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Abstract: Fumonisin mycotoxins are a persistent challenge to human and livestock health in tropical
and sub-tropical maize cropping systems, and more efficient methods are needed to reduce their
presence in food systems. We constructed a novel, low-cost device for sorting grain, the “DropSort”,
and tested its effectiveness on both plastic kernel models and fumonisin-contaminated maize. Sorting
plastic kernels of known size and shape enabled us to optimize the sorting performance of the
DropSort. The device sorted maize into three distinct fractions as measured by bulk density and
100-kernel weight. The level of fumonisin was lower in the heaviest fractions of maize compared
to the unsorted samples. Based on correlations among fumonisin and bulk characteristics of each
fraction, we found that light fraction 100-kernel weight could be an inexpensive proxy for unsorted
fumonisin concentration. Single kernel analysis revealed significant relationships among kernel
fumonisin content and physical characteristics that could prove useful for future sorting efforts. The
availability of a low-cost device (materials~USD 300) that can be used to reduce fumonisin in maize
could improve food safety in resource-limited contexts in which fumonisin contamination remains a
pressing challenge.

Keywords: mycotoxins; maize; fumonisin; sorting; food safety; mechanization

Key Contribution: A low-cost grain sorting device was developed that reduced the concentration of
fumonisin mycotoxins in maize.

1. Introduction

Fungal infection and mycotoxin contamination of crops is a global food safety hazard.
The fumonisins, a class of toxic secondary fungal metabolites (hereafter collectively referred
to as “fumonisin”) produced primarily by Fusarium spp., are some of the most ubiquitous
mycotoxins in maize. Fumonisin presents challenges across a range of agricultural systems
and is most prevalent in tropical and sub-tropical food systems where the fungal pathogen
F. verticillioides frequently causes Fusarium ear rot (FER) on maize [1–3]. In humans, fu-
monisin exposure is associated with neural tube defects, esophageal cancer, and childhood
stunting in humans [4–8]. For human consumption, the Codex Alimentarius Commission
establishes a maximum level of 4 mg/kg (ppm) of fumonisin in raw maize grain, and the
same concentration is the guidance level recommended by the United States Food and
Drug Administration (FDA) for whole dry-milled maize [9,10].

In many low- and middle-income countries, mycotoxin regulations that exist are
infrequently enforced, and there are significant challenges related to food safety and
food security [11–14]. In areas like sub-Saharan Africa where maize is a major staple
and environmental conditions are conducive to Fusarium spp. Growth, high fumonisin
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exposure is common [15–17]. Moreover, fumonisins can also co-contaminate maize with
other mycotoxins such as the even more toxic aflatoxins [18,19]. Strategies to mitigate
fumonisins have focused on prevention or reduction at multiple points along the food value
chain, such as breeding and releasing resistant varieties, using good agronomic practices,
biological controls, pesticide applications, optimizing storage conditions, improving sorting
and cleaning operations, post-harvest enzymatic detoxification, and a wide variety of
processing and cooking techniques [20–22]. Hazard analysis and critical control point
(HACCP) approaches for mycotoxin mitigation have been developed to integrate such
strategies, and sorting is frequently included as an essential step [23].

In subsistence and semi-subsistence agricultural systems, significant resource con-
straints limit the fumonisin mitigation options that can be employed. In a South African
farming community, low-input hand-sorting and washing procedures for fumonisin-
contaminated maize significantly reduced fumonisin exposure [24]. In various other
low-resource contexts, manually removing visibly diseased or damaged maize kernels
alone or in combination with other processes has proven to reduce fumonisin levels, al-
though not always to below regulatory limits [25–30]. Although hand sorting has been
proven effective for reducing fumonisin levels in maize, it is a time-consuming process. Fur-
thermore, legitimate food security concerns limit the implementation of sorting methods
that remove large amounts of potentially toxic grain [31,32].

