
pathogens

Communication

Hemotropic Mycoplasma and Bartonella Species Diversity in
Free-Roaming Canine and Feline from Luanda, Angola

João R. Mesquita 1,2 , Ana C. Oliveira 3, Frederico Neves 4, Jose R. Mendoza 3, Maria F. Luz 3, Inês Crespo 5,
Thays F. dos Santos 6 , Sérgio Santos-Silva 7, Hugo Vilhena 5,8,9 and Patrícia F. Barradas 2,5,10,*

����������
�������

Citation: Mesquita, J.R.; Oliveira,

A.C.; Neves, F.; Mendoza, J.R.; Luz,

M.F.; Crespo, I.; dos Santos, T.F.;

Santos-Silva, S.; Vilhena, H.; Barradas,

P.F. Hemotropic Mycoplasma and

Bartonella Species Diversity in

Free-Roaming Canine and Feline

from Luanda, Angola. Pathogens 2021,

10, 735. https://doi.org/10.3390/

pathogens10060735

Academic Editor: Alfonso Zecconi

Received: 16 May 2021

Accepted: 8 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
jrmesquita@icbas.up.pt

2 Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas
135, 4050-091 Porto, Portugal

3 Casa dos Animais Veterinary Clinic, Luanda, Angola; olivecris@hotmail.com (A.C.O.);
joseriveromendoza@gmail.com (J.R.M.); franciscazarco@gmail.com (M.F.L.)

4 Department of Veterinary Sciences, Vasco da Gama Universitary School (EUVG), 3020-210 Coimbra, Portugal;
fredericomiguelneves@gmail.com

5 Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama
University School (EUVG), 3020-210 Coimbra, Portugal; ines.r.crespo@gmail.com (I.C.);
hcrvilhena@hotmail.com (H.V.)

6 Department of Epidemiology and Public Health, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7,
Seropédica, RJ 23897-000, Brazil; thaysfigueiroa@outlook.com.br

7 Polytechnic Institute of Coimbra (IPC), Agrarian School, 3045-093 Coimbra, Portugal;
sergiosilva.1999@hotmail.com

8 Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD),
5000-801 Vila Real, Portugal

9 University Veterinary Hospital of Coimbra, 3020-210 Coimbra, Portugal
10 Polytechnic Institute of Viana do Castelo (IPVC), Agrarian School, 4990-706 Ponte de Lima, Portugal
* Correspondence: patricia.barradas@ispup.up.pt; Tel.: +351-22-206-1820

Abstract: Free-roaming dogs and cats represent potential reservoirs for zoonotic vector-borne
pathogens shedding to the human population. Given the health impact of these pathogens, we
searched free-roaming dogs and cats included in an animal population control program from Luanda,
Angola, for Bartonella and hemotropic mycoplasma infection. We report the detection of Bartonella
henselae (2/66; 3%), Candidatus Mycoplasma haemominutum (5/66; 7.5%) and Mycoplasma haemofelis
(1/66; 1.5%) in cats. One dog was found positive for Mycoplasma haemocanis (1/20; 5%). This is the
first report of Bartonella henselae infections in stray cats and of hemotropic mycoplasmas in cats and
dogs from Angola. Despite the relatively small sample size, our results sustain the hypothesis of
uncontrolled circulation of these agents in highly mobile synanthropic animal populations of Luanda.
Population and vector control could contribute to reducing the likelihood for animal-to-animal and
animal-to-human transmission.
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1. Introduction

