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ABSTRACT: Drug-metabolizing enzyme (DME)-mediated phar-
macokinetic resistance of some clinically approved anticancer
agents is one of the main reasons for cancer treatment failure. In
particular, some commonly used anticancer medicines, including
docetaxel, tamoxifen, imatinib, cisplatin, and paclitaxel, are
inactivated by CYP1B1. Currently, no approved drugs are available
to treat this CYP1B1-mediated inactivation, making the pharma-
ceutical industries strive to discover new anticancer agents. Because
of the extreme complexity and high risk in drug discovery and
development, it is worthwhile to come up with a drug repurposing
strategy that may solve the resistance problem of existing
chemotherapeutics. Therefore, in the current study, a drug
repurposing strategy was implemented to find the possible CYP1B1 inhibitors using machine learning (ML) and structure-based
virtual screening (SB-VS) approaches. Initially, three different ML models were developed such as support vector machines (SVMs),
random forest (RF), and artificial neural network (ANN); subsequently, the best-selected ML model was employed for virtual
screening of the selleckchem database to identify potential CYP1B1 inhibitors. The inhibition potency of the obtained hits was
judged by analyzing the crucial active site amino acid interactions against CYP1B1. After a thorough assessment of docking scores,
binding affinities, as well as binding modes, four compounds were selected and further subjected to in vitro analysis. From the in vitro
analysis, it was observed that chlorprothixene, nadifloxacin, and ticagrelor showed promising inhibitory activity toward CYP1B1 in
the IC50 range of 0.07−3.00 μM. These new chemical scaffolds can be explored as adjuvant therapies to address CYP1B1-mediated
drug-resistance problems.

■ INTRODUCTION
Cytochrome P450 enzymes (CYPs) are heme-coupled
monooxygenases involved in the metabolic biotransformation
of a wide range of endogenous and exogenous compounds,
including certain therapeutically approved anticancer medi-
cines.1 The human CYP superfamily is reported to be classified
into 57 isoforms; among these, cytochrome P450 subfamily 1
(CYP1) enzymes including CYP1A1, CYP1A2, and CYP1B1
are of key interest to most researchers for their dominating
involvement in the hydroxylation of procarcinogens such as
PAHs and amines to cytotoxic and mutagenic compounds.2 It
is reported that CYP1B1 showed a 40% structural similarity
with that of CYP1A1 and CYP1A2 isoforms.3 The specific
overexpression of CYP1B1 was identified in extrahepatic
tissues, such as ovarian, lung, brain, lymph, breast, and colon
cancer tissues, whereas no detectable amount of CYP1B1 was
found in nearby normal tissues.4−6 Unlike CYP1B1, over-
expression of CYP1A1 was identified in the liver and some
extrahepatic tissues including the pancreas, uterus, small
intestine, and thymus, while CYP1A2 expression was found
to be constitutive in human hepatic tissues.7,8 The expression

level of these three CYPs is highly influenced by interactions of
certain planar aromatic compounds such as 2,3,7,8-tetrachlor-
odibenzo-p-dioxin (TCDD) and 7,12-dimethylbenz[a]-
anthracene (DMBA) with the aryl hydrocarbon receptor
(AhR) and a ligand-activated transcription factor.9−11 The
CYP1B1 isoform is the most appealing therapeutic target
among the three CYP1 members discussed above for the
following reasons. (1) CYP1B1 overexpression has only been
found in cancer tissues (ovarian, lung, brain, lymph, breast, and
colon). (2) Besides its role in the bioactivation of a variety of
procarcinogens, CYP1B1 may play a role in the carcinogenic
action of estradiol by converting 17-estradiol (E2) into 4-
hydroxyestradiol, which is a mutagenic compound capable of
forming covalent interactions with DNA. This type of
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conversion is not observed in the cases of CYP1A1 and
CYP1A2 as these two isoforms mediate estrogen 17-
hydroxylation primarily to 2-hydroxyestradiol, which is not a
carcinogen. (3) It confers drug resistance by inactivating
structurally diverse anticancer drugs such as docetaxel,
imatinib, tamoxifen, cisplatin, and paclitaxel.12−14 As a result,
a treatment strategy that promotes the selective inhibition of
CYP1B1 as adjuvant therapy could be advantageous in
avoiding CYP1B1-mediated drug resistance and cancer
progression.

Currently, derivatives of various scaffolds such as α-
naphthoflavones (ANF), flavonoids, trans-stilbenes, anthraqui-
nones, coumarins, alkaloids, and chalcones have all been
explored in the development of CYP1B1 inhibitors.3,5,10,15−18

However, none of these chemicals reached the market due to
their limited solubility and selectivity problems.5,19,20 To
identify potential CYP1B1 inhibitors with improved solubility
and selectivity properties in the current study, the drug
repurposing approach was utilized because it represents a cost-
effective and appealing alternative strategy as existing licensed
pharmacological compounds have undergone extensive safety
and efficacy examinations.21−25 Drug repurposing accounts for
roughly 30% of the new FDA-approved pharmaceuticals in the
United States in recent years.26 In the area of CYP1B1
research, numerous ligand-based computational techniques
have already been forged;5,27 however, none of these models
considered a broad chemical space (various chemical scaffolds)
in the design process, and they are only applicable to certain
chemical series inhibitors. Therefore, in the present study, the
most diverse and potent CYP1B1 inhibitors were utilized in
the development of machine learning (ML) models. The best-
selected ML models were implemented in virtual screening of
the FDA database (https://www.selleckchem.com/screening-
l) in combination with structure-based virtual screening and in
vitro analysis. Furthermore, molecular dynamics (MD)
simulations were used to reveal the specific binding
mechanisms between the hit molecule and its target. Thus, a
novel CYP1B1 inhibitor with a well-established safety or
toxicity profile can be anticipated from this study.

