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NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) is a member of the
NLR family. The NLRP1 inflammasome consists of the NLRP1 protein, the adaptor protein
apoptosis-associated speck-like protein containing a CARD domain, and the effector
molecule pro-caspase-1. When stimulated, the inflammasome initiates the cleavage of
pro-caspase-1 and converts it into its active form, caspase-1; then, caspase-1 facilitates
the cleavage of the proinflammatory cytokines interleukin-1b and interleukin-18 into their
active and secreted forms. In addition, caspase-1 also mediates the cleavage of
gasdermin D, which leads to pyroptosis, an inflammatory form of cell death.
Pathological events that damage the brain and result in neuropathological conditions
can generally be described as brain injury. Neuroinflammation, especially that driven by
NLRP1, plays a considerable role in the pathophysiology of brain injury, such as early brain
injury (EBI) of subarachnoid hemorrhage, ischemic brain injury during stroke, and
traumatic brain injury (TBI). In this article, a thorough overview of NLRP1 is presented,
including its structure, mechanism of activation, and role in neuroinflammation. We also
present recent studies on NLRP1 as a target for the treatment of EBI, ischemic brain injury,
TBI, and other types of brain injury, thus highlighting the perspective of NLRP1 as an
effective mediator of catastrophic brain injury.
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INTRODUCTION

Subarachnoid hemorrhage (SAH) is commonly initiated by aneurysm rupture and leads to poor
neurological outcomes, along with high morbidity and mortality (1, 2). As a subtype of stroke, SAH
is characterized by two core factors that are blamed for its unfavorable consequences: early brain
injury (EBI) and cerebral vasospasm (CVS). Emerging evidence has shown that EBI plays a more
significant role than CVS in the outcomes of SAH (3–5). The toxicity of subarachnoid blood and the
temporary global ischemia induce an extreme immune reaction during the EBI stage, which is
responsible for secondary brain injury (6).
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The potential mechanisms of brain injury after SAH include
endoplasmic reticulum stress (ERS), oxidative stress, neuro
inflammation, apoptosis, and autophagy (7–9). Many studies
have explored the relationship between NOD-like receptor
(NLR) family pyrin domain-containing 3 (NLRP3) and SAH,
thus indicating that NLRP3 is a potential mediator of SAH
therapy. Extreme ERS can cause oxidative stress and induce
downstream responses, resulting in inflammation (10). The
stimulation of thioredoxin-interacting protein/NLRP3 may be
related to the inflammatory response in brain injury via ERS
(6). In addition, NLRP3 regulates neuronal pyroptosis in EBI
following SAH (11). Currently, the role of NLRP1 in EBI is
becoming increasingly attractive. The level of NLRP1 increases
during the EBI period (12), and NLRP1 is to decreased in the
atorvastatin-treated SAHmouse model (13). Thus, it is reasonable
to consider NLRP1 a promising target for the treatment of SAH.

Stroke occurs when the blood flow to the brain declines
abruptly, which often leads to neurological functional
impairment or deficiency (14). As the most common type of
stroke, ischemic stroke accounts for approximately 80% of all
stroke incidents (15) and can be subdivided into two types: global
ischemia and focal ischemia (16, 17). The pathology of ischemic
brain injury consists of a central ischemic core and the
surrounding peri-infarct zone caused by focal hypoperfusion (18).

Neuroinflammation plays a pivotal role in poststroke
physiopathology and results in an imbalance in tissue
homeostasis (19, 20), such as reactive oxygen species (ROS),
imbalanced cytoplasmic Ca2+, impairment of the blood–brain
barrier (BBB), and mitochondrial stress (21–23). NLRP1 can
promote the production of proinflammatory cytokines, thus
causing the death of neuronal cells and behavioral dysfunction
(24). However, the maturation of interleukin-1b (IL-1b) and
interleukin-18 (IL-18) in mice with focal cerebral stroke can be
limited by restraining the NLRP1 inflammasome (25). These
results demonstrate that the NLRP1 inflammasome may play an
important role in ischemic brain injury and may be a promising
target for the treatment of ischemic stroke.

Traumatic brain injury (TBI) is a subtype of brain injury
caused by contact sports, traffic accidents, or warfare and often
leads to morbidity and mortality among children and young
adults (26). Generally, after a mechanical insult to the brain, TBI
results in a primary injury that initiates a secondary cascade of
events. The primary injury directly leads to the loss of neurons
and necrotic death (27), while the secondary brain insult is
characterized by a series of neuroinflammatory responses,
including oxidative stress, mitochondrial dysfunction, BBB
leakage, activation of microglia and astrocytes, and an increase
in cytokines (28, 29).