Many vector-borne organisms are considered emerging or re-emerging pathogens,
with increasing comparative biomedical importance worldwide [1]. People and animals
share many of these microorganisms and diseases, with circa 60 percent of human infections
estimated to have an animal origin [2], many of which are transmitted by arthropod
vectors [3]. Domestic and peri-domestic animals represent a bridge for the emergence of
human diseases. Free-roaming animals, including dogs and cats, are typically not under
human control and are hence not submitted to vaccination or ectoparasitic control, being
considered as potential reservoirs for zoonotic vector-borne pathogens [4].
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Bartonella spp. are a worldwide distributed Gram-negative, hemotropic, and rod-
shaped Alphaproteobacteria [5], mainly transmitted by arthropod vectors [6]. Elements
from this genus are fastidious, slow-growing, and facultative intracellular bacteria, highly
adapted to a broad spectrum of mammalian reservoir hosts [7–9]. Bartonella henselae and
B. clarridgeiae are known to be the agents of cat-scratch disease (CSD) in humans, with cats
being recognized as a reservoir for both species [10]. However, unlike humans, cats infected
with Bartonella do not usually develop any symptoms but present relapsing bacteraemia
for months or years [11]. The dog may also be a host for B. henselae and is considered
the primary reservoir for B. vinsonii berkhoffii, causing endocarditis in both dogs and
humans [12]. Blood-sucking arthropod vectors (fleas, lice, sand flies, biting flies, and ticks)
ingest intra-erythrocytic Bartonella spp. during the blood meal, after which transmission to
animals and humans can occur mainly by inoculation of Bartonella-contaminated arthropod
feces via animal scratches or bites or host self-inflected contamination of wounds, or by
bites of infected vectors [13]. Vector bites are a well-documented mode of transmission, as
demonstrated by Lutzomyia verrucarum sand flies, a vector of B. bacilliformis [14]. Moreover,
the detection of B. henselae in questing ticks [15] and the transmission of B. henselae between
cats through Ctenocephalides felis fleas have been described [16].

Various epidemiological studies have been conducted in cats and dogs in many coun-
tries, with Bartonella DNA detection rates varying greatly. Positive animals were found in
several countries such as in Albania (0.7% positive) [17], South Africa (23.5% positive) [18],
Italy (from 2.5% to 83.5%) [19,20], Thailand (1.61%) [21], Brazil (24.7%) [22], and China
(3.94%) [23]. Detection rates are highly variable in relation to the different geographic areas
and studied populations and typically higher mostly where environmental conditions
and human behavioral factors are favorable for the survival of their vectors [24]. To the
best of our knowledge, only one epidemiologic molecular study evaluated Bartonella spp.
infection in felines from Angola, showing 1% occurrence in indoor cats [7].

Hemotropic mycoplasmas are small, unculturable, cell wall–deficient, Gram-negative
bacteria [25] that adhere to the host’s erythrocytes of numerous domestic and wild animals,
such as cats, dogs, rodents, swine, cattle, sheep, bears, and bats [25–27]. These bacteria
cause diseases that range from asymptomatic infections to acute hemolytic anemia [28].
Few studies on molecular characterization of human Mycoplasma infection have been re-
ported so far [29,30], and an increasing body of knowledge has shown pathologic effect
when predisposing conditions are present, such as immunodeficiency [30,31]. Several
Mycoplasma species have been described as infecting wild and domestic animals all over
the world. Three species are recognized as affecting cats, Mycoplasma haemofelis (Mhf),
Candidatus Mycoplasma haemominutum (CMhm) and Candidatus Mycoplasma turicensis
(CMt) [32], and two affecting dogs, Mycoplasma haemocanis (Mhc) and Candidatus My-
coplasma haematoparvum (CMhp) [33]. However, “CMhm” and “CMt” were already
detected in dogs [34,35], and “Candidatus Mycoplasma haematoparvum-like” was found
in cats [36]. Transmission of hemotropic mycoplasma species remains cryptic, however,
several modes have been suggested. DNA of the agents was already amplified from C. felis
fleas and Ixodes spp. ticks, suggesting a possible vector association [37,38].

On the other hand, infection is still prevalent in some regions where flea infestation is
uncommon, and a recent study has also shown that haemoplasmas were not transmitted
by Aedes mosquitoes [37,39].

Several studies reported on epidemiological aspects of hemotropic Mycoplasmas in
both cats and dogs from several countries with changing DNA occurrences namely Portugal
(CMhm: 41.56%; Mhf: 12.81%; CMt: 1.25%; CMhp: 4.38%) [36]; Albania (CMhm: 21.9%;
Mhf: 10.3%; CMt: 5.5%) [17], Spain (CMhm: 9.9%; Mhf: 3.7%; CMt: 0.5%) [40], Italy (CMhm:
12.3%; Mhf: 9.4%; CMt: 4.8%) [41], Romania (CMhm: 72.7%; Mhf: 27.3%) [42], South Africa
(CMhm: 38%; Mhf: 15%; CMt: 26%) [43], and Spain (Mhc: 14.3%; CMhp: 0.6%) [44], Italy
(Mhc: 4.7%; CMhp: 1.4%) [41], Chile (Mhc: 11.9%; CMhp: 12.2%) [35], and Nigeria (Mhc:
6%) [45], respectively.
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Although at least thirteen Bartonella species or subspecies have been recognized as
agents of human disease, the zoonotic potential of hemotropic Mycoplasmas is not yet
fully clarified. However, these organisms have occasionally been reported in humans,
including anemic patients with acquired immunodeficiency syndrome and systemic lupus
erythematosus [46–49]. Moreover, co-infection with Mhf and B. henselae was also diagnosed
in an immunodeficiency virus-infected individual from Brazil, suggesting a role of Mhf in
human disease and raising alerts for caution when handling blood or tissues from infected
animals [31].