Efforts to mechanize aspects of small-scale agriculture are crucial to development in
rural communities. Simple machinery can provide opportunities for efficiency gains, job
creation, improved markets, and quality products [33]. Mechanization of tasks typically
ascribed to women can reduce the burdens on women’s time, which can have important
implications on child wellbeing and nutrition [34]. In high-income countries, industrial-
scale methods of cleaning and sorting mycotoxin-contaminated maize rely on advanced
technologies that rapidly detect and sort out putatively toxic kernels. The bases of these
mycotoxin-sorting operations are multi-step processes that select against kernels with
features associated with mycotoxin contamination. For instance, the Bühler Group has
developed various automated sorters that reject maize kernels based on size, shape, density,
and/or optical features (Bühler Group, Uzwil, Switzerland). Promisingly, these machines
can significantly reduce maize aflatoxin levels [35]. Moreover, existing post-harvest tech-
nologies (e.g., winnowers, gravity tables, screens), which separate smaller, less dense grains
and aspirate out fines, can reduce mycotoxin levels in maize and wheat [36–40]. Similar
principles can be applied in a more affordable and accessible manner, although there
can be accompanying tradeoffs in efficiency and effectiveness. For example, a relatively
inexpensive (and low-throughput) optical sorting system could reduce aflatoxins and fu-
monisins in maize from Kenyan markets based on visible and near infrared reflectance [41].
However, an affordable and high-throughput sorting device is not readily available for
users in low-resource settings.

Sorting can also offer insights into the relationship between maize kernels and a
fungal pathogen. Among corn screenings sieved into different classes, the smaller particles
were highly associated with fumonisin contamination, suggesting that small or broken
kernels were more susceptible to contamination [42]. Single kernel analysis of South
African maize demonstrated that visually symptomatic kernels had significantly higher
fumonisin levels [43]. Outside the sorting context, maize kernel bulk density (test weight)
was negatively correlated with fumonisin in a maize mapping population [44,45]. Further
insights into such relationships are necessary as they can help to guide and enhance
sorting efforts.

To reduce fumonisin content and explore kernel characteristics associated with con-
tamination, we developed a low-cost (materials approximately USD 300) sorting machine
called the “DropSort” that employed established grain sorting principles. The DropSort
used vacuum suction to aspirate fines and sort out small, light, and low-density kernels
that were considered more likely to be toxic. This device has also been used on aflatoxin-
or fumonisin-contaminated maize and groundnut samples, and it was most effective at
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sorting fumonisin-contaminated maize [46,47]. We expanded on this work by (1) using
3D-printed plastic kernels of varying masses and densities to validate and characterize
this device and propose best practices for use, (2) assessing the DropSort’s effects on bulk
fumonisin concentrations and associated bulk physical characteristics in unsorted maize
and three sorted fractions, and (3) analyzing single kernel characteristics from two of the
sorted fractions to determine their relationships with fumonisins.

2. Results
2.1. Plastic Kernel Sorting

Six distinct plastic kernel model sets were created that had the same volume but
different masses and densities, and rejection rates were measured at each setting for
multiple re-sorting passes (Supplementary Table S1). The rejection rates of these kernel
model sets varied significantly across passes and settings. For example, all models’ rejection
rates were significantly different at Setting 15 except for the heaviest and densest three
kernel models in Pass 1 (Figure 1). This demonstrated that the DropSort was able to
separate plastic kernel models based on their mass and density.
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Figure 1. DropSort rejection rates (three trials) of six plastic kernel model sets at Setting 15 and across three passes of
re-sorting the accepted fraction. Within each pass, kernel models’ mean rejection rates were significantly different (1-way
ANOVAs: Pass 1 p-value = 9.40 × 10−9, Pass 2 p-value = 1.86 × 10−12, Pass 3 p-value = 1.16 × 10−13). Within each pass, post
hoc pairwise t-tests were performed between each kernel model set, and different letters represent significant differences
between kernel model groups (p-value < 0.05).

The effect of using multiple passes to re-sort the accepted fraction was examined by
analyzing the change in rejection rate from the first pass to the third pass (delta rejection
rate or DRR = Pass 3 rejection rate − Pass 1 rejection rate). The DRR differed significantly
across kernel models and was significantly higher for lighter/lower density kernel models
(Figure 2). By re-sorting the accepted fraction over multiple passes, lighter and less dense
kernel models were rejected more frequently than heavier and denser kernel models.
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Figure 2. Differences in rejection rate at Pass 3 and Pass 1 (Delta Rejection Rate (DRR)) for each kernel model group. Group
means differed significantly (1-way ANOVA, p-value = 3.7 × 10−7). Post hoc pairwise t-tests were performed between
them, and different letters represent significant differences between kernel model groups; the three heaviest/densest kernel
models had a lower DRR (p-value < 0.05).