Several inflammasomes are closely associated with TBI, such
as the NLRP3 and AIM2 inflammasomes (30–32). In recent
decades, emerging clinical evidence has demonstrated that
NLRP1 is an ideal target inflammasome for TBI therapy—for
example, TBI patients with clinically diagnosed unfavorable
outcomes possessed higher levels of NLRP1 expression in their
cerebrospinal fluid (CSF) than those with favorable outcomes
(33). In addition, CSF collected from a spinal cord injury and TBI
patients was found to contain exosomes carrying NLRP1 (34).
Frontiers in Immunology | www.frontiersin.org 2
THE INNATE IMMUNE SYSTEM AND
INFLAMMATION IN THE CENTRAL
NERVOUS SYSTEM

The innate immune system protects the host from infections and
noninfectious harmful stimuli, and its key role is to detect and
react to pathogens. In some cases, immune cells directly identify
microbial ligands (such as bacterial flagellin and double-stranded
RNA) or detect distinct pathogen motifs known as pathogen-
associated molecular patterns (35). In other cases, innate
immune receptors recognize molecules related to a sterile
tissue damage called danger-associated molecular patterns (36).
Germline-encoded pattern recognition receptors (PRRs), such as
Toll-like receptors, C-type lectin receptors (CLRs), and
nucleotide oligomerization domain-like receptors (NOD-like
receptors or NLRs), can identify these signals (37). After being
engaged, these receptors facilitate the maturation and secretion
of proinflammatory cytokines and molecules, leading to
inflammation and the removal of pathogens.

Because of its primary resident immune cells, which are
microglia and astrocytes, the CNS is protected from external
damage, pathogens, and toxins (38, 39). Equally important is the
integrity of the CNS which is also sustained by the extremely
selective semipermeable membrane barrier, known as the BBB,
which separates the CNS from the periphery (40). In response to
infections, resident immune cells are able to produce innate
immune responses and stimulate inflammation in the CNS,
which is often referred to as neuroinflammation. Interestingly,
it has been demonstrated that neurons are also involved in this
kind of response by expressing PRRs and producing
proinflammatory cytokines (41, 42). While inflammation
protects the host from infections, excessive inflammation can
cause severe tissue injury and even death by amplifying harmful
pathways (43).
THE NLRP1-ASC-CASPASE-1
INFLAMMASOME COMPLEX AND ITS
ROLE IN NEUROINFLAMMATION

NLRP1 was the first inflammasome to have been studied in
length and is also known as NALP1, NAC, DEFCAP, CLR17.1,
and CARD7 (44). NLRP1 is expressed mainly in motor neurons
in the cerebral cortex and spinal cord and is also present in
microglia (45). As a multiprotein complex, the NLRP1
inflammasome is composed of NLRP1, the adaptor protein
apoptosis-associated speck-like protein containing a CARD
domain (ASC) and the effector protein pro-caspase-1 (46).
ASC possesses both a pyrin domain (PYD) and a CARD
domain and links NLRP1 and pro-caspase-1 (Figure 1). After
being stimulated, NLRP1 assembles ACS through homotypic
interactions between the PYDs; subsequently, prion-like
polymerization of ASC is catalyzed by NLRP1 to facilitate a
downstream reaction (47–49). As a member of the cysteine-
aspartic acid protease family, pro-caspase-1 then attaches to the
complex through CARD–CARD interactions, favoring ASC
May 2022 | Volume 13 | Article 863774
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oligomerization. Many pro-caspase-1 molecules are recruited
and undergo autocatalytic cleavage to produce p10 and p20
subunits. These subunits transform into two heterodimers that
are the activated forms of caspase-1 (46, 50). Once stimulated,
caspase-1 initiates the cleavage of IL-1b and IL-18 into their
mature forms and mediates their secretion (25). IL-1b and IL-18
are proinflammatory cytokines that can activate innate
and adaptive immune responses, such as inflammation
(51) (Figure 2).

The NLRP1 inflammasome is the first member of the NLR
family and is highly expressed in the brain (52). The stimulation
of NLRP1 can result in an inflammatory response (53); in several
animal models, it has been discovered that inflammatory
reactions and brain injury can be moderated by restraining the
NLRP1 inflammasome (54–56). Active caspase-1 could cleave
the pore-forming protein gasdermin D and cause pyroptosis, a
type of programmed proinflammatory neuronal death that
differs from apoptosis (46). Pyroptosis consists of osmotic
swelling, the formation of pores in the membrane, and the
disruption of membrane integrity (57); this process promotes
the release of the inflammasome into the extracellular space and
induces brain inflammation (58).
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THE STRUCTURE OF THE
NLRP1 PROTEIN