Given the veterinary and public health impact of these pathogens, this study aimed
to evaluate the species of Bartonella and hemotropic hemoplasmas infecting free-roaming
dogs and cats from Luanda, Angola, by molecular methods. To our knowledge, this is the
first study reporting the occurrence of these infectious agents in free-roaming dogs and
cats from Angola.

2. Results

All cats and dogs included in this study were free-roaming and crossbreed. The
estimated cats’ age ranged from five months to seven years, of which half (33/66; 50%)
were males and half were females. The estimated dogs’ age ranged from one to 10 years, of
which 58% (11/19) were males. Out of the 66 cat blood specimens tested, two adult animals,
one male and one female, (2/66; 3.0%; 95% Confidence Interval (CI): 3.7–10.5) showed to
be Bartonella-positive for 16S-23S rDNA ITS, while none of the dog blood specimens tested
positive for Bartonella infection. Sequence analysis of the Bartonella 16S–23S rDNA ITS
positive amplicons from free-roaming cats from Luanda, Angola, revealed 100% nucleotide
identity with B. henselae (GenBank accession number MT095053).

Regarding hemotropic hemoplasmas, a total of seven out of 85 free-roaming cats and
dogs (8.2%, 95% CI 3.4–16.2) tested positive for PCR amplification of the 16S rRNA gene.

Of the 66 cats tested, six (6/66; 9.1%; 95% CI: 3.4–18.7), two kittens and four adults,
showed to be hemoplasma positive, namely five males and one female. Two species
were identified: CMhm (5/66; 7.5%) was the dominant species in cats, followed by Mhf
(1/66; 1.5%). Sequencing of PCR products was successfully performed in all positive
samples. Sequence identity analysis revealed that the five CMhm showed 99.84% and
99.83% similarity with CMhm from Southern Italy (GenBank accession number KR905449)
and northern Italy (GenBank accession number EU839985), respectively. Sequence identity
analysis of the Mhf derived from the present study presented 99.66% homology with CMhf
(GenBank accession number KR905465) from Italy.

Out of the 19 dogs tested, one adult male dog (1/19; 5%; 95% CI: 1.3–24.9) was shown
to be Mhc positive. Sequence identity analysis of the Mhc derived from the present study
presented 99.42% homology with CMhc (GenBank accession number MT345534) from
South Korea.

GenBank accession numbers of Bartonella sequences obtained in this study are: MW477483-
MW477484 16S-23S rDNA gene of B. henselae). GenBank accession numbers of Mycoplasma
sequences obtained in this study are: MW598399 to MW598403 (16S rRNA gene fragment
of CMhm), MW633343 (16S rRNA gene fragment of CMhf), and MW633326 (16S rRNA
gene fragment of CMhc).

3. Discussion

In the present study, molecular techniques were employed to survey free-roaming
Luandan cats and dogs’ blood for Bartonella spp. and hemotropic mycoplasmas. Among
the 85 tested free-roaming animals, two cats showed to be B. henselae positive. This result
is in accordance with a previous study performed on owned cats from the same city [7].
In contrast, a higher percentage of feline Bartonella infections was reported in previous
studies performed in other countries from Africa, namely South Africa (8/56; 14%) [18], in
Algeria (36/211; 17%) [50], or Zimbabwe (2/25, 8%) [51]. None of the dogs tested positive
for this bacterium, a result that is in contrast with former studies carried out in dogs from
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Tunisia (22/149; 15%) [52] and in Algeria (6/80; 6.25%) [52], but in agreement with studies
achieved in rural dogs from Uganda [53] and domestic dogs from Zambia [54].