■ MATERIAL AND METHODS
Data Collection and Preparation. A total of 210

selective CYP1B1 inhibitors with IC50 ranges from 0.002 to
400 μM were collected from ChEMBL, Pubchem, and
literature sources.3−5,7,10,15,18,20,28−35 Some of the important
considerations in data collection are as follows: (1) molecules
tested with a similar assay technique, namely, the ethoxyresor-
ufin-O-deethylase (EROD) assay, were considered for
evaluating CYP1B1 and CYP1A1 enzyme inhibitory activity;
and (2) the data of human recombinant cytochrome P450 1A
enzymes (CYP1B1 and CYP1A1) were collected. Finally, one
hundred thirty-six (136) inhibitors were marked as selective
CYP1B1 inhibitors based on selectivity index values, i.e., IC50
of CYP1A1/IC50 of CYP1B1 > 3-folds. The remaining 74
molecules were considered nonselective inhibitors, i.e., IC50 of
CYP1A1/IC50 of CYP1B1<3-folds. The details of the data with

biological activity values against CYP1B1 and CYP1A1 are
given in the Supporting Information as Table S1.
Decoys Generation. The balance of data sets is critical for

developing a solid predictive model. The performance of the
ML model is highly influenced by data imbalance between
classes.36 To balance the data set, 62 decoy molecules were
generated by computing their molecular properties based on
the two diverse selective CYP1B1 structures using the DUDE
online database (http://dude.docking.org/).37 In the current
study, the AM1-BCC method was used to compute partial
charges of all molecules. The geometry of the whole data set
was optimized using the AMBER force field by employing an
implicit OBC2 solvent model with a minimum energy
tolerance of 0.25 kcal/mol. Afterward, the data set was divided
into training (192) and test sets (80) in the ratio of 7:3 using a
random split algorithm in the CARET library38 (Table 1).
Calculation of Molecular Fingerprints and Data

Preprocessing. In predictive modeling, small molecules
were represented in the form of a binary string, known as a
molecular fingerprint. In particular, molecular fingerprints
reveal details on the molecule’s constitutive substructures.
These molecular fingerprints are frequently supplied as a fixed-
length string of integers 1 and 0, where 1 denotes the presence
of a substructure in the given molecule and 0 denotes absence.
The optimized structures of CYP1B1 inhibitors are imported
into PaDEL software to compute different molecular finger-
prints, namely, Estate (Est 79 bits), Molecular Access System
(MACCS 166 bits), and PubChem fingerprint (PubChem 881
bits). A total of 1126 molecular fingerprints were calculated.
To remove extraneous features from the data, some statistical
filters were applied. The following methods were used to
undertake data preprocessing: (1) deletion of molecular
descriptors with zero variance values and (2) elimination of
noise and bias among derived descriptors by the Pearson
correlation analysis.
Feature Selection. To create a good prediction model, it is

essential to choose an optimal number of descriptors. Feature
selection methods have been extensively used to identify
significant feature subsets for improving the prediction
performance of the model. When developing a model, if
molecular structures are represented by an excess number of
descriptors than fixed samples, they may cause a problem of
overfitting (unreliable predictions). Therefore, employing
feature selection methods in predictive model development
procedures is highly important. The details of the feature
selection methods used in the current study are mentioned
below.
Recursive Feature Elimination (RFE). The recursive

feature elimination (RFE) method has recently gained a lot of
popularity due to its high efficiency in discovering informative
features or attributes in the classification of inhibitors
associated with drug activity analysis in a variety of biochemical
fields.39−42 The RFE algorithm assigns a ranking for features
and recursively drops low-rank features and keeps important
ones.42

Table 1. Data Used in the Development of ML Models

target ML algorithms train set test set train set test set

CYP1B1a SVM RF ANN 192 80 selective inhibitors nonselective inhibitors selective inhibitors nonselective inhibitors
96 96 40 40

aCytochrome P450 1B1; drug-inactivating enzymes responsible for resistance to the Taxane class of anticancer drugs, and Imatinib.
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Boruta. The Boruta feature selection method is a wrapper
strategy based on random forests that eliminates features that
are less useful than random probes.43 By considering the
interactions between multiple features, the Boruta algorithm
removes irrelevant inputs repeatedly. It creates shadow features
by reversing the original feature’s values. If a shadow feature’s
importance is greater than or equal to that of the original
feature, it is classified as unimportant.
ML Classification Algorithms. In the ML approach, the

mined properties of known compounds are used to predict the
activity of unknown compounds.44 In this work, different
classification models such as SVM, RF, and ANN were
developed in combination with RFE and Boruta feature
selection methods to classify selective CYP1B1 inhibitors and
noninhibitors. For developing ML models, Rstudio version
1.4.1717 was used in the current study.
Support Vector Machine (SVM). Vapnik created the

support vector machine (SVM) model as a general data
modeling methodology for pattern recognition.45 The main
idea behind the development of the SVM algorithm is to map
the data into high dimensional space by constructing a
hyperplane, which differentiates two separate classes of vectors
with a maximum margin. The model can describe the position
and direction of the hyperplane using a subset of training
vectors. The initial training data in a space X is projected to a
higher dimensional feature space in SVM using a Mercer
kernel operator K. The following is a list of classifiers to be
considered

