]. Initially, cardamom cultivation was solely
placed in India by British planters. Nowadays, cardamom is grown in India, Guatemala,
Sri Lanka, Nepal, Indonesia, Costa Rica, Mexico, and Tanzania; being Guatemala the major
producer, followed by India [3,4].

Since ancient times, cardamom has long been used in India [5]. Assyrian doctors
and chemists were known to apply many herbs, including cardamom, for medicinal
purposes [5,6]. Historical records of cardamom usage can be found along with Greece and
Rome, where spices were a symbol of luxury and status. Their importance was such that
they were included in social and religious ceremonies [6].

Nowadays, cardamom is still used as a part of cosmetic formulations and an ingredient
in the food and pharmaceutical industries. The main cardamom extracts are essential oils
(EOs). Currently, the importance of EOs in the industry has grown due to the consumers’
inclination to use natural products, i.e., the usage of EO in the industry goes from food
and beverage to cosmetics and aromatherapy [7]. In 2018 the demand for essential oil
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was 226.8 kilotons, and the global market for essential oil is expected to grow by 8.6%
from 2019 to 2025 [7]. EO has been proven to have many beneficial properties, such as
antioxidant activity (AOX), antispasmodic, antimicrobial, and carminative, among many
others; being these actions directly influenced by its specific chemical composition [7–9].

Traditionally essential oil extraction has been achieved via hydrodistillation. This tech-
nique is based on the principle that, at boiling temperature, the combined vapor pressures
equal the atmospheric pressure. The charged steam rises and encounters a narrow tube
cooled by an outside source (cold water or antifreeze). Afterward, the steam is condensed
and collected in a vessel; hence, since the essential oil is less dense, it moves at the top while
the water goes down [10,11]. Some advantages of this procedure are the low cost of the
equipment and its simplicity. On the other hand, it also has disadvantages, such as it can
consume a lot of energy and the processing time is often long, which could trigger negative
chemical changes on the EO. Regarding energy consumption, in the study conducted by
Allaf et al. [12] on orange peels, the energy balances of HD vs. the instant controlled pres-
sure drop technology (DIC) point out that above a certain amount of extraction efficiency,
the energy consumption significantly decreases by using the DIC technology.

The instant controlled pressure drop technology (DIC) was first created to intensify the
drying unit operation by texturing bioproducts. Shortly after, its applications were spread
to other pharmaceuticals, food, and cosmetic unit operations such as food decontamination,
phytochemicals extraction, and EOs extraction [13]. DIC is a thermo-mechanical technique
that subjects the sample to a high-pressure saturated steam (0.1–1.0 MPa) for a brief period
(some seconds), followed by an instant pressure drop close to a vacuum (30 mbar) [14]. The
instant pressure drop towards the vacuum causes the autovaporization of the water, the
swelling of the matrix, and a possible breakdown of the cell wall. Then, materials treated
by DIC can highly increase the extraction kinetics by improving solvent diffusivity within
the solid and enhancing mass transfer [14,15]. Due to these characteristics, it could be
suggested that by coupling DIC technology to HD, the extraction efficiency of EO and their
biological activities could be improved.

To the best of our knowledge, there are no previous studies regarding DIC technology
as a texturing pretreatment of cardamom seeds before hydrodistillation. Then, this compar-
ative study explores the impacts on the essential oil yield extraction and the antioxidant
scavenging capacity of EO obtained by only HD and by coupling DIC to HD.

2. Results and Discussion
2.1. Seed Structure and Moisture Content Changes

Stereo microscopy was used to monitor the morphological changes in the seed. Figure 1
denotes a side-by-side comparison between an untreated and a DIC-treated seed. As it can
be observed in Figure 1A, in the untreated seed, the perisperm layer appears compacted
and arranged crystal-like. Conversely, in the DIC-treated seed, the same layer appears
bloated and less compact (Figure 1B).
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Moreover, although there was an increase in moisture content after DIC treatment, 
these values fall into the specifications of the American Spice Trade Association (ASTA), 
which suggests a moisture content not greater than 12% [16,17].  