Evidence for the presence of three hemoplasma species in both free-roaming Luandan
dogs and cats was also demonstrated in this study. Mhf, CMhm, and CMt are considered
the hemoplasmas species of cats. These species present different pathogenic potential, and
comorbidities may influence the disease severity [32]. In dogs, Mhc and CMhp species
have been reported, being primarily found in immunocompromised dogs [55]. Out of the
66 free-roaming cats tested, 9% were hemoplasma-positive, with 7.5% CMhm and 1.5%
Mhf-positive. The overall occurrence of cat hemoplasma species infection reported in this
study was lower when compared to previous studies carried out in South Africa (CMhm:
21.6%; Mhf: 3.9%) [18] but is similar to the occurrence found by our group in a previous
study with a group of client-owned indoor cats from the same region, which found four
out of 67 cats (6%) being positive for CMhm DNA (data not published). Regarding dogs’
hemoplasmas, the unique species amplified was Mhc, in a single dog. Studies reporting
the presence of Mhc in dogs were made in other countries such as Sudan (Mhc: 0.07%) [56],
Chile (Mhc: 11.9%) [35], and Korea (Mhc: 38.2%) [57]. It was also interesting to verify that
Luandan dogs appeared infected only with Mhc, which is in disagreement with several
previous studies [33,35,57]. Nonetheless, we alert caution when interpreting our results
given the small sample size and, in some instances, also the scarce detection rate,

This is the first report of Bartonella and hemotropic mycoplasma infections diagnosed
by PCR in stray dogs and cats from Angola. A number of Bartonella spp. are today
recognized agents of human disease, and the body of knowledge sustaining the zoonotic
potential of hemotropic Mycoplasmas is growing, particularly in immunodeficiency virus-
infected individuals. With this in mind, our results show the circulation of these agents
in free-roaming canine and feline from Luanda, Angola. Circulation of these agents in
uncontrolled and highly mobile animal populations such as synanthropic free-roaming
dogs and cats is likely to sustain the transmission in the animal populations due to their
close interaction and to the inexistence of ectoparasite elimination programs. The complex
interactions between these bacteria, their reservoir hosts and vectors, as well as the broad
vector range that include a variety of arthropods, sustain the possibility for interspecies
transmission with a high impact on those immunosuppressed individuals.

Further research is needed, including a larger number of free-roaming animals, from
other cities and provinces of the country, as well as potential vector ticks and fleas, aiming
at better characterizing and controlling vector-borne diseases in Angola.

4. Materials and Methods
4.1. Animal Recruitment and Data Collection

Between 2018 and 2019 blood samples were collected from apparently healthy, free-
roaming cats (n = 66) and dogs (n = 19) from several parishes of Luanda, Angola, that were
submitted to spaying/neutering in a local veterinary clinic. All animals were free-roaming
and crossbreed and were included in an animal population control program. Dogs’ and
cats’ age was categorized as young (<2 years), adults (2–7 years), and geriatric (>7 years)
according to previous studies [36]. Whole blood samples were collected from each cat
and dog into ethylenediaminetetraacetic acid (EDTA) tubes and were frozen at −20 ◦C
until further processing. No clinical information was available from these animals. This
study was approved by the organism responsible for animal welfare (ORBEA), ICBAS-UP,
Portugal, as complying with the Portuguese legislation for the protection of animals (Law
no. 2880/2015 and Decree-Law no. 113/2013).

4.2. Nucleic Acid Extraction

Total genomic DNA was extracted from 400 µL of EDTA-blood samples using a com-
mercial kit (GRS Pure DNA Kit, Grisp, Porto, Portugal), according to the manufacturer’s
instructions. The DNA was eluted in 100 µL elution buffer and stored at −20 ◦C until use.
A negative control (PBS) was used in parallel with the extraction of each set of samples.
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4.3. PCR Amplification