=
=

f x K x x( ) ( , )
i

n

i i
1

Here, the maximal hyperplane is represented by αi. When f(x)
is less than zero, x is classified as 1; when f(x) is more than
zero, x is classified as −1. The radial basis kernel (RBF)
function implemented with SVM was used to classify training
and test set molecules.46−48 The SVM algorithm was
performed with the help of the kernel parameters Cost (C)
and Sigma (σ).38 To optimize the performance of the
developed SVM model, 10-fold cross-validation was per-
formed.
Random Forest. A random forest is a collection of

different decision trees. At each node, feature bagging finds the
best data split for a random feature subset.49 The final forecast
is a consensus overall decision tree. The correlation between
any two trees, as well as the strength of each tree, has an
impact on the forest error rate. A tree with a low error rate is a
strong classifier. The final prediction is based on a consensus
among all decision trees h(x;k), k = 1, where x is the observed
input (covariate) vector of length p with the associated random
vector X and θk is a set of independent and identically
distributed random vectors.
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There are a handful of parameters that can be adjusted (e.g.,
number of trees, number of features, and mtry), and these
factors have a big impact on the algorithm’s performance. In
this study, random forest models were built using the 10-fold
cross-validation method.
Artificial Neural Network (ANN). An artificial neural

network (ANN) is made up of a large number of connected

artificial neurons.50 Receiving neurons can process the input
signal and then send it to downstream neurons connected to it.
The weight assigned to the neurons can affect their learning
rate. In the current study, the feed forward neural network was
implemented with a single-layer logistic activation function to
develop an ANN model. Furthermore, hyperparameter tuning
parameters such as decay and cost were also utilized in
combination with 10-fold cross-validation to optimize the
developed models. The NNET package in Rstudio was used to
create neural network models. The neuron’s output signal O is
given by the following equation

= =
=

f f wxO (net) ( )
j

n

j j
1

where wj represents the weight vector and the variable
(transfer) function is represented by f (net).
Model Validation. In this study, the robustness of the

generated models was evaluated using 10-fold cross-validation
of the training set. Data sets are frequently divided into two
categories in binary classification models: selective and
nonselective inhibitors. The following eqs 1−5 are used to
calculate sensitivity (SE), specificity (SP), precision (P),
accuracy (ACC), and Matthews’s correlation coefficient
(MCC) to measure the predictive quality of the developed
ML models. The MCC of ML models generated by different
algorithms can be compared to assess their quality. When a
model’s MCC score is near 1, it is deemed better, whereas
when it reaches 0, it is considered a complete failure.
Furthermore, the receiver operating characteristic (ROC)
curve was plotted and the area under the ROC curve (AUC)
was calculated. The values of AUC range from 0 to 1. An AUC
value of 1 represents a flawless model, whereas 0.5 implies a
random classifier, and 0.8 indicates a good model.51,52

=
+

SE
TP

TP FN (1)

=
+

SP
TN

TN FP (2)

=
+

P
TP

TP FP (3)

= +
+ + +

ACC
TP TN

TN FN TP FP (4)

=
× ×

+ + + +

MCC
(TP TN) (FN FP)

(TP FN)(TP FP)(TN FN)(TN FP)
(5)

Molecular Docking. Before performing the docking
experiment conformation sampling method of the FLARE
program was validated by the redocking experiment.53 Initially,
the cocrystal ligand ANF was extracted from its crystal
structure of CYP1B1 (PDB ID: 3PM0); then, the extracted
structure was redocked into protein 3PM0. Afterward, both
cocrystallized and redocked ligands were aligned and the root-
mean-square deviation (RMSD) of heavy atoms was
calculated. When the RMSD is less than 2.0, the sampling is
regarded as successful; otherwise, it is termed a failure. For the
docking study, the PDB structures selected for CYP1B1 and
CYP1A1 with PDB IDs 3PM0 8 and 4I8V,54 respectively, were
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based on the criteria reported in the literature. The proteins
were prepared, which includes insertion of missing atoms in
incomplete residues, modeling of missing loops, removal of
cocrystallized external water, and protonation of the titratable
residues using an XED force field at pH 7.4. A grid was
generated by defining the binding site around the centroid of
the cocrystallized ligand, i.e., α-naphthoflavone (ANF).
Molecular Dynamics. To examine the conformational

changes and stability of the top docked ligands in association
with CYP1B1, molecular dynamic (MD) simulations were
performed for a period of 100 ns utilizing the Flare module of
cresset working on the AMBER force field.53 Molecules were
solvated using the water-based TIP3P model to mimic the
cellular environment. Following this, energy minimization of
the system was performed to ensure that there were no steric
conflicts and that the system had a good starting structure. The
maximum number of iterations and minimum energy tolerance
would be kept as 30 and 0.025, respectively. Flare’s “Analysis”
protocol is used to calculate the ligand-protein RMSD value
and estimate the ligand’s binding orientation. In this study, the
remaining parameters have been set to default.
Enzymatic Assay. The recombinant human CYP1B1 and