Then, this study suggests that the DIC treatment allowed a rapid increase in moisture 
content, which subsequently engendered a cardamon seed expansion due to autovapori-
zation, which positively impacts both the EO yield and the antioxidant scavenging capac-
ity. This effect has been previously acknowledged on different matrices such as orange 
peel (Citrus sinensis), Myrtle leaves (Myrtus communis L.), Hyssop (Hyssopus officinalis L.), 

Figure 1. Cardamom seed morphology: (A) Untreated cardamom seed (B) DIC-treated cardamom
seed (140 ◦C and 30 s).
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These changes could be attributed to both main stages of DIC treatment: the steam
condensation occurred during the saturated steam injection into the reactor (which in-
creased the initial moisture content of the seed) and also to the autovaporization of seed
water (which could trigger a cardamon seed expansion). In fact, as shown in Table 1, while
the control seeds performed average moisture values of 5.1% d.b, the DIC-treated seeds
performed moisture contents between 10.5 to 11.3% d.b.

Table 1. Effect of DIC treatment on cardamom seeds moisture content, essential oil yield, and
antioxidant capacity.

Sample
Treatment Conditions Response Variables

Steam Processing
Temperature (◦C)

Thermal Processing
Time (s)

Moisture Content
(%, d.b.) Yield (%) AOX (%) TEAC

(uMTE/g EO)

CONTROL - - 5.14 2.52 57.02 13.66
DIC 1 165 30 11.27 2.57 62.28 13.52
DIC 2 140 45 10.90 3.08 66.59 2.17
DIC 3 140 30 11.16 3.60 68.18 2.04
DIC 4 158 41 11.33 3.49 67.20 2.18
DIC 5 158 19 11.04 4.01 66.25 2.15
DIC 6 140 30 10.59 3.85 66.78 1.99
DIC 7 122 19 10.80 4.39 66.68 2.04
DIC 8 122 41 10.50 3.89 65.38 2.11
DIC 9 140 30 10.83 4.22 66.34 2.97
DIC 10 115 30 10.83 4.40 66.44 2.12
DIC 11 140 15 10.74 4.26 66.78 2.38
DIC 12 140 30 10.64 4.44 65.38 2.04

d.b.: dry basis. AOX: antioxidant activity by DPPH expressed as percent discoloration. TEAC: Trolox equivalent
antioxidant capacity expressed as µM eq. Trolox.

Moreover, although there was an increase in moisture content after DIC treatment,
these values fall into the specifications of the American Spice Trade Association (ASTA),
which suggests a moisture content not greater than 12% [16,17].

Then, this study suggests that the DIC treatment allowed a rapid increase in moisture
content, which subsequently engendered a cardamon seed expansion due to autovaporiza-
tion, which positively impacts both the EO yield and the antioxidant scavenging capacity.
This effect has been previously acknowledged on different matrices such as orange peel
(Citrus sinensis), Myrtle leaves (Myrtus communis L.), Hyssop (Hyssopus officinalis L.), among
others [14,18–21]. Moreover, it is also worth bearing in mind that the rate of expansion
of the matrix is closely related to the working parameters of DIC (saturated steam pres-
sure directly linked to the temperature, processing time, and, in some cases, the number
of cycles), and the biological matrix composition (initial moisture content, and chemical
composition) [21].

2.2. Essential Oil Yield

HD and DIC-HD extracted oils presented a clear appearance and a pleasant aroma. On
the other hand, as can be observed in Table 1, the highest extraction percentages were 4.43%,
4.40%, and 4.39% from DIC 12 (140 ◦C, 30 s, 0.36 MPa), DIC 11 (140 ◦C, 15 s, 0.36 MPa), and
DIC 8 (122 ◦C, 41 s, 0.21 MPA). In contrast, the lowest extraction yields were provided by
the control, DIC 1 (165 ◦C, 30 s, 0.7 MPa) and DIC 2 (140 ◦C, 45 s, 0.36 MPa), with yields
of 2.52%, 2.54%, 2.56%, respectively. As can be remarked in Figure 2A, the Pareto chart
showed that the factor affecting the yield was the temperature, being this negative; the
higher the DIC treatment temperature, the lower the EO yield. Furthermore, according to
the response surface graph (Figure 2B), the oil yield extraction could be enhanced under a
temperature range between 110 and 140 ◦C and a treatment time between 10 to 20 s.
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Figure 2. Effect of steam processing temperature “T” (◦C) and thermal processing time “t” (s) on
yield (%) of EO: (A) Pareto chart (B) Surface response.