As a member of the NLR family, human NLRP1 (hNLRP1) is
characterized by 1,473 amino acids and 165.9 kDa and contains a
primary NACHT (NAIP, CIITA, HET-E, and TP-1) domain
(also known as nucleotide oligomerization domain) and a
leucine-rich repeat (LRR) domain, along with a PYD located at
its N-terminus (59, 60). Unlike other NLRs, hNLRP1 has a C-
terminal extension containing a function-to-find domain
(FIIND) flanked by an LRR and a CARD attached to the C-
terminus. Structurally, the FIIND contains a combination of ZU5
and UPA subdomains and undergoes posttranslational
proteolytic cleavage (Figure 1). The cleavage, which is essential
for the activation of NLRP1, leads to the separation of the ZU5
and UPA domains, which remain associated with each other
through a noncovalent linkage (61–63). It has also been shown
that only a portion of NLRP1 proteins undergo autoproteolysis
(~50%) (62).

PYD and CARD domains are members of the death domain
superfamily, which is known for the transduction of apoptosis
and inflammatory signals (64, 65). CARD has been proven to be
FIGURE 1 | Structures of NLRP1 inflammasome proteins. Unlike other NLRs, NLRP1 proteins have a FIIND and CARD at the C-terminus. The FIIND consists of
ZU5 and UPA subdomains, and autoproteolysis takes place between them. In addition, NLRP1 proteins contain NACHT and LRR domains preceding the FIIND.
Human NLRP1 also possesses a PYD domain at the N-terminus, which is absent in its rodent orthologs. ASC consists of a PYD and CARD, while pro-caspase-1
possesses a CARD before its catalytic p20 and p10 subunits.
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the necessary effector domain, while PYD seems to be less
important, as it is the C-terminal CARD and not the N-
terminal PYD that assembles ASC to form the inflammasome
(62). Although several CARD domains can recruit pro-caspase-1
in the absence of ASC (66, 67), ASC is essential for bridging
hNLRP1 CARD and pro-caspase-1.

In addition to the cleavage of the FIIND, hNLRP1 also
undergoes N-terminal cleavage at the linker sequence between
PYD and NACHT. The proteolytic cleavage of the N-terminus
has been shown to be a common molecular mechanism for
NLRP1 activation (68, 69). In 2016, Chavarrıá-Smith et al.
performed artificial cleavage at the linker region, and the
reformed hNLRP1 was activated (69). Interestingly, even when
the PYD was substituted with a green fluorescent protein, this
activation occurred. N-terminal cleavage is also necessary in
mouse Nlrp1b, which lacks a PYD (68). Thus, there are reasons
to believe that the N-terminus acts as an autoinhibitor instead of
an inflammasome signal transductor. However, further
investigation is required to elucidate the role of PYD in the
activation of NLRP1.

Unlike NLRP1, which is the only gene in humans, the mouse
genome contains three paralogues (Nlrp1a, Nlrp1b, and Nlrp1c),
although it is predicted that Nlrp1c is a pseudogene (70, 71). In
the absence of a PYD, both mouse NLRP1A (mNLRP1A) and
mouse NLRP1B (mNLRP1b) can assemble pro-caspase-1
Frontiers in Immunology | www.frontiersin.org 4
regardless of the presence of ASC (53, 66, 72). mNLRP1B
possesses at least five comparatively polymorphic alleles (70).
In a study on lethal toxin-induced macrophages, the researchers
observed that allele 1 was carried by the most susceptible
macrophage strains and that limited numbers of susceptible
macrophage strains carry allele 5, whereas all resistant
macrophages carried alleles 2, 3, or 4 (70). Because of deficient
autoproteolysis and truncation prior to the CARD domain, both
mNLRP1B alleles 3 and 4 lack functional abilities (63, 70, 73).
Similar to mNLRP1, rat NLRP1 (rNLRP1) does not have a PYD
at the N-terminus but consists of only one Nlrp1 gene (Figure 1).
There are at least five rNLRP1 alleles, all of which encode
functional proteins (73, 74). However, the role of ASC in the
recruitment of the rNLRP1 inflammasome remains unknown.