CYP1A1 enzymes were purchased from Sigma-Aldrich. 7-
Ethoxyresorufin (7-ER), nicotinamide adenine dinucleotide
phosphate (NADPH), glibenclamide, nadifloxacin, chlorpro-
thixene, umbelliferone, propyl gallate, and α naphthoflavone
(ANF) were also purchased from Sigma-Aldrich. Ticagrelor
was received as a kind gift sample from Cipla Ltd, Mumbai.

The inhibitory activity of these repurposed drugs against the
CYP1B1 and CYP1A1 enzymes was determined using the
EROD assay.55,56 In general, a 200 μL mixture containing
various concentrations (final concentrations were 1, 10, 100,
1000, and 10000 nM) of tested compounds (except for
positive and negative control wells), an enzyme source (5 μL
of 10 picomole CYP1B1 and 5 μL of 2.5 picomole CYP1A1),
45 μL of 0.1 M (pH = 7.4) phosphate buffer, and 50 μL of 7-
ER were incubated in a black 96-well flat-bottomed microplate
at 37 °C for various durations of time (incubation times for
CYP1B1 and CYP1A1 were 35 and 15 min, respectively).
Finally, 50 μL of 1.67 mM NADPH was added to the
aforementioned mixture to start the reaction process. Later,
using a Biotek Gen 5 microplate reader with 530 and 590 nm
excitation and emission filters, the fluorescence intensity was
measured for 10 min with a 2 min interval. Three replicates
were used for each concentration, and each test was performed
in triplicate. The IC50 value of each compound was calculated
with the AAT Bioquest calculator https://www.aatbio.com/
tools.

■ RESULTS AND DISCUSSION
Data Collection and Data Diversity. A total of 210

selective CYP1B1 inhibitors were collected from the different
small-molecule databases and the literature. DUDE, a database
for useful decoys, was used to generate 62 decoys. In
chemometrics, the diversity of chemical compounds signifi-
cantly influences the outcome and prediction of an ML model.

Figure 1. Chemical diversity analysis of training set molecules. (A) Molecular weight on the X-axis vs LogP on the Y-axis. (B) Hydrogen-bond
acceptors on the X-axis vs hydrogen-bond donors on the Y-axis. (C) Molar refractivity on the X-axis vs topological polar surface area on the Y-axis.
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This can be conquered using a wide range of chemical diversity
data sets. In the current study, the structural diversity of
training set compounds was measured using AlogP, molecular
weight (MW), hydrogen-bond donors (H.bond.donors),
hydrogen-bond acceptors (H.bond.acceptors), topological
polar surface area (TPSA), and molecular refractivity index
(MR) descriptors. Figure 1A shows that the vast range of
molecular weights ranging from approximately 144−600 and
the AlogP ranging from −2.9 to 4 indicates that this training
set has sufficient chemical space. Interestingly, it was also
observed that nonselective inhibitors represented by the blue
color showed a higher MW than selective inhibitors
represented by the green color. Along with MW and AlogP,
other drug-likeness descriptors including H.bond.donors and
H.bond.acceptors were estimated, as seen in Figure 1B. This
led to the discovery that H.bond.acceptors ranged from 0 to 7,
while H.bond.donors ranged from 0 to 5. Likewise, TPSA and
MR index values ranged from 0 to 150, as illustrated in Figure
1C. Finally, from this entire analysis, it was concluded that the
training set has sufficient chemical space and could be used for
the development of ML models.
Data Preprocessing and Feature Selection. First of all,

1126 molecular fingerprints were calculated for CYP1B1 data
using the freely available PaDEL tool. Later constant and
highly correlated (>0.6) features were removed using the
variable threshold and Pearson correlation method. Ultimately,
after data preprocessing, 160 fingerprints were identified.
These identified features were further subjected to feature
selection methods using RFE and Boruta algorithms to identify
important and relevant features. Finally, subsets of 20 and 19
features were selected based on the RFE and Boruta variable
importance scores. The identified features using both
algorithms are given in Table 2. Finally, different ML models,
including SVM, RF, and ANN, were developed using each set
of identified features.
Performance of Developed ML Models. A 10-fold

cross-validation approach was used to test the performance of
the developed predictive models (with optimized parameters),
and the results of each model are represented in Tables 3 and
4. Additionally, the results are also illustrated in the form of bar
charts in Figures 2 and 3. Initially, RFE-selected features were
used to develop ML models. All of the developed models were
optimized by various tuning parameters by implementing the
grid search method. For example, the SVM model was created
using the RBF and optimized using the caret package’s Cost
(0.1−2) and Sigma (1−3) parameters, whereas the RF model
was optimized using the mtry parameter, i.e., 7. On the other
hand, the ANN model was optimized using size (1−3) and
decay (0.01−0.1) parameters. The best model was chosen
from the constructed models using statistical parameters such
as SE, SP, P, ACC, and MCC. From Figure 2, it can be
observed that all of the developed models showed predictive
accuracy greater than 0.7 on both training and test sets.
However, overall, the SVM model showed better results than
RF and ANN in terms of ACC and MCC values on a 10-fold
cross-validated test set. The results of each model developed
using Boruta features are given in Figure 3. All models showed
more or less similar results. However, in comparison, the SVM
model showed better 10-fold cross-validated ACC and MCC
values for the test set. Hence, the SVM models were selected as
the best predictive models for both feature selection methods.
Among these, the best model was selected by comparing their
MCC values. According to Chicco et al., the MCC produces aT
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Table 3. Results of the Models Trained Using RFE-Selected Features