Essential oils have been a part of human life since ancient times. Cardamom essential
oil has been used as an important part of folk medicine, rituals, cosmetics, and perfumes [22].
Due to its great importance and the economic significance of cardamom, any increase in
EO yield is welcomed. As shown in Table 1, the highest yield was obtained in the sample
DIC 12 (140 ◦C, 30 s, 0.36 MPa) with a 4.44%. Studies provide a wide range of values
among the same matrices. Most of these studies have used cardamom varieties from
different geographic locations, where Guatemalan samples gave 3.74% [23], Indian samples
gave 3.1% [24], and 1% from Turkey samples [25]. These studies were carried out by
extracting the EO via hydrodistillation in the Clevenger apparatus, the same as this study.
By comparing EO yields from only HD to DIC-HD, the percentage of EO extracted from
treated samples was overall higher than those of the untreated. It is worth noting that the
EO yield is a multifactorial response and can be influenced by multiple factors such as plant
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variety, growing conditions, harvesting conditions, post-harvest processing (i.e., drying
method), geographic area, etc. The study conducted by Allaf et al. [21] showed a positive
impact on the extraction yield, such as the optimization of EO extraction, from orange
peels, where EO from hydrodistillation extraction was achieved in 4 h to obtain a yield of
1.97 mg/g db, while DIC optimized treatment (0.6 MPa, 11 cycles of 11 s) performing a
yield of 16.57 mg/g db. For cardamon seeds, the increase in the essential oil yield can also
be attributed to the increase in the porosity in the epidermis.

2.3. DPPH Free Radical Scavenging Capacity

The results of the DPPH assessment expressed as antioxidant capacity (AOX) can
be seen in Table 1. The strongest antioxidant activity was obtained under DIC 3 (140 ◦C,
30 s, 0.36 MPa) with a 68%. The lower AOX was obtained under DIC 1 (165 ◦C, 30 s,
0.7 MPa), DIC 8 (122◦C, 41 s, 0.21 MPa), and DIC 12 (140 ◦C, 30 s, 0.36 MPa) treatments with
62.28%, 65.38% and 65.38% respectively. The Pareto chart (Figure 3) showed that neither
temperature nor thermal processing time could explain the antioxidant activity changes
between the selected DIC studied parameters.
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Figure 3. Effect of steam processing temperature “T” (◦C) and thermal processing time: “t” (s) on
AOX (%) of EO: Pareto chart.

By comparing the AOX of essential oil extracted from treated seeds to control, it
can be shown an increase in AOX; while DIC 3 (140 ◦C, 30 s, 0.36 MPa) performed an
AOX of 68%, the AOX of control performed 57%. Regarding other studies, the maximum
percentage reached has been 70% [26–28]. Evidence of the positive impact of DIC treatment
on antioxidant compounds is provided in the study conducted by Mounir et al. [29] in
expanded granule powder of apple and onion. In that study, quercetin extraction was
increased by 6.8 times compared to untreated samples due to DIC treatment. Another
example of the beneficial effects of DIC treatment on antioxidant activity is provided by
Alonzo-Macías et al. [30], who evaluated the impact of different drying methods on the total
phenol, total flavonoid, total anthocyanin content, and antiradical activity by using DPPH
of strawberries. The results showed an average increase of 9.5% in the antioxidant capacity
of DIC-treated samples. Similarly, Namir et al. [31] observed an increase of 1.5 times in
AOX of DIC-treated vs. untreated Cactus pear peel snacks samples. DIC preserves the
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quality of secondary metabolites thanks to the water’s autovaporization that guarantees
rapid cooling, which prevents the thermal degradation of sensitive compounds.