A total of 85 genomic DNA samples were initially screened for Bartonella spp. using
a broad-spectrum nested-PCR assay targeting a 16S-23S rDNA intergenic spacer region
(ITS), as previously described [58]. Samples were also processed using a PCR protocol
based on the amplification of a partial sequence of the 16S rRNA gene of feline hemotropic
mycoplasmas [59]. All samples were subjected to a second PCR protocol carried out using
specific CMt primers [60]. Subsequently, to obtain a longer Mycoplasma sequence and for a
better molecular assessment of infections in cats and dogs, a third conventional PCR was
performed for the previously obtained PCR positive results, using the universal 16S rRNA
gene [61]. The sequences of the primers employed and PCR protocols are shown in Table 1.
For all reactions, a total of 5 µL of genomic DNA was added to 5.6 µL KAPA Taq DNA
Polymerase mix (KAPA Biosystems, Woburn, MA, USA), 12.4 µL of deionized sterile water
and 1 µL (10 µM) of the primers in a 25.0 µL final volume of the reaction mixture. The
reactions were carried out in an automatic DNA thermal cycler 100 (Bio-Rad, Feldkirchen,
Germany), including negative and positive controls. The PCR amplification products were
visualized by Xpert green (Grisp, Porto, Portugal) fluorescence after electrophoresis in a
2% agarose gel at 175 V for 45 min.

Table 1. Primers and protocols used for the amplification of Bartonella spp and feline hemoplasmas gene.

Agents Target Gene Primer Primers (5′–3′) bp PCR Conditions Ref

Bartonella spp ITS P-bhenfa: TCTTCGTTTCTCTTTCTTCA
P-benr1: CAAGCGCGCGCTCTAACC 186/168

95 ◦C, 3 m; 35 cycles (94 ◦C,
15 s; 48 ◦C, 30 s; 72 ◦C, 30 s);

72 ◦C, 5 m
[43]

Bartonella spp ITS (n-PCR)

N-bhenf1a:
GATGATCCCAAGCCTTCTGGC

N-bhenr:
AACCAACTGAGCTACAAGCC

152/134
95 ◦C, 3 m; 35 cycles (94 ◦C,
15 s; 56 ◦C, 30 s; 72 ◦C, 30 s);

72 ◦C, 5 m
[43]

CMhm, Mhf, CMt 16S rRNA F: ACGAAAGTCTGATGGAGCAATA
R: ACGCCCAATAAATCCGRATAAT 170/193

94 ◦C, 1 m; 35 cycles (94 ◦C, 1
m; 65 ◦C, 1 m; 72 ◦C, 30 s); 72

◦C, 5 m
[44]

CMt 16S rRNA F: AGAGGCGAAGGCGAAAACT
R: CTACAACGCCGAAACACAAA 138

95 ◦C, 2 m; 35 cycles (95 ◦C,
10 s; 58 ◦C, 30 s; 72 ◦C, 30 s);

72 ◦C 5 m
[45]

Hemotropic
mycoplasmas 16S rRNA F: ATACGGCCCATATTCCTACG

R: TGCTCCACCACTTGTTCA 595/618
95 ◦C, 3 m; 35 cycles (95 ◦C,
30 s; 60 ◦C, 30 s; 72 ◦C, 30 s);

72 ◦C 5 m
[46]

Abbreviations: n-PCR, nested PCR: CMhm, Candidatus Mycoplasma haemominutum; Mhf, Mycoplasma haemofelis; CMt, Candidatus
Mycoplasma turicensis, m, minute, s, seconds.

All Bartonella-positive and Mycoplasma-positive amplicons obtained were sequenced
for genetic characterization. Amplicons were purified with a GRS PCR and Gel Band
Purification Kit (Grisp, Porto, Portugal), and sequencing was performed for both strands of
PCR products by the Sanger method, using the respective primers of different target genes.

Sequences were manually corrected using the BioEdit Sequence Alignment Editor
v 7.1.9 software package, version 2.1 (Ibis Biosciences, Carlsbad, CA, USA), and further
analysis was performed by comparison with the sequences available in the NCBI (Gen-
Bank) nucleotide database (http://blast.ncbi.nlm.nih.gov/Blast, accessed on 12 February
2021) [62,63].

5. Conclusions

Despite the limited sample size, to our knowledge this is the first report of Bartonella
henselae infections in stray cats and of hemotropic mycoplasmas in stray cats and dogs
from Angola. Population and vector control could contribute to reducing the likelihood of
animal-to-animal and animal-to-human transmission. As these infectious agents have a
broad vector range that includes both ticks and fleas, transmission between animals and
humans is a possibility that deserves further attention. Particular focus should be given to
immunosuppressed individuals.

http://blast.ncbi.nlm.nih.gov/Blast
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Little is known about the Bartonella and hemoplasma prevalence in African countries.
These results raise alert for human infection by these infectious pathogens and physicians
should consider these agents as possible causes of unexplained fevers in tropical and
subtropical African areas.
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