s. no. method accuracy sensitivity specificity F1 MCC

1 SVM C = 2.6 Sigma = 0.1 train 0.92 0.95 0.9 0.92 0.84
test 0.82 0.85 0.77 0.77 0.73

2 RF Mtry = 4 train 0.87 0.94 0.80 0.88 0.75
test 0.73 0.87 0.68 0.78 0.68

3 ANN size = 1 decay = 0.01 train 0.87 0.95 0.78 0.88 0.75
test 0.7 0.77 0.67 0.72 0.64

Table 4. Results of the Models Trained Using Boruta Selected Features

s. no. method accuracy sensitivity specificity F1 MCC

1 SVM C = 2.1 Sigma = 0.1 train 0.91 0.94 0.86 0.91 0.80
test 0.77 0.87 0.74 0.79 0.70

2 RF Mtry = 7 train 0.9 0.95 0.83 0.90 0.80
test 0.72 0.87 0.71 0.76 0.67

3 ANN size = 1 decay = 0.01 train 0.90 0.96 0.83 0.90 0.80
test 0.7 0.77 0.65 0.71 0.60

Figure 2. Performance of the 10-fold cross-validated models developed by the RFE features.

Figure 3. Performance of the 10-fold cross-validated models developed by the Boruta features.
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more informative and truthful result in evaluating binary
classification models than accuracy.57 Hence, by considering
the MCC values, the SVM model developed using RFE
features (RFE+SVM) was selected as the best model. The best-
selected SVM model was tuned using sigma (σ) 0.1 and Cost
(C) 2.6 parameters. Furthermore, the performance of the best-
selected model was assessed by an external validation method.
An external data set of 37 selective inhibitors and 168 decoys
was used in this method. The best-selected model provided
0.95% accuracy, 0.90% sensitivity, and 0.96% specificity for the
external validation set. In addition, the MCC values showed

that the best-selected model (RFE+VM) is capable of
classifying both negative and positive classes, as evidenced by
MCC values of 0.73 and 0.82 for 10-fold CV and external
validation, respectively. All of these findings show that the
created SVM model is more effective at distinguishing highly
selective CYP1B1 inhibitors from nonselective CYP1B1
inhibitors.
Y-Scrambling and ROC Curve Analysis. Random

scrambling experiments were performed to prove that the
best performance of the given SVM model was not a result of
chance correlation. The classification labels (i.e., “S”, “N”) of

Figure 4. (A) Y-randomization results of the best-selected RFE+SVM model. Blue dots indicate the scrambled models and the red dot indicates the
original model. (B) ROC curve of the best-selected RFE+SVM model on the test set.

Figure 5. Schematic representation of the virtual screening pipeline.
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the training set (182) molecules were randomly shuffled.
Afterward, attempts were made to build an RFE+SVM model
using scrambled data. A total of 30 randomized models were
created; all of these scrambled models were found to have
lower accuracy and MCC scores than the unscrambled model
(Original model), as shown in Figure 4A. The area under the
ROC curve is an important measure for evaluating the model’s
performance. As a result, it was also plotted to demonstrate a
binary classifier system’s diagnostic ability to distinguish
between two classes. From Figure 4B, it can be observed
that the AUC value of the best-selected SVM models on the
test set is 0.79, indicating that the generated models have good
prediction ability and reliability.
ML-Based Virtual Screening. The best-selected ML

model (i.e., RFE+SVM) was implemented in virtual screening
(VS) of the Selleckchem database, which consists of 2644
FDA-approved chemical compounds. As a result of screening,
660 hits were identified to be selective CYP1B1 inhibitors,
which are further subjected to docking studies to identify the
novel chemical scaffolds as CYP1B1 inhibitors. The schematic
representation of the VS protocol is shown in Figure 5.
Molecular Docking. Following the development of ML

models, validation, and virtual screening, the best predicted
FDA molecules were further evaluated for target binding
affinity against CYP1B1 (PDB ID: 3PM0) and CYP1A1 (PDB
ID: 4I8V) enzymes through molecular docking simulation
studies. Redocking simulation was performed using the
crystallographic structure of 3PM0. From Figure 6A, it was
observed that both ligands (i.e., extracted crystal ligand and
redocked ligand) were entirely overlapped in the same
orientation with a lower RMSD (i.e., 0.5Å), which indicates
that the conformational sampling method of the Flare program
appears to be reliable. The interaction patterns of ANF
(cocrystal ligand) have also been analyzed. As illustrated in
Figure 6B, three pi−pi stacking interactions were observed
between the naphthalene moiety of ANF and active site
residues of PHE 231 and PHE 268, which are crucial for
binding. From the literature, it is evident that PHE 231, PHE
268, and PHE 134 are crucial active residues involved in the
development of pi−pi stacking interactions in CYP1B1
inhibition.58 However, PHE 224 and 123 play an important
role in selective inhibition of CYP1A1 by forming crucial pi−pi
stacking interactions.58 By considering this crucial interaction
and its binding affinity scores, the selectivity of the identified
hits was judged against 1B1 over 1A1.