2.4. ABTS Trolox Equivalent Antioxidant Capacity Determination (TEAC)

Contrary to yield and AOX, in which a maximum value is desirable, the least TEAC
means a better antioxidant capacity in this study. The summary of TEAC for each sample
is shown in Table 1. The better performers for TEAC were found by DIC 6 (130 ◦C, 30 s,
0.36 MPa) with 1.99 uMTE/g EO and by DIC 3 (140 ◦C, 30 s, 0.36 MPa) with 2.04 uMTE/g
EO. On the other hand, the untreated seed (control) gave 13.66 uMTE/g EO, indicating low
antioxidant capacity. In Figure 4, the Pareto chart showed that the TEAC was not influenced
by temperature or thermal processing time under the selected DIC studied parameters.
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According to recent research, the results of ABTS assays in non-treated cardamom
are negligible [32,33]. Interestingly, the ABTS results were significant for all samples in
this research, presumably due to the DIC treatment. A study supporting this affirmation
is the conclusion reached by Tellez-Perez et al. [34], who observed TEAC enhancement
by as much as 2.89 (depending on the DIC conditions). In our study, the best TEAC was
obtained at lower time and temperature values; in contrast with poblano pepper, they
reached the highest TEAC values of both steam pressure and holding time. An interesting
approach would be to test the effect of more variables such as the initial moisture content,
the treatment time, the temperature, and the number of DIC cycles, to have a complete
picture of their interactions and how they affect the response variables.

3. Materials and Methods
3.1. Materials

Cardamom seeds were obtained from finca Argovia in Tapachula Chiapas, México.
All solvents used were HPLC grade (Sigma-Aldrich, St. Louis, MO, USA.).
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3.2. Methods
3.2.1. Moisture Content

The moisture content of the seeds was determined by a dynamic method using a
laboratory air dryer (Binder FD 23). Two grams of seed were placed in the dryer at a
temperature of 105 ◦C for 24 h.

3.2.2. Experimental Design and Statistical Analysis

Response surface methodology was accomplished with a central composite design
which led to 12 experiments carried out with four center points. The response variables were
EO Yield (%), Antioxidant capacity (AOX in %), and Trolox Equivalent Antioxidant Capacity
(TEAC in uMTE/g EO), and the considered factors were Saturated Steam Temperature (◦C)
and Thermal Processing Time (s). Table 2 shows the experimental design.

Table 2. Experimental design of the DIC pretreatment parameters.

Treatment T (◦C) t (s) T (◦C) t (s)

DIC 1 1 0 165 30
DIC 2 0 1 140 45
DIC 3 0 0 140 30
DIC 4 +α +α 158 41
DIC 5 +α −α 158 19
DIC 6 0 0 140 30
DIC 7 −α −α 122 19
DIC 8 −α +α 122 41
DIC 9 0 0 140 30

DIC 10 −1 0 115 30
DIC 11 0 −1 140 15
DIC 12 0 0 140 30

T = Saturated steam temperature; t = thermal processing time.

Statistica Software 2017 (TIBCO Software Inc., Palo Alto, CA, USA) was used for the
statistical analysis. For the experimental design of DIC treatment, statistical analysis was
performed through the Pareto chart and the surface response methodology. The Pareto
chart was used to identify the impact of variables on the responses. The vertical line
in the Pareto chart determines the statistically significant effects at the 95% confidence
level. Saturated steam temperature (◦C) and thermal processing time (s) were studied as
independent variables. The studied response variables were: EO Yield (%), AOX (%), and
TEAC (µM TE/g EO).

3.2.3. DIC Treatment

The DIC treatment of Cardamon seeds was carried out in four steps. Figure 5A show
the schematic diagram of a DIC apparatus, and Figure 5B shows the schema of a DIC
processing cycle. Firstly, 100 g of seeds were placed into the DIC reactor, in which a vacuum
of 30 mbar was established (Figure 5(Ba). Secondly, as can be observed in Figure 5(Bb,Bc),
saturated steam was injected into the reactor until the selected study saturated steam
temperature was reached (being from 0.17 up to 0.7 MPa), and this was maintained for a
short time (being from 15 to 45 s). Thirdly, samples were subjected to an instant controlled
pressure drop (∆P/∆t > 0.5 MPa.s−1) towards vacuum (30 mbar) (Figure 5(Bd)); in fact,
this pressure drop causes the autovaporization of the water and the swelling of the matrix.
Finally, the pressure was released toward the atmospheric pressure (Figure 5(Be)), and
cardamon seeds were recovered. In this study, the used DIC equipment was a LAB DIC
0.1 model (ABCAR-DIC Process, La Rochelle, France). The impact of DIC treatment on
morphology, essential oil yield, and radical scavenging activity by DPPH and TEAC was
evaluated using a surface response design (Table 2). After DIC treatment, cardamom seeds
were stored at −80 ◦C until further analysis.
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3.2.4. Stereo Microscopy

Cardamom seeds morphology was evaluated by stereo microscopy using a Rossbach
Kyowa (Mexico) stereo microscope with series number 751010. A cross-section cut was
taken of both untreated seed and a treated seed to observe changes in structure.