It has been demonstrated that NLRP1 exhibits structural and
functional differences between humans and rodent, which result
in difficulties in investigating NLRP1 (75). In view of the limited
knowledge regarding the first inflammasome described, more
efforts are needed to study the mechanisms of NLRP1.
ACTIVATORS THAT STIMULATE NLRP1

In recent years, several stimuli have been shown to be associated
with NLRP1 activation, and these stimuli can be divided into two
FIGURE 2 | Activation of the NLRP1 inflammasome. FIIND is autocleaved to activate NLRP1. Then, PYD undergoes cleavage, and the inflammasome complex
subsequently forms, suggesting that PYD may play an autoinhibitory role. The binding of ASC can recruit pro-caspase-1. Then, pro-caspase-1 undergoes
autocatalytic cleavage and forms the p10 and p20 subunits, which initiate the maturation and secretion of IL-1b and IL-18.
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groups. The first group consists of direct activators, such as the
anthrax lethal toxin (LT) and Shigella flexneri, which can activate
only one NLRP1 allele subset via the direct modification and
degradation of the NLRP1 N-terminal fragment (69, 76, 77). The
other group of indirect activators consists of Toxoplasma gondii
(T pathogen), inhibitor of dipeptidyl peptidases 8 and 9 (DPP8/
DPP9), and metabolic inhibitors (73, 78–81) and seems to cause
a type of cellular disorder that can be detected by
NLRP1 proteins.

Direct Activators
Macrophages with mNlrp1B alleles 1 and 5 or with rNlrp1 alleles
1 and 2 can be activated by LT (82, 83). After the FIIND
undergoes posttranslational autoproteolysis, the subdomains
ZU5 and UPA produce C-terminal and N-terminal fragments,
respectively, which associate with each other via noncovalent
bonding. In 2019, Chui AJ and Sandstrom A et al. showed that an
N-terminus was produced after NLRP1 cleavage by LF, which
can be identified by the N-end rule pathway (77, 84). The N-end
rule E3 ligase UBR2 (85, 86) plays an important role in
recognizing and ubiquitinating the neo-N-terminus (84, 87),
while the cleavage in the FIIND domain blocks the
degradation of the C-terminal fragment during the cleavage of
the N-terminal fragment, thus liberating the C-terminal
Frontiers in Immunology | www.frontiersin.org 5
fragment and resulting in the subsequent assembly and
activation of pro-caspase-1 and pyroptosis (Figure 3). This
model explains the demand for proteolytic cleavage and FIIND
autoproteolysis during inflammasome activation and
demonstrates that LT is a danger-associated activator of
rodent NLRP1.

Correspondingly, S. flexneri, an intracellular bacterium, was
discovered to secrete IpaH7.8 E3 ubiquitin ligase, which is
capable of ubiquitinating mNlrp1B allele 1 and subsequently
activating it (77). Surprisingly, the stimulation of E3 ligase and
the host proteasome is required for this process. However, the N-
end rule pathway is dispensable for this process, as IpaH7.8 can
ubiquitinate the inflammasome itself.

In addition, in 2020, Robinson KS et al. discovered that
enteroviral 3C protease could directly cleave hNLRP1 at the
site between Glu130 and Gly131, which is mapped to the linker
region, followed by the PYD domain, and this process activated
the NLRP1 inflammasome and induced the secretion of IL-18,
providing a novel mechanism for direct NLRP1 inflammasome
activation (88).

In summary, this decoy model hypothesizes that, within
innate immune cells, pathogens such as LT and S. flexneri
survive and destroy host NLR proteins that can inhibit
pathogen replication. The effectors also degrade the N-
FIGURE 3 | Direct activation of the NLRP1B inflammasome. NLRP1B undergoes autoproteolysis at the FIIND and generates the ZU5 and UPA subdomains. Then,
LF cleavage between the K44 and L45 residues in the N-terminus produces an unstable N-terminal residue. The neo-N-terminus is subsequently recognized and
ubiquitinated by the N-end rule E3 ligase UBR2, initiating proteasome-mediated degradation. The C-terminal fragment is free to recruit and stimulate pro-caspase-1.
May 2022 | Volume 13 | Article 863774
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terminus of NLRP1 because of its resemblance to the intended
targets and thus induce an immune response (77, 89). In addition
to acting as a decoy to detect an overwhelming variety of
pathogens that undergo constant evolution, this model also
provides an explanation for the high polymorphism of NLRP1.
More efforts are needed to validate that NLRP1 serves as a decoy.
In particular, the hypothesis that pathogen effectors also destroy
the intended targets, such as other NLR proteins, as the model
assumes, has not yet been proven.

Indirect Activators
In 2014, it was demonstrated that, in Lewis rat bone marrow-
derived macrophages, when NLRP1 was downregulated by
siRNA, cell death caused by T. gondii was decreased, and the
opposite effect was observed when the Nlrp1 allele 5 was
overexpressed in CDF macrophages, indicating that the
pyroptosis induced by T. gondii was closely related to NLRP1
(78). Thus, T. gondii became the second stimulus associated with
pathogens after LT. Interestingly, in human MonoMac6 cells,
when shRNA was used to knockdown NLRP1, enhanced cell
death caused by T. gondii was reported (90), which seems
contradictory to the role of NLRP1 in rats.