Next, we compared the DropSort’s sorting performance to an arbitrarily designated
accept/reject cutoff. Because the DRR was lower for the three denser and heavier kernel
models, the three lightest/least dense kernel models were designated as the “to reject” (i.e.,
“toxic”) class and the heavier and denser kernel models as the “to accept” (i.e., “clean”)
class (Figure 3).
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Figure 3. Cartoon depictions of the six plastic kernel model sets labeled with their respective densities. An arbitrary
classification cutoff was applied to further explore sorting performance of the DropSort. The three heaviest/densest models
(≥0.96 mg/mm3) were classified as the “to accept” class and the lightest/least dense three kernel models (≤0.84 mg/mm3)
were classified as the “to reject” class.

Within this framework, we calculated how well the DropSort classified true positives
(sensitivity = toxic rejected kernels/total rejected kernels) and true negatives (specificity = clean
accepted kernels/total accepted kernels) across passes and settings. Sensitivity and speci-
ficity are important metrics for end users that reflect utility for food security (high sensitivity
means few “clean” kernels are rejected) and food safety (high specificity means few “toxic”
kernels are accepted), respectively. We found that within each pass, increasing the setting
of the DropSort had a positive relationship with specificity and a negative relationship with
sensitivity. The trends reversed across passes, with specificity decreasing and sensitivity
increasing. The crossover points in Pass 2 and Pass 3 represent the setting with optimal
sorting accuracy for that pass (Figure 4).
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Figure 4. Specificity and sensitivity rates of the DropSort’s three trials of sorting plastic kernel
models at different settings and over three passes. Within each pass, mean sensitivity and specificity
rates varied significantly across settings (1-way ANOVAs: sensitivity Pass 1 p-value = 6.30 × 10−11,
sensitivity Pass 2 p-value = 1.31 × 10−10, sensitivity Pass 3 p-value = 3.22 × 10−12, speci-
ficity Pass 1 p-value = 9.06 × 10−6, specificity Pass 2 p-value = 6.57 × 10−7, specificity Pass 3
p-value = 9.65 × 10−8). Post hoc pairwise t-tests were performed between each group, and dif-
ferent letters (red letters for sensitivity, black letters for specificity) represent significant pairwise
differences between settings (p-value < 0.05).

Although the positive relationship between number of passes and sensitivity indicated
the DropSort’s performance was improving, it is necessary to consider the tradeoff in
decreased specificity. To explore this, we defined Delta Specificity and Delta Sensitivity
as the difference in specificity and sensitivity between Pass 3 and Pass 1. The gain in
sensitivity from Pass 1 to Pass 3 was greater than the loss in specificity at all settings
(Figure 5). Although there was no change in Delta Sensitivity across settings, the loss in
specificity was less pronounced at the higher settings 15–17 (Figure 5).

2.2. Bulk Maize Sorting

The results of the plastic kernel sorting guided the methods used for sorting maize
that was naturally infected by F. verticillioides and contaminated with fumonisins. Sort-
ing each of the 24 samples of maize with the DropSort created a heavy fraction (HF),
medium fraction (MF), and light fraction (LF). MF was included to add more insight into
how much maize needs to be removed to reduce fumonisin levels with the DropSort
(Supplementary Table S2). As a proportion (mean ± SE) of the original unsorted mass, HF
was the largest (0.70 ± 0.11), followed by MF (0.21 ± 0.07), and LF (0.09 ± 0.05).
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Sorted fractions had significantly different bulk characteristics. The 100-kernel weight
and bulk density were significantly lower in LF compared to all other fractions, and for
the 100-kernel weight, MF was significantly lower than HF (Figure 6A,B). Compared to
the unsorted samples, log10-transformed fumonisin was significantly reduced in HF, did
not differ in the MF, and was significantly higher in the LF (Figure 6C). Relative to the
original unsorted samples, the percent differences in fumonisin (mean and median) for each
fraction were HF (−15.39% and −89.06%), MF (64.72% and −23.74%), and LF (652.28% and
230.83%). The DropSort effectively reduced fumonisin in HF relative to the bulk sample by
concentrating the toxin in LF. In relation to the 4 ppm FDA guidance level, safe samples
were most frequent in HF (14/24) followed by MF (5/24), unsorted (4/24), and LF (0/24).