3.2.5. Essential Oil Extraction via Hydrodistillation

For this study, 50 g of grounded cardamom were mixed with 600 mL of distilled water
in a Clevenger-type apparatus and distilled for six hours (Figure 6). The essential oil was
dried over anhydrous sodium sulfate and stored [11,35] until analysis. The yield was
calculated as grams of oil per 100 g of seed (dry basis).
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3.2.6. Radical Scavenging Activity by DPPH

The DPPH analysis by Fukumoto et al. [36] is based on the radical unpaired electron
yield to an antioxidant substance; DPPH is demoted from blue-purple color to light yellow.
For this assay, a stock solution of DPPH 125 µM was prepared. For the assay, 20 µL of
samples and 200 µL of DPPH were added to a well in a 96-microwell plate and mixed;
analysis was carried out by triplicate. The plaque was stored in the dark for 90 min
at room temperature. The concentration of essential oil in the sample was 0.19 g/mL.
Absorbance readings were taken at 520 nm using an xMark™ Microplate Absorbance
Spectrophotometer (Bio-Rad, Hercules, CA, USA). Scavenging was expressed as percent
DPPH discoloration.

3.2.7. Trolox Equivalent Antioxidant Capacity (TEAC)

Trolox equivalent antioxidant capacity is based on the comparison between the an-
tioxidant capacity to cleave the radical cation of ABTS and Trolox, as described by Re
et al. [37]. ABTS stock solution by reacting 7 mMol/L and 2.45 mMol/L of potassium
persulfate after incubation in the dark for 16 h. The stock solution was then diluted in
ethanol to an absorbance of 0.8 ± 0.1 at 734 nm. Trolox standard solutions were prepared
in methanol from 0 to 700 µmol/L and assayed under the same conditions. In each well of
a 96-microplate, 200 µL of reagent and 20 µL of the sample were added and incubated for 6
min with constant agitation. Each sample was assessed in triplicate. The concentration of
essential oil in the sample was 0.62 mg/mL. The readings were performed at 734 nm using
xMark™ Microplate Absorbance Spectrophotometer (Bio-Rad, Hercules, CA, USA). Trolox
standard solutions were prepared in methanol from 0 to 700 µmol/L and assayed under the
same conditions. The Trolox equivalent antioxidant capacity (TEAC) was calculated based
on the Trolox calibration curve and reported as the µM/L needed for Trolox to decolorate
at the corresponding concentration.

4. Conclusions

Traditionally essential oil extraction of cardamon seeds has been achieved via hy-
drodistillation (HD); however, this technique presents some drawbacks as high energy
consumption and possible thermal degradation of EO due to long extraction kinetics. For
these reasons, this study has evaluated the effect of coupling DIC technology to HD on
EO’s extraction efficiency and biological activities.

In this respect, results showed a clear improvement in cardamon yield and antioxidant
activity by coupling DIC technology to hydrodistillation. DIC-HD (140 ◦C, 30 s, 0.36 MPa)
does show an increase in the EO yield of 1.7 times (4.44% from DIC vs. 2.52% for only
HD). In addition to this, DIC-HD essential oils improved antioxidant capacities with HD.
Regarding AOX by DPPH, under the selected studied parameters of saturated steam
temperature and thermal processing time, all applied DIC treatments allowed for increased
the AOX of extracted essential oils. The highest AOX was found under DIC 3 (140 ◦C, 30 s,
0.36 MPa), being 68%, vs. the control with 57%. Concerning TEAC, the results showed that
DIC pretreatment improved the antioxidant activity, being found the best value of TEAC
under DIC 6 (130 ◦C, 30 s, 0.36 MPa) with 1.988 uMTE/g EO; control performed a TEAC
value of 13.66 uMTE/g EO, indicating a lower antioxidant capacity.

Regarding the morphological changes in cardamon seeds, it could be suggested that
the increase in the essential oil yield and antioxidant activity can be attributed to the increase
in the porosity of the matrix; however, more scanning electron microscopy studies are
needed to explain the microstructural changes of the seed attributed to the DIC treatment.

Finally, it is necessary to note that more studies are being carried out on the chemical
composition of cardamom essential oil to evaluate the effect of DIC and the relationship
between its composition and its antioxidant activity.
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