In the last few years, VbP, a nonselective inhibitor with
specific activity against the dipeptidyl peptidases DPP8 and
DPP9 (91), has been shown to stimulate both mouse and rat
NLRP1 inflammasomes (92, 93). In addition, NLRP1-induced
pyroptosis was observed in human keratinocytes treated with
VbP (94), indicating that VbP can not only activate rodent Nlrp1
but also modify hNLRP1. To stimulate NLRP1, VbP degrades the
N-termini of sensitive PRRs by proteolysis, liberating the C-
terminal fragments to establish inflammasomes (84, 95).
Intriguingly, it seems that VbP does not directly cleave N-
terminal fragments (93, 95), which suggests that pyroptosis
caused by NLRP1 is independent of the N-end rule pathway.
In addition, DPP9 inhibits hNLRP1 activation by associating
with the FIIND (94).

Mogridge J et al. found that 2-deoxyglucose, an inhibitor of
glycolysis, plus sodium azide, an oxidative phosphorylation
inhibitor, was able to stimulate the NLRP1B allele 1,
particularly in HT1080 cells, and this process was independent
of the direct cleavage of the N-terminus (80, 81), similar to the
effects of T. gondii and DPP8/9 inhibitors. Similarly, NLRP1B
activation was observed in RAW 264.7 cells after Listeria
monocytogenes or S. flexneri exposure (96); the authors
suggests that all three stimuli activated the cells by reducing
Frontiers in Immunology | www.frontiersin.org 6
adenosine triphosphate (ATP), as decreased cytosolic ATP levels
were discovered during these processes.

In contrast to direct stimuli, indirect activators may cause
disruptions within cells, stimulating E3 ligase to ubiquitinate the
N-terminus of NLRP1 and resulting in its degradation (73). To
some degree, in this model, indirect activators sense activities
associated with pathogens (80, 81), detecting disturbances in
cellular homeostasis and the relationship with metabolism (96–
98) (Figure 4). However, the detailed mechanism of cell
perturbations induced by T. gondii, VbP, or metabolic
inhibitors remains to be identified, and the specific relationship
between these factors has not been reported.
ACTIVATION MECHANISM OF NLRP1

In hNLRP1, the FIIND contains Ser1213, which can be
deprotonated by the highly conserved His1186 residue. The
FIIND is structurally divided into the ZU5 and UPA domains.
Following posttranslational autoproteolytic cleavage, the two
domains remain attached to each other via noncovalent bonding
(61–63); the autocleavage of FIIND is fundamental for the
subsequent activation of NLRP1. Moreover, the NOD domain of
hNLRP1 possesses Walker-A and Walker-B, two motifs that bind
ATP, which is essential for self-oligomerization and
inflammasome recruitment, and NOD plays an important role
in forming the core of the inflammasome complex (99). This
activation prompts a structural conformational shift that turns
NLRP1 into an asteroidal filament-shaped conformation that
clusters within NODs. The formation of the inflammasome
complex is then achieved through the interaction with ASC and
the assembly of pro-caspase-1 (46) (Figure 2).

The PYD domain located at the N-terminus interacts with
ASC through homotypic PYD–PYD attraction, and pro-caspase-
1 is assembled through the interaction of the ASC CARDs and
pro-caspase-1. Having its own CARD domain to transduce
signals, NLRP1 can recruit caspase-1 independently of ASC. In
2008, a study conducted by Hsu LC revealed that NLRP1 was
required to associate with NOD2, another NLR protein that can
respond to bacterial muramyl dipeptide, to activate caspase-1
and induce IL-1b secretion, and this process was independent of
ASC (100). In 2014, Van Opdenbosch N et al. discovered that,
after treatment with LF, ASC-deficient murine macrophages
produced IL-1b via NLRP1B (72). However, inflammasome
signaling could be enhanced by speck formation induced by
FIGURE 4 | The pathogen-associated effects induced by T. gondii infection, DPP8/9 inhibitors, or metabolic inhibitors can be detected by the indirect activation of
the NLRP1 inflammasome. These activities can initiate perturbations in cells, which may stimulate the E3 ligase, resulting in the ubiquitination and degradation of the
N-terminus of NLRP1.
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ASC, which then stimulated abundant amounts of caspase-1 to
mediate optimum downstream responses, such as mature
cytokine production (49). The detailed structure of NLRP1
oligomerization remains unclear because of the different
locations of the transduction domain of NLRP1 compared with
other inflammasomes (Figure 2).