We also explored whether any of the bulk characteristics were correlated with bulk fu-
monisin in the unsorted samples. Spearman rank correlations between the bulk characteris-
tics of each fraction and log10-transformed fumonisin values yielded a single significant cor-
relation: LF 100-kernel weight was negatively correlated with unsorted log10-transformed
fumonisin (Table 1). This correlation could be an inexpensive proxy for unsorted fumonisin.

Table 1. Spearman rank correlations between fumonisin concentrations and bulk characteristics in the unsorted samples, the
heavy fraction (HF), medium fraction (MF), and the light fraction (LF) of each fraction (ns p-value > 0.05; * p-value = 0.012).

Spearman
Correlations

Unsorted
100-Kernel

Weight

Unsorted
Bulk

Density

HF
100-Kernel

Weight

HF Bulk
Density

MF
100-Kernel

Weight

MF Bulk
Density

LF
100-Kernel

Weight

LF Bulk
Density

Unsorted
Fumonisin
log10(ppm)

−0.24 ns −0.08 ns −0.34 ns −0.12 ns −0.24 ns −0.13 ns −0.51 * −0.22 ns
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Figure 6. Mean bulk trait values of the unsorted, heavy fraction (HF), medium fraction (MF), and light fraction (LF).
(a) Mean 100-kernel weight differed significantly among fractions (1-way ANOVA, p-value = 8.01 × 10−13). LF 100-kernel
weight was significantly lower than all other fractions, and MF 100-kernel weight was significantly lower than HF (different
letters represent pairwise t-test p-value < 0.05). (b) Bulk density varied significantly among fractions (1-way ANOVA,
p-value = 2.20 × 10−16), and LF bulk density was significantly lower than all other fractions (different letters represent
pairwise t-test p-value < 0.05). (c) Log10-transformed fumonisin differed significantly among fractions (1-way ANOVA,
p-value = 4.63 × 10−13). Dashed line indicates 4 ppm regulatory limit. Compared to unsorted, HF was significantly lower,
MF no difference, and LF significantly higher (different letters represent pairwise t-test p-value < 0.05).

2.3. Single Kernel Analysis

For a single representative bulk sample, 72 kernels each were selected at random from
HF and LF to examine their individual characteristics (Supplementary Table S3). Compared
to its unsorted fraction, this sample had lower fumonisin in HF and higher levels in MF
and LF (Table 2). The single kernel mean volume and mass was lower in LF compared to
HF, but density was not significantly different among fractions (Figure 7A–C). Notably,
the density distributions were narrower than those for mass and volume. The DropSort
reduced mean fumonisin concentrations in the HF relative to the bulk sample, and high
fumonisin outliers were found in the LF (Figure 7D). At a 4 ppm cutoff, only 9/144 kernels
were found to exceed this limit, but more of these toxic kernels were found in LF (n = 7)
compared to HF (n = 2).
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Table 2. Bulk characteristics of the unsorted, heavy fraction (HF), medium fraction (MF), and light
fraction (LF) for the sample used in single kernel analysis.

Mean 100-Kernel Weight (g) Mean Bulk Density (g/mL) Fumonisin (ppm)

Unsorted 37.38 0.77 23.47

HF 38.60 0.78 0.65

MF 34.88 0.77 55.20

LF 25.64 0.65 305.84
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“accepted” heavy fraction (HF; light blue) and 72 kernels from the “rejected” light fraction (LF; orange). Dashed lines
indicate group means, and asterisks represent a significant difference between accepted and rejected kernels. (a) Mean HF
kernel mass was significantly higher than that of LF kernels (two-sided unpaired t-test, p-value = 2.9 × 10−4). (b) Mean HF
kernel volume was significantly higher than that of LF kernels (two-sided unpaired t-test, p-value = 2.2 × 10−3). (c) There
was no significant difference in mean density between HF and LF kernels (two-sided unpaired t-test, p-value = 0.33).
(d) Mean log10-transformed fumonisin was significantly greater in LF kernels compared to HF kernels (two-sided unpaired
t-test, p-value = 2.4 × 10−5), and solid red line indicates 4 ppm regulatory limit.

Symptoms were scored on all single kernels using four categories. The proportions
of kernels in each category did not differ between the two fractions, indicating that the
DropSort did not affect kernel appearance (Figure 8).

To understand how different kernel characteristics were related, Spearman rank
correlations were calculated within HF and LF subsets. Examining the correlations for HF
kernels was uninformative, as there were no significant correlations except for the expected
strong positive relationship between mass and volume (Figure 9a). However, LF kernels
revealed numerous significant correlations where the three physical kernel attributes
(mass, volume, and density) were negatively correlated with log10-transformed fumonisin
(Figure 9b). Moreover, despite not being affected by the DropSort, symptom type was
positively correlated with fumonisin in LF (Figure 9b). The relationships among these five
kernel traits were distinctly stronger among the LF kernels than among HF kernels.
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3. Discussion

The DropSort was designed to be a low-cost and high-throughput option for reducing
the mycotoxin load in a sample of maize. The intention was to leverage the hypothesized
negative correlation between kernel mass/volume/density and fumonisin concentration.
To be a feasible option for fumonisin mitigation (especially in low-resource settings),
considerations of both food safety (fumonisin reduction) and food security (amount of
grain removed) had to be taken into account. We showed that the DropSort reduced bulk
fumonisins, and that it could be used to generate an inexpensive proxy for bulk fumonisin.

Using plastic kernel models, we demonstrated that the DropSort rejected kernel
models of different masses/densities at variable rates. This means that, for a given a
sample of grain, the rejection rate could be adjusted by the choice of setting (the position
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of the bar that cut the flow of grain between the two chambers) and number of passes
(re-sorting the accepted/heavy fraction).

Analyzing plastic kernel models also offered insights into the crucial tradeoff between
sorting sensitivity and specificity. Sensitivity is the rate of true positives (toxic kernels),
which has implications for food security, as high sensitivity means that fewer clean kernels
are rejected and discarded. In contrast, the rate of true negatives (clean kernels) in specificity
has implications for food safety, as it reflects the toxicity of accepted kernels (i.e., low
specificity means that many “toxic” kernels will be accepted). Balancing specificity and
sensitivity is a challenge, and as expected, there was a clear tradeoff between these two
metrics using an arbitrary mass/density cutoff. Encouragingly, altering certain parameters
optimized these tradeoffs. For instance, re-sorting the accepted fraction led to an increase
in sensitivity, while the reduction in specificity was mitigated. Moreover, using a more
selective setting (taking a smaller cut of the grain with each pass through the sorter) allowed
specificity to be improved through multiple passes without affecting sensitivity. These
results suggest sensitivity/specificity tradeoffs can be optimized by being more selective
at each pass and re-sorting the accepted fraction over multiple passes. Although this
approach clearly improves sorting performance, re-sorting the accepted fraction increases
the amount of time needed to sort. It would, in principle, be possible to modify the design
of the device to enable continuous re-sorting at a very conservative setting.

The results of plastic kernel model sorting provided guidance on how to sort real
maize grain. We found that, compared to bulk density, 100-kernel weight was more
sensitive to sorting. This suggested that the DropSort was more effective at stratifying the
sample based on kernel mass rather than on density.

The primary purpose of the DropSort was to reduce mycotoxin concentrations in
bulk maize. It successfully reduced fumonisin in the heavy fraction compared to unsorted
maize by concentrating contaminated kernels mainly in the light fraction and, to a lesser
extent, the medium fraction. However, it was not fully effective at reducing fumonisin
concentration below the Codex Alimentarius standard and FDA guidance level of 4 ppm.
In HF, more than half of the samples were below the 4 ppm regulatory limit, while none
of the light fraction samples were below the regulatory limit. These fumonisin reduction
results were similar to previous findings with the DropSort that had single “accept” and
“reject” fractions (Aoun et al. 2020, Ngure et al. 2021), and additional insight was gleaned
from observing the level of fumonisin in the medium fraction as being an intermediate
between the heavy and light fractions. To reduce fumonisins in maize more effectively, the
DropSort should be integrated with complementary methods such as screening, washing,
flotation, spectral sorting, and/or visual/hand sorting [24,28,30,41]. In fact, by combining
the DropSort with size screening, maize fumonisin concentrations were reduced well below
regulatory limits [46].

Analysis of single kernels from the heavy and light fractions provided insights on
how the DropSort affected physical kernel attributes, as well as how those attributes relate
to fumonisin contamination. To our knowledge, this is the first study to analyze both
the fumonisin content and physical characteristics of single kernels. As implicated by
100-kernel weight and bulk density results, the mass and volume of light-fraction kernels
were significantly lower than heavy-fraction kernels. Surprisingly, density was not affected.
Density had a much narrower distribution than mass and volume, and density did not
differ between kernels of the heavy and light fractions. This suggested that density, despite
its negative correlation with fumonisin, did not have sufficient variation to allow effective
density-based sorting.

Correlations among physical features (mass, volume, and density) and fumonisin
in the light fraction yielded modest negative correlations, showing that light/small/low-
density kernels were more likely to have high fumonisin concentrations. These significant
negative correlations with fumonisin corroborate previous research on the relationship
between fumonisin and maize bulk characteristics such as 100-kernel weight or screen-
ings [42,46,47]. It is not clear whether these correlations occur because smaller, lighter,
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and/or less dense kernels are more vulnerable to infection, because fungal pathogen colo-
nization reduces kernel mass and density, or because fungal infection retards/arrests kernel
growth and development. Regardless, these results provide insights on the opportunities
and limitations of sorting fumonisin-contaminated maize.

Past studies have demonstrated the effectiveness of visual sorting on bulk samples,
and single-kernel analysis previously documented that unhealthy kernels have high fumon-
isin concentrations compared to healthy kernels [26,28,29,43]. We showed that discolored
and damaged kernels were positively associated with fumonisin, but only in the light
fraction. This suggests that kernels can be discolored for a variety of reasons, only some of
which may involve a given mycotoxigenic fungus.

Although initially designed as a scaled down technology for mycotoxin mitigation
in low-resource contexts, there are other potential uses for the DropSort. There are incen-
tives for multiple stakeholders to generate rapid and inexpensive proxies for fumonisin
contamination. For example, a trader may want to quickly assess whether a sample is
likely to be rejected, or a plant breeder would be interested in a cheaper alternative to
expensive mycotoxin assays in disease trials. Previous studies found that kernel bulk
density (test weight) was negatively correlated with Fusarium ear rot and fumonisin con-
centration [44,45]. These results were found for inoculated grain, whereas the current
study utilized naturally infected grain. Such relationships were expected be less obvious
under non-inoculated conditions, so the ability of the DropSort to identify a significant
proxy was encouraging. The significant negative correlation between fumonisin and LF
100-kernel weight suggests that this measure could function as a predictor of fumonisin
contamination. Although this proxy (ρ = −0.51) would not replace validated fumonisin
assays, it could still be beneficial in certain situations. Measuring LF 100-kernel weight to
screen for high and/or low fumonisin concentrations could reduce costs in many scenarios
and expand screening of putatively contaminated grain.

4. Conclusions

Effectively sorting mycotoxin-contaminated maize is a significant challenge as trade-
offs of cost, food safety, food security, and time must be considered. Consumers, producers,
and traders have incentives to sort mycotoxin-contaminated maize, but options to do so are
limited in low-resource contexts. Presently, visual sorting is a widely adopted method, and
it has been shown to be moderately effective for reducing fumonisin levels. A mechanical
sorting device could offer a more time-efficient alternative and/or could complement
existing methods. The DropSort could prove valuable in resource-limited areas in which
maize is the staple crop, fumonisin contamination is common, and maize is milled in small
batches. It could be integrated within existing local infrastructure in the grain processing
chain such as local grain mills, small-medium scale millers, or traders. Addressing the
persistent and pervasive challenge of fumonisin contamination in human food requires
solutions that are adaptable, suited to a community’s needs and resources, and part of a
multifaceted approach. The capacity to mitigate food safety challenges should be universal,
and in the context of fumonisin contamination, devices like the DropSort can be part of an
effective strategy.

5. Materials and Methods
5.1. DropSort Device

The DropSort device was designed by The Widget Factory (Ithaca, NY) and functioned
by applying suction to free-falling kernels, in a manner conceptually similar to winnowing.
A Grizzly G0710 1 hp wall hanging dust collector (blower) was used to generate negative
pressure; the blower has a flow rate of 537 feet3/minute (Grizzly Industrial®, Bellingham,
WA). The blower was connected to the DropSort with a 10 cm diameter tube attached
to the back of the sorting space. The three-dimensional sorting space (length = 104 cm,
width = 58 cm, depth = 2.5 cm) had an adjustable dividing arm at its base that separated
two removable bins. A hopper was located on top of the device, and a mechanical feeder
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shook individual kernels into the sorting space. Each kernel dropped from the top left of
the device and, as it fell, was subjected to negative air pressure that caused the kernel to
move from left to right towards the fan tube attachment. The blower generated constant
suction, and a kernel’s path was determined by the interaction of its physical properties
with negative pressure in the sorting space. The dividing arm could be adjusted from
Setting 1 to Setting 20 (left to right; 60◦ to 120◦) to change the proportion of kernels accepted
or rejected. The left bin disproportionately collected larger, heavier, and/or denser kernels
and was the putative “accept” bin, while smaller, lighter, and/or less dense kernels were
more likely to accumulate in the putative “reject” bin (right). The total cost of materials
was approximately USD 300, the majority of which was the cost of the blower.

5.2. Plastic Kernel Printing

Plastic kernel models were generated in the webapp TinkerCAD and converted to
3D-printable gcode files in Cura version 15.04.2 (Ultimaker, Utrecht, Netherlands). In
Cura, G-Code files were generated from STL files with six different infill densities (100%,
80%, 60%, 40%, 30%, and 20%) to create plastic kernels of identical volume but different
masses and densities (Supplementary File S1). The expected volumes of the plastic kernel
models were calculated in Rhino3D; the masses were measured on a scale, and density was
calculated as mass/volume (Robert McNeel & Associates, Seattle, WA, USA).

Sets (n = 100) of each plastic kernel model were printed on a Kossel Model A 3D Printer
with 1.75 mm diameter polylactic acid (PLA) filament at 210 ◦C (Turn Key Innovations,
Ashby, MA, USA). To easily distinguish between different kernel models, different colored
PLA was used for each infill density.

5.3. Plastic Kernel Sorting

The DropSort device was used to sort all plastic kernel models at settings 13, 14, 15,
16, and 17, and then, the accepted fraction was re-sorted twice for a total of three passes
through the sorter. After each pass, the number of each plastic kernel type in each bin was
recorded. This procedure was repeated three times at each setting.

Sorting performance was assessed by calculating the rejection rate of the various kernel
models at each sorting and pass combination. To calculate the sensitivity and specificity, an
artificial arbitrary cutoff was created in which the heaviest/densest three kernel models
(≥0.96 mg/mm3) were classified as the accepted class and the lightest/least dense three
kernel models (≤0.84 mg/mm3) were the rejected class. Using this cutoff, the possible
outcomes for each kernel model were true positive (A), false positive (B), false negative (C),
or true negative (D). The rate of true positives, sensitivity, was defined as A/(A+C), and
the rate of true negatives, specificity, was D/(B+D). To demonstrate how multiple passes
affected these three sorting parameters at each setting, the difference between the third
pass value and the first pass value was calculated.

5.4. Texas Maize

A total of 24 samples of shelled yellow dent maize were acquired from north Texas.
These samples were naturally infected with Fusarium verticillioides and displayed symptoms
(e.g., starburst kernels) of Fusarium kernel rot. To DropSort these samples, 1 kg from
each sample was passed through the DropSort, and the accepted fraction was sorted an
additional two passes at setting 14. After the initial three passes, the kernels in the rejected
bin were removed and stored as the light fraction (LF). The remaining accepted fraction
was sorted for an additional three passes at setting 12. The kernels in the rejected bin were
designated as the medium fraction (MF), and the remaining kernels in the accepted bin
were designated as the heavy fraction (HF). The exact combination of settings and passes
had been selected by testing initial samples to find a setting that would sort approximately
10% of the original mass into LF, 20% into MF, and 70% into HF.

The following were measured on each unsorted sample and their associated HF, MF
and LF subsamples:
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Mass: The total mass (g) of each fraction was measured on a PG403-S DeltaRange®

scale (Mettler Toledo, Columbus, OH, USA).
Bulk Density: A 200 mL sample of maize was randomly taken from its fraction,

measured in a 250 mL graduated cylinder, and weighed. This was replicated three times
for each fraction. If there was less than 200 mL of maize in the sample, the volume was
recorded and only measured once. Bulk density was calculated by dividing the mass of
each sample by its volume.

100-kernel Weight: For each fraction, 100 kernels were randomly selected and weighed.
This procedure was replicated three times. In cases where the number of kernels in a
fraction did not exceed 100, the total number of kernels and mass were recorded and
converted to a 100-kernel weight.

