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a b s t r a c t 

The acoustic startle response (ASR) is an involuntary muscle reflex that occurs in response to a transient loud 

sound and is a highly-utilized method of assessing hearing status in animal models. Currently, a high level of 

variability exists in the recording and interpretation of ASRs due to the lack of standardization for collecting 

and analyzing these measures. An ensembled machine learning model was trained to predict whether an ASR 

waveform is a startle or non-startle using highly-predictive features extracted from normalized ASR waveforms 

collected from young adult CBA/CaJ mice. Features were extracted from the normalized waveform as well as 

the power spectral density estimates and continuous wavelet transforms of the normalized waveform. Machine 

learning models utilizing methods from different families of algorithms were individually trained and then 

ensembled together, resulting in an extremely robust model. 

• ASR waveforms were normalized using the mean and standard deviation computed before the startle elicitor 

was presented 
• 9 machine learning algorithms from 4 different families of algorithms were individually trained using features 

extracted from the normalized ASR waveforms 
• Trained machine learning models were ensembled to produce an extremely robust classifier 
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∗Method details 

Experimental procedure 

Whole-body startle responses were elicited using acoustic startle elicitors from young adult 

CBA/CaJ mice. The details of the startle waveform acquisition, sampling and procedure are identical to

those in Fawcett et al. [4] . Briefly, individual mice were placed in wire cages which rested on platforms
Fig. 1. Representative acoustic startle reflex waveforms from four mice and four randomly selected 85 dB SPL startle I/O 

sessions manually classified as startles (top) and non-startles (bottom). Data was acquired throughout the 500 msec of time 

shown on the x-axis. Note colors indicate different trials within the same session and panels without data indicate zero non- 

startles for that session and/or condition. 
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Fig. 2. Representative acoustic startle reflex waveforms from the same four mice and randomly selected startle I/O sessions 

presented in Fig. 1 with the SES presented at 95 dB SPL manually classified as startles (top) and non-startles (bottom). Note 

manual classification identified all ASR waveforms as startles for sessions 1061 and 1269 and colors indicate different trials 

within the same session and panels without data indicate zero non-startles for that session and/or condition. 
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ith embedded piezoelectric transducers. Animals were given 5 min for acclimation inside the sound

hamber before testing. Each animal received three testing sessions which included startle input-

utput that tested sensory motor gating and tone burst used in a pre-pulse inhibition measure (TPP)

o test hearing sensitivity. A total of 6911 Acoustic Startle Reflex (ASR) measurements were collected

rom 40 young CBA/CaJ mice (20 male/20 female) ranging in age from 2 . 3 to 6 . 2 months (mean age

f 3 . 76 months) over a 14-month period. These ASR measurements were manually classified as startle

4214) or non-startle (2697) by two experienced behavioral neuroscientists. 

xploratory data analysis 

The classification of ASR waveforms as startles versus non-startles requires the extraction of

eatures with high predictive capability. To identify relevant features, many ASR waveforms have been

isualized and explored. Fig. 1 shows ASR waveforms from four randomly selected startle I/O sessions

ith the SES presented at 85 dB SPL. All ASR waveforms classified as startles show similar morphology

ith little activity before the SES ( t = 0 msec) with extremely large increases in activity after the

ES is presented. Fig. 1 also shows the variation in startle amplitudes between mice and/or sessions

s well as the variations in the shape of the ASR waveform. The ASR waveforms classified as non-

tartles generally exhibit much lower amplitudes when compared to startles within the same session.

on-startles also contain mostly noise associated with random animal movement, especially before

he SES is presented when little to no activity is expected. This figure also shows only one session

10182018_S_1269) which resulted in all ASR waveforms being classified as a startle, a condition which
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Fig. 3. Distributions of the maximum magnitudes of the Startle I/O ASR waveforms with the SES presented at both 85 dB SPL 

and 95 dB SPL for startles (panel A) and non-startles (panel B). Vertical dotted lines indicate the median maximum magnitude 

of each distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

occurred in only 14 of the 109 (12 . 84%) startle I/O ASR waveforms (SES at 85 dB SPL) analyzed in this

study. 

As the intensity of the startle elicitor increases, the number of true startles as well as the

magnitude of the startle response is expected to increase. Fig. 2 shows ASR waveforms from the

same four 85 dB SPL startle I/O sessions presented in Fig. 1 but with the SES presented at 95 dB

SPL. The increase in SES level to 95 dB SPL resulted not only in an increase in the number of true

startles, but also at least an order of magnitude increase in startle magnitude, when compared to the

responses at 85 dB SPL. Note that the magnitudes of the ASR waveforms classified as non-startles with

an SES of 95 dB SPL presented in Fig. 2 is approximate to the non-startle ASR waveforms presented

in Fig. 1 elicited by the 85 dB SPL stimulus. The magnitude of the ASR waveforms is likely a feature

with high predictive capability since the magnitude generally increases with SES level for startles 

but stays about the same for non-startles. The distribution of the magnitude of the ASR waveforms

classified as startle (panel A) versus non-startle (panel B) is presented in Fig. 3 . This analysis shows

the maximum magnitude of startles is significantly higher on average than that of non-startles. In

addition, the maximum magnitude for startle is greater for 95 dB SPL startles when compared to

85 dB SPL startles while the maximum magnitude of non-startles is more uniformly distributed. 

In addition to the Startle I/O data presented above in Figs. 1 and 2 , ASR waveforms measured in

a tonal pre-pulse (TPP) protocol were also collected. Fig. 4 shows all trials from a single 16 kHz TPP

session with no pre-pulse as well as at tones presented at levels ranging from 40 dB SPL to 70 dB

SPL. In this representative example, all trials with no pre-pulse were classified as true startles and

also have the largest magnitudes, an expected result given the SES is presented at 110 dB SPL. In
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Fig. 4. Representative acoustic startle reflex waveforms from a single Tone Pre-Pulse measurement session with no pre-pulse 

as well as the 16 kHz tone presented at 40 to 70 dB SPL. All ASR waveforms were manually classified as startles (top) and 

non-startles (bottom). Note colors indicate different trials within the same session and panels without data indicate zero non- 

startles for that session and/or condition. Non-startle panels for no-pre pulse, 40 dB and 60 dB conditions had zero non-startle 

waveforms. 
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ddition, the magnitudes of the ASR waveforms classified as startles decreases with increasing TPP

evel, demonstrating tone pre-pulse inhibition reported by [6 , 8 , 9 , 15] . 

Figs. 1 , 2 , and 4 demonstrate these large variations over a variety of sessions conducted on a variety

f animals while Fig. 3 shows the distribution of the maximum magnitudes. Fig. 5 shows the ASR

aveforms for both the startle I/O and TPP protocols across all SES and pre-pulse levels with the

aximum magnitudes (panel A) and minimum magnitudes (panel B) manually classified as startles

top) and non-startles (bottom). It is clear that all startles presented in Fig. 5 follow a similar pattern

egardless of the magnitude of the ASR waveform in which there is little to no noise prior to the

ES being presented ( t < 0 msec) followed by large signals due to the involuntary animal movement

ollowed by a period of decreasing magnitude with time and a return to baseline noise levels. This

s contrast to ASR waveforms classified as non-startles but with large magnitude where the signal

efore the SES is presented contains low-level noise followed by increased activity after the SES

s presented but does not contain the typical decrease in magnitude back to baseline as seen in

hose waveforms classified as startles. The ASR