Unlike hNLRP1, the N-terminus plays an essential role in the
activation of mNLRP1B (62, 69). First, mNLRP1B undergoes N-
terminal cleavage and generates a neo-N-terminus; then, it
undergoes ubiquitination and full-length degradation induced
by proteasomes via the N-end rule pathway. Subsequently, an
effective inflammatory C-terminal fragment is released, with a
UPA-like domain associated with CARD (77, 84). In favor of the
CARD–CARD interaction, a simple inflammasome complex
made up of the UPA–CARD fragment contains ASC and
caspase-1. It is noteworthy that the activation of mNLRP1
takes place in the absence of the NOD domain, as it is
removed via the N-end rule pathway, unlike hNLRP1, in
which NOD constitutes the core of the inflammasome.

A high level of potassium is released into the extracellular
environment after TBI, which stimulates pannexin-1 channels
and leads to the recruitment of the NLRP1 inflammasome (54,
55, 101). Pannexin-1 mediates neurotoxic effects that can
enhance plasma membrane permeability and stimulate
inflammasomes (102). In addition, pannexin can be
coactivated by P2X7, a type of ATP-gated cation channel that
stimulates nonselective ionic passage, such as calcium efflux and
potassium efflux, when activated by high levels of extracellular
ATP. It has been reported that pannexin-1 is also involved in
neuronal death induced by Ab in Alzheimer’s disease and other
neurodegenerative diseases (103–105). In addition, NLRP1
activation results in the cleavage of an antiapoptotic protein
that is related to the caspase-invalidation-X-linked inhibitor of
apoptosis protein (XIAP) (54, 106). The cleavage of XIAP leads
to N-terminal BIR1–2 fragment production, which, in turn,
further decreases the ability of XIAP to restrain caspases (107).
Thus, the cleavage of XIAP during NLRP1 inflammasome
activation may stimulate caspase-1 (107).
NLRP1 AS A TARGET FOR THE
TREATMENT OF BRAIN INJURY

Subarachnoid Hemorrhage
SAH is one of the most common cerebrovascular diseases, and
emerging evidence demonstrates that EBI following SAH plays a
significant role in the poor outcomes of SAH (4, 5, 108). Among
the potential mechanisms of EBI, such as apoptosis, autophagy,
necroptosis, and neural death (3, 109–111), pyroptosis, which is a
mechanism of programmed cell death, has emerged in recent
decades (112). The formation of NLRP inflammasomes can
transform pro-caspase-1 into its cleaved form, which induces
the cleavage of pro-IL-1b and pro-IL-18, resulting in the
inflammatory form of cell death known as pyroptosis (113).

In 2016, Wu Q et al. collected CSF from 24 SAH patients
within 72 h of an attack and compared the samples with those
Frontiers in Immunology | www.frontiersin.org 7
from control patients who underwent artificial hip arthroplasty
(12). The researchers found that the NLRP1, ASC, and
caspase-1 levels were higher in the CSF of SAH patients than
those of control patients and that elevated inflammasome
protein levels showed a significant relationship with the
severity and passive outcomes of SAH, along with acute
hydrocephalus and CT cerebral oedema manifestations. The
researchers also discovered that NLRP1 could act as an
independent risk factor for SAH outcomes and ultimately
concluded that the inflammasome proteins in the CSF of
SAH patients could be biomarkers to evaluate EBI and poor
clinical outcomes (12).

Pyroptosis is associated with various CNS diseases and is
related to repair, aging, tumors, cerebral hemorrhage, and
ischemia in the CNS (113–115). In 2021, Chen JH et al. found
that atorvastatin, a cholesterol-lowering medicine, could
dramatically improve the poor outcomes after SAH, such as
the survival rates and neurological scores of mice and the survival
rates of neurons. The outcomes were accompanied by the
downregulation of NLRP1, cleaved caspase-1, IL-1b, and IL-18
expression (13). This discovery indicates a potential treatment
for SAH by blocking pyroptosis and NLRP1 and NLRP3.
Although atorvastatin has a promising effect on SAH, its
practical application in patients requires further study.
Whether other agents are beneficial for curing SAH via the
NLRP1/caspase-1/IL-1b and IL-18 pathway or other
inflammatory pathways remains unclear.

Ischemic Brain Injury
Stroke is initiated by the rupture or obstruction of the cerebral
vasculature, leading to brain injury, permanent disability, and even
death (17). Ischemic stroke accounts for 80–85% of all stroke cases
(ischemic and hemorrhagic stroke) worldwide, making it the most
common type of stroke (116). A growing body of evidence
suggests that inflammation in the immune system plays a
significant role in this condition (117). Stimulation of the
immune system upregulates proinflammatory cytokines,
chemokines, and ROS, all of which cause neuroinflammation
(118). Inflammasomes are strongly involved in the innate
immune system inflammatory response (119).