Total fumonisins: A random 15 g sample (or entire sample if less than 15 g) was
taken from each fraction and ground into a fine powder in an IKA Tube Mill (IKA® Works,
Inc, Wilmington, NC, USA). Fumonisins were extracted at a 1:2 (weight:volume) ratio in
90% methanol, vortexed for five minutes, and filtered through Whatman #1 filter paper.
Sample extracts were then diluted 1:20 in distilled water. Fumonisin concentrations were
quantified according to the Fumonisin ELISA Assay procedure (Helica Biosystems Inc.,
Santa Ana, CA, USA). Samples, standards, and a check were assayed in duplicate on
each plate. The optical density of each well at 450 nm was read by a BioTek Synergy
2 multi-mode plate reader using Gen5 software (BioTek Instruments, Inc., Winooski, VT,
USA). Sample concentrations were determined by fitting a standard curve to the standards’
OD values. As a check, a validated 3.5 µg/g (ppm) sample of fumonisin-contaminated
maize was tested on each plate. To ensure data quality, and coefficient of variation (CV)
cutoffs were 10% for replicate samples within a plate and 15% for the between plate check.
Samples were re-assayed if they exceeded these CV cutoffs. Samples that exceeded the
6 ppm maximum concentration were diluted in distilled water and re-assayed again on a
new ELISA plate.

5.5. Single Kernel Analysis

One sample was analyzed further at the single kernel level. A total of 144 kernels
were randomly selected: 72 from the heavy fraction and 72 from the light fraction.

The mass of each kernel was measured on a scale (Intelligent Laboratory Classic Top
Loading Balance, 100 g × 0.001 g). Each kernel’s volume was calculated using a modified
version of a phenoSeeder that we created (Jahnke et al. 2016). The device consisted of a
stepper motor, a Raspberry Pi 3 Model B (Raspberry Pi Foundation, Cambridge, UK), and
an Arducam M12 Lens Camera (Arducam, Nanjing, China). Briefly, a kernel was placed
crown-side down on a pedestal powered by the stepper motor that rotated the kernel in
one full 360◦ rotation, pausing at 10◦ increments. At each pause, a photo was taken for a
total of 36 images per kernel. Camera parameters were adjusted in the python code from
Jahnke et al. (2016). This code cropped, masked, and stitched each image together to create
a 3D reconstruction of the kernel, and the volume of each kernel was calculated from this
3D reconstruction.

Each kernel was scored for Fusarium kernel rot on a 1–4 scale: 1 = asymptomatic,
2 = starburst, 3 = purple, 4 = mummified (adapted from Morales et al. 2019). This scale
differs from Morales et al. (2019) in excluding the “blush” kernel category, as this kernel
type was not observed in our material.

Each kernel was ground by a ball bearing in SPEX Geno/Grinder 2000 Sample Prep
Shaker Tissue Homogenizer (New Life Scientific, Inc., Cridersville, OH, USA). Fumonisins
were extracted at a 1:2 (mass to volume) ratio in 90% methanol in 2.0 mL Eppendorf tubes,
vortexed for five minutes, and centrifuged at 14,000 rpm for 10 min. The supernatant
was removed and placed in a 1.5 mL Eppendorf tube; then, fumonisins were quantified
from diluted supernatant according to the protocol described above. The same check and
CV cutoffs were used, and any samples exceeding 6 ppm were diluted in distilled water
and re-assayed.
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5.6. Data Analysis

All data analyses and statistics were performed in R 4.03, and the ggplot2 and ggcor-
rplot packages were used for visualizations [48–50]. To compare among group means
for plastic kernels and bulk maize, one-way ANOVAs were performed, and if significant,
pairwise t-tests with a Holm p-value adjustment were used to compare between group
means. Unpaired two-sided Student’s t-tests were used for single kernel characteristic
means. For assessing bulk and single kernel trait relationships, Spearman rank correlations
were calculated. Fumonisin concentrations were log10-transformed for statistical analy-
ses because the data were highly skewed and not normally distributed according to the
Shapiro–Wilk normality test.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13090652/s1. Table S1: Rejection rates of each plastic kernel model set at all combinations
of settings and passes. Table S2: Bulk characteristics of the unsorted maize samples and the three
sorted fractions. Table S3: Single kernel characteristics of 72 heavy fraction and 72 light fraction
maize kernels. File S1: STL file for the plastic kernel models.
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