Figure 6. (A) Conformations of the docking ligand and extracted cocrystal ligand (ANF) are superimposed (the green ligand represents the
cocrystal ligand pose, and the pink ligand represents the redocking ligand pose). (B) Binding mode of ANF inside the CYP1B1 active site.

Table 5. Top 35 Virtual Hits’ Information toward CYP1B1

molecule LF dGa
LF VS
scoreb

LF Rank
scorec

selleckchem
ID

ticagrelor −11.9 −14.4 −11.1 878
bosutinib −11.8 −13.7 −4.4 5
brinzolamide −11.8 −11.5 −8.9 682
ceforanide −11.8 −12.9 −6.2 2012
xipamide −11.8 −12.1 −12.8 1961
dasatinib −11.7 −14.3 −12.8 6
ezetimibe −11.7 −13.9 −12.2 249
ozenoxacin −11.7 −11.9 −10.7 2762
acotiamide-d6 −11.6 −12.5 −9.8 1981
trichlormethiazide −11.6 −11.2 −10.7 750
vilazodone −11.6 −13.5 −4.7 2269
darolutamide −11.6 −12.3 −13.4 1689
donepezil −11.6 −12.6 −5.5 2011
haloperidol −11.6 −13.0 −12.1 108
dolutegravir −11.5 −12.6 −12.7 583
cabergoline −11.5 −12.8 −2.9 2267
isavuconazole −11.5 −13.0 −10.7 1310
ceftezole −11.5 −10.9 −8.9 2058
pantethine −11.4 −13.3 −5.2 1989
lapatinib −11.4 −15.2 −8.8 383
pyritinol −11.4 −12.2 −11.7 1927
(−)-epigallocatechin
gallate

−11.4 −13.1 0.53 445

D-α-tocopheryl acetate −11.4 −12.8 −1.5 1919
pexidartinib −11.4 −13.3 −13.2 1818
lenvatinib −11.4 −12.8 −7.8 422
ozanimod −11.4 −13.6 −14.1 1834
halofuginone −11.3 −12.1 −12.4 1840
nebivolol −11.3 −13.1 −12.1 2506
gefarnate −11.3 −12.1 −1.5 2367
doripenem −11.3 −12.3 −6.7 2339
glyceryl trioctanoate
octanoic acid

−11.3 −12.4 0.434 2643

peimine −11.3 −12.2 −2.6 2326
glibenclamide −10.2 −12.4 −8.4 280
chlorprothixene −9.9 −10.8 −12.3 303
nadifloxacin −9.08 −10.3 −10.2 429
aScore (kcal) used to rank the poses of docked compounds. bScore
(kcal) used to rank the binding affinity of docked compounds. cScore
(kcal) used to rank the docked compounds in the virtual screening
experiment.
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Initially, all of the 660 hits were docked in the active site of
CYP1B1, and their interaction profiles and docking scores
were analyzed. Based on the docking scores, 35 molecules were
selected, which showed high binding affinity scores (i.e., <−8.5
kcal/mol) than that of the cocrystal ligand (i.e., −8.5 kcal/
mol). The identified top 35 molecules with their docking
scores are given in Table 5. All of the 35 molecules showed
crucial pi−pi stacking interactions with PHE 231, PHE 268,
and PHE 134 of CYP1B1. Furthermore, to understand the
selectivity of these identified hits over 1A1, all of the molecules
were docked against CYP1A1, and their docking scores and
interactions profiles were analyzed. After comprehensive
consideration of docking scores, binding modes, and crucial
interactions, four compounds, namely, chlorprothixene,
glibenclamide, nadifloxacin, and ticagrelor, were considered
selective CYP1B1 inhibitors because none of these molecules
showed selective interaction against 1A1. Indeed, similar to the
cocrystal ligand (ANF), these compounds display a high
binding affinity with CYP1B1 by establishing the intra-
molecular interactions with its key amino acids such as PHE
231, PHE 134, ASP 326, LEU 224, HIS 227, GLN 332, ASN
228, LUE 264, and ASN 265. The docking interactions of the
top four molecules are illustrated in Figure 7. To understand
the stability of these interactions, the top four molecules were
further subjected to molecular dynamics studies.