The NLRP family of inflammasomes has been known to be
closely associated with stroke pathogenesis. In regard to stroke,
NLRP1 is increased and activates the inflammatory response,
ultimately leading to neuronal death due to the decrease in Mi-R-
9a-5p as a result of stroke (120). In an experiment with an
ischemic stroke mouse model conducted by Dr. X. Sun, the
NLRP2 expression in the treatment group was significantly
higher than that in the control group (121). In addition, in
2015, Shabanzadeh AP et al. discovered that ischemic stroke
could upregulate NLRP3 in neurons through the nuclear factor-
kappa B (NF-kB) and mitogen-activated protein kinase (MAPK)
pathways (122). Consistent with this finding, Fan DY et al.
showed that NLRP1 and NLRP3 inflammasome proteins could
be activated by stimulating the NF-kB or MAPK signaling
pathways in cortical neurons and cerebral tissues in vitro and
in vivo, and the inhibitors of these two pathways decrease the
level of inflammation under ischemic conditions (24). In
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addition, the researchers showed that treatment with intravenous
immunoglobulin could attenuate NF-kB and MAPK signaling
pathway activation, leading to the suppression of NLRP1 and
NLRP3 activation and enhancing the expression of BCL-2 and
BCL-xL, both of which are antiapoptotic proteins (24).

Currently, propofol, an intravenous medicine that is widely
used in surgical anesthesia and sedation (123), is becoming known
for its neuroprotective effects. The mechanisms underlying its
effects include the repression of proinflammatory factors,
inhibition of apoptotic pathways, and stimulation of
neuroprotective signaling (124, 125). In 2020, Ma Z et al.
showed that oxygen-glucose deprivation could upregulated the
NLRP1 and NLRP3 inflammasomes in ischemic cortical neurons;
however, this process could be inhibited by propofol. The
researchers concluded that propofol exerts its neuroprotective
effects via the NLRP1–caspase-1–caspase-6 inflammatory
pathway (126). As confirmed previously, caspase-6 is also closely
associated with neurodegenerative diseases such as Huntington’s
disease and Alzheimer’s disease (127). Whether propofol exerts
beneficial effects on neurodegenerative diseases remains to
be explored.

Traumatic Brain Injury
The pathogenesis of TBI mainly consists of irreversible primary
mechanical insult and multifactorial secondary brain injury, the
effects of which may progress in the subsequent days or even
years (26). Thus, secondary brain injury provides opportunities
for therapeutic interventions in TBI (128). Many mechanisms
are related to secondary injury, including neuroinflammation,
calcium imbalance, oxidative stress, and apoptosis (129). Among
these processes, neuroinflammation has often drawn more
attention in studies exploring the progression of TBI (130).
Generally, clearing cellular damage after injury and promoting
neural repair call for a moderate inflammatory response, while
extreme inflammation complicates neuronal insult and results in
pathological deterioration (131). Thus, it is pivotal to control
excessive inflammation during TBI treatment.

As an important factor in the induction and proliferation of
inflammation, NLRP1 has attracted great interest in the
neurotrauma field (132). de Rivero V et al. observed IL-1b
cleavage, caspase-1 stimulation, XIAP cleavage, and increased
NLRP1 inflammasome complex assembly in rats undergoing
fluid percussion injury. The administration of anti-ASC-
neutralizing antibodies could alleviate the inflammatory
response and reduce the contusion volume (54). These studies
demonstrated that the NLRP1 inflammasome plays a crucial role
in the innate inflammatory response following TBI.

In 2012, de Rivero V et al. showed that, after trauma, the
expression of the NLRP1 inflammasome, ASC, caspase-1, and IL-
1b increased in the brain and spinal cord motor neurons (133).
Furthermore, Satchell et al. reported an increase in caspase-1 and
IL-1b protein expression in the CSF of infants and children who
suffered severe TBI, which was associated with negative outcomes
(134), and several years later, Adamczak S et al. observed the same
effects in patients after severe or moderate TBI in a wider age range
(17–65 years old), in which higher CSF levels of NLRP1, ASC, and
caspase-1 were present than in the control group (33). In 2016, de
Frontiers in Immunology | www.frontiersin.org 8
Rivero V et al. discovered that exosomes derived from the CSF of
patients suffering TBI and/or spinal cord injury contained NLRP1
inflammasome proteins (34). These exosomes play a critical role in
the spread of inflammasomes in the CNS by exposing adjacent cells
to their cargo proteins, such as IL-1b and inflammasome
complexes (135).

In addition to the research conducted by V. de Rivero (54), in
2012, Tomura S et al. concluded that posttraumatic hypothermia
treatment could effectively reduceP2X7receptor levels, thus reducing
the secretion of caspase-1 by neurons, suggesting a correlation
between NLRP1 and P2X7 and a decrease in the innate immune
response, ultimatelydemonstratingpromisingoutcomes for rats after
TBI (133). Despite the therapeutics mentioned previously, effective
treatments for TBI patients targeting NLRP1 are lacking. With the
increasing incidence of TBI, it is urgent to find a valid therapeutic
strategy for treatingTBI, and targetingNLRP1andNLRP3represents
a promising strategy.

Other Roles of NLRP1 in Brain Injury
In 2015, Wang YC et al. concluded that acid-sensing ion
channels, which are channels that are significantly involved in
pathophysiological CNS processes and can be stimulated by
extracellular acidosis, are closely related to acidosis-induced
cortical neuronal injury due to the activity of the NLRP1
inflammasome in the context of extracellular acidosis via the
SIC-BK channel K+ signaling pathway (136).

It is well known that preterm infants can develop
bronchopulmonary dysplasia, a type of chronic neonatal lung
disease (137), which is often accompanied by an immature brain.
Thus, these infants are prone to short- and/or long-term
complications, such as intraventricular hemorrhage, brain
paralysis, primary amentia, and cognitive deficits (138, 139).
Studies have demonstrated that, in neonatal rats exposed to
postnatal hyperoxia (85% O2), the NLRP1 inflammasome is
stimulated in the lung and immature brain, resulting in
inflammation, neurodegeneration (140–142), and even cell death
(143). In 2019, Fredrick DS et al. conducted an experiment to
explore hyperoxia-induced lung and brain injury in a neonatal rat
model and found that hyperoxia induced NLRP1 inflammasome
activation, resulting in alveolarization and vascular development
in the lung along with cell death and a reduction in cell
propagation in the subventricular zone (SVZ) and subgranular
zone (SGZ) of the rat brain (144). As expected, the damage to the
lung and brain caused by hyperoxia could be ameliorated by Ac-
YVAD-CMK, an irreversible caspase-1 inhibitor, thus verifying
that inhibiting caspase-1 reduced pyroptosis and facilitated cell
proliferation in the SVZ and SGZ, providing a novel target for the
treatment of lung and brain injury (144).

In addition, understanding the characteristics of NLRP1 could
also be important for radiation-induced brain injury, but an
obvious correlation between NLRP1 inflammasome activation
and this kind of brain injury in the hippocampi of juvenile rats
has not been found (145). It is worth noting that NLRP1 is a
potential therapeutic target for brain injury, although experiments
have provided conflicting results regarding the nonessential roles
of NLRP1 in TBI in a murine model (55) and in the CSF of
children and infants suffering from severe TBI (146). Interestingly,
May 2022 | Volume 13 | Article 863774

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mi et al. NLRP1 Inflammasome in Brain Injury
emerging evidence has emphasized the combined roles of NLRP1
and NLRP3 in the CNS (147, 148), especially in brain injury (24,
146, 149). Moreover, a report showed that high levels of NLRP1
and NLRP3 were present in the hippocampus of patients abusing
methamphetamine (150), indicating the relationship between
these two classic inflammasomes and a promising strategy for
the treatment of brain injury.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The NLRP3 inflammasome has been well studied in the
progression of CNS diseases and is considered a predominant
element in the inflammatory process. Here we view NLRP1-
mediated inflammasome activation in neurons as equally
important in neuroinflammation following brain injury. NLRP1
may be a therapeutic target for brain injury intervention because of
its ability to induce inflammatory reactions. NLRP1 inhibitors
have been reported to hinder the formation of the inflammasome
complex and ATP binding (151). Hence, it is possible to use
NLRP1 inhibitors as novel anti-inflammatory drugs to relieve
neuronal damage and moderate the progression of disease in brain
injury patients. Hopefully, this treatment strategy may benefit
patients affected by CNS diseases. However, the correlation
between NLRP1 and NLRP3 in the CNS warrants further
investigation. Neuroinflammation is collectively regarded as the
basic cause of neuronal insult in brain injury.

To advance the creation of a promising cure for brain injury, it is
necessary to fully understand how the NLRP1 inflammasome
Frontiers in Immunology | www.frontiersin.org 9
operates in the brain under both physiological and pathological
conditions. However, due to the sophistication of the NLRP1
inflammasome and the differences between human and mouse
orthologs, there are many challenges in applying our experimental
results to clinical research, demonstrating that the treatment of
brain injury patients by targeting NLRP1 remains insufficient. The
coordination of basic researchers and clinicians will shed light on
the underlying key mechanisms of inflammation and transfer this
knowledge from bench to bedside.
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