Molecular Dynamics. The stability and flexibility of each
docking complex of CYP1B1 with chlorprothixene, glibencla-
mide, nadifloxacin, and ticagrelor were assessed as a function of
time using a 100 ns MD simulation under an explicit hydration
environment. MD simulation findings were assessed in terms
of pi−pi stacking, hydrogen-bond dynamic stability, and
structural flexibility of CYP1B1. The stability of the trajectory
during MD simulation was determined by analyzing the RMSD
of all complexes based on protein-heavy atoms. The RMSD
plot for each ligand-protein complex is shown in Figure 8A−D,
and it can be seen that the RMSD value of the ligand-protein
fluctuates during an initial period of 35 ns and gradually
stabilizes, and no significant fluctuation was observed in the
four complexes. Following this, all complexes were equilibrated
with average RMSD values of less than 1Å. According to Gupta
et al., stable protein backbone fluctuations and moderate
RMSD values are good indications of molecular dynamics
simulation stability.59 The low RMSD values indicate that over
the 100 ns MD simulation, the protein conformation did not
change or changed only slightly, confirming the logic and
stability of the initial docking complexes. RMSD for the
complexes CYP1B1 with chlorprothixene showed that the
structure of the systems equilibrated well after the 15 ns
simulation (Figure 8A). A slight fluctuation was observed
during the 80−85 ns simulation period with an RMSD of 0.5

Figure 7. Binding interaction patterns of the top four compounds in the active site of CYP1B1: (A) chlorprothixene, (B) glibenclamide, (C)
nadifloxacin, and (D) ticagrelor. Pink-colored-lined dots represent π−π stacking interactions, dark-green-colored-lined dots represent strong
hydrogen bonds, and light-green color represents weak hydrogen-bond interactions.
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Å; however, it showed that RMSD profiles were always less
than 1 Å for chlorprothixene throughout 7−100 simulations.
From Figure 9A, it was observed that two initial docking
interactions such as PHE 231 and ASP 326 were retained in
the case of the compound chlorprothixene, indicating the
stability of the initial docking complex. The CYP1B1 complex
with glibenclamide (Figure 8B) showed that the structure of
the system is equilibrated well after 35 ns simulation with
RMSD of less than 1 Å. As shown in Figure 9B, throughout the
100 ns simulation time, glibenclamide maintained two initial
pi−pi stacking contacts with the residue PHE 231. In the case
of nadifloxacin, slight fluctuations were observed with an
RMSD of 0.5Å during 20−40 ns simulations (Figure 8C); as a
result, one new pi−pi stacking was observed with residue PHE
134, and two initial docking contacts were lost, i.e., LEU 224
and HIS 227 (Figure 9C). From Figure 8D, it was observed
that after the 20 ns simulation, the CYP1B1-ticagrelor system
reached equilibrium. The CYP1B1-ticagrelor complex slightly
fluctuated (i.e., <1 Å) during the 65−75 ns simulation; as a
result, one new pi−pi stacking interaction was observed with
the residue PHE 231 shown in Figure 9D. Thus, the stability of
CYP1B1 in chlorprothixene, glibenclamide, nadifloxacin, and
ticagrelor-bound states was found to be suitable for
postanalysis. The RMSD and crucial pi−pi stacking inter-
actions of all complexes showed that they stably bounded to
CYP1B1 throughout 100 ns simulations. The MD simulations
revealed that key pi−pi stacking and hydrogen-bond
interactions were conserved. The best four docked compounds

have essential contacts with the enzyme’s active region,
indicating that these compounds could potentially inhibit
CYP1B1. Enzymatic test assays were performed utilizing
human recombinant cytochrome P450 enzymes, namely,
CYP1B1 and CYP1A1 enzymes, to see how well these four
compounds can potentially inhibit CYP1B1.

In Vitro CYP Inhibition Assay. The inhibitory effects of
the top four compounds on recombinant human CYP1B1 and
CYP1A1 enzymes were evaluated using the standard EROD
assay, which has been widely used as a method for the
assessment of CYP1 inhibitory activity.19,60−62 ANF, a well-
known CYP1 inhibitor, was used as a reference drug. The top
selected drugs (chlorprothixene, nadifloxacin, glibenclamide,
and ticagrelor) were examined at five concentrations as
mentioned in the methodology section to investigate their
CYP1B1 inhibitory activity. As shown in Figure 10, for each
compound in the mixture, IC50 was calculated using a dose−
response curve plotted between percentage inhibition and log
concentration (these observations were calculated in tripli-
cate). According to general evaluation, three drugs, including
chlorprothixene, nadifloxacin, and ticagrelor, exhibited poten-
tial inhibition effects on both CYP1 isoforms as mentioned in
Table 6, whereas 50% inhibition was not observed at 10 μM in
the case of glibenclamide. Among all compounds, chlorpro-
thixene showed potent inhibitory activity against 1B1 (i.e., IC50
= 0.072 ± 0.008 μM) compared to 1A1 (i.e., IC50 = 0.49 ±
0.04 μM) with 7-fold selectivity. This high potency may be
assumed to be due to their crucial pi−pi stacking and salt

Figure 8. RMSD plot of top four molecules in complex with CYP1B1: (A) chlorprothixene, (B) glibenclamide, (C) nadifloxacin, and (D)
ticagrelor.
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bridge interactions with PHE 231 and ASP 326 residues, as
displayed in Figure 9A. From the literature, it was evident that
salt bridge interactions play an important role in conforma-
tional specificity and the molecular recognition process. The
binding energy of the salt bridge interactions is significantly
higher than the hydrogen-bond and pi−pi stacking inter-
actions.63 In the current study, chlorprothixene showed one
pi−pi stacking and one salt bridge interaction with residues
PHE 231 and ASP 326, respectively (Figure 9A). However, no
salt bridge interactions were observed in the case of
compounds glibenclamide, nadifloxacin, and ticagrelor (Figure
9B−D). From these results, it was concluded that ASP 326 and
PHE 231 are the only contributors to chlorprothixene potency.
On the other hand, nadifloxacin and ticagrelor showed
moderate potency against both CYP1 isoforms. However,
slightly better activity was observed against 1B1 with IC50
values of 1.46 and 2.81 μM, respectively. Finally, these findings
led to the conclusion that pi−pi stacking interaction with PHE
231 is responsible for the potency of three compounds
including chlorprothixene, nadifloxacin, and ticagrelor. A study
conducted by Du et al. suggested that chlorprothixene, a
dopamine receptor antagonist, can induce cell death by
apoptosis in myeloid leukemia cell lines.64,65 This may direct
oncologists to explore chlorprothixene as a potential adjuvant
in the case of imatinib-resistant-acute myeloid leukemia cell
lines. Additionally, the second hit Ticagrelor, an antiplatelet
drug, has been reported to show breast cancer prevention
activity in orthotopic 4T1 breast cancer models by inhibiting
tumor-cell platelet aggregation.63 From these findings, it was
hypothesized that ticagrelor may be used as adjuvant therapy
in docetaxel-resistant breast cancer. Nadifloxacin is a

fluoroquinolone class of antibacterial drug that has been
reported to show promising anticancer activity in triple-
negative breast cancer cell lines (i.e., MDA-MB-231) by
apoptosis mechanism.66 These results suggested that the
combination therapy of docetaxel and nadifloxacin could
improve the anticancer activity in docetaxel-resistant breast
cancer cell lines. Herein, we report that chlorprothixene,
ticagrelor, and nadifloxacin may ameliorate the anticancer
activity in docetaxel-resistant cell lines by inhibiting CYP1B1.

■ CONCLUSIONS
Resistance against clinically authorized anticancer drugs is a
major challenge in cancer treatment. Several commonly used
anticancer medications, such as docetaxel, imatinib, and
paclitaxel, are inactivated by CYP1B1, which ultimately results
in drug resistance. A number of commonly used anticancer
medications, such as docetaxel, tamoxifen, imatinib, and
paclitaxel, are specifically quickly inactivated by CYP1B1,
which ultimately results in drug resistance. Herein, efforts have
been made to integrate in silico and in vitro approaches to
identify possible selective CYP1B1 inhibitors. Based on the
existing knowledge about already known selective and
nonselective CYP1B1 inhibitors, three ML models such as
SVM, RF, and ANN were developed. The best-selected SVM
+RFE model was validated with known CYP1B1 inhibitors and
Y-scrambling experiments. The best-selected model with an
MCC value on the test set of 0.73 was used to screen the
selleckchem database. To estimate the binding affinity, binding
pose, and factors governing the binding process of the obtained
hits, molecular docking and molecular dynamics (MD)

Figure 9. Interactions of top four ligands in complex with CYP1B1 (3PM0) after 100 ns molecular dynamics simulations: (A) chlorprothixene, (B)
glibenclamide, (C) nadifloxacin, and (D) ticagrelor.
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simulations have been performed. From interaction and RMSD
analysis at the atomic level through the 100 ns MD simulation,
it was found that four compounds such as chlorprothixene,
glibenclamide, nadifloxacin, and ticagrelor maintain mandatory
pi−pi stacking and hydrogen-bonding interactions and can be
considered to be the best. The ligand-binding affinity was then
assessed via an in vitro enzymatic assay. The 50% inhibition
concentration (IC50) of these four compounds to CYP1B1 was
determined via an EROD assay. Three compounds including
chlorprothixene, nadifloxacin, and ticagrelor were found to be
highly potent inhibitors of CYP1B1 because they established
IC50 values of 0.072, 1.463, and 2.81 μM, respectively.
Although it was expected to inhibit CYP1A1, to our surprise,
chlorprothixene exhibited significant selectivity (7-fold) toward
CYP1B1 over CYP1A1 than the cocrystal ligand (ANF). From
molecular dynamics results, it was concluded that pi−pi
stacking and salt bridge interaction with PHE 231 and ASP
326 play a crucial role in the inhibitory potency of
chlorprothixene, whereas, on the other hand, the same kind

of salt bridge interaction, i.e., ASP 326, was absent in other
compounds. These identified new leads can be considered for
developing new therapeutics to treat CYP1B1-mediated drug-
resistance problems in cancer patients. Overall, it can be
concluded that the discovery of novel CYP1B1 inhibitors with
the help of multiple ML and classical SB-VS methods may be
beneficial to cope with the problem of chemoresistance.
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Table 6. Identified Inhibitory Potencies of the Top Four
Molecules in Human Recombinant CYP-P450 Enzymes

recombinant human
CYP-P450 enzymes/IC50 μM selectivity

molecule CYP1B1 ± SD CYP1A1 ± SD CYP1A1/CYP1B1

chlorprothixene 0.07 ± 0.01 0.49 ± 0.04 6.8
glibenclamide >10 >10
nadifloxacine 1.46 ± 0.06 2.36 ± 0.20 1.61
ticagrelor 2.81 ± 0.90 3.45 ± 0.39 1.22
ANF 0.02 ± 0.01 0.02 ± 0.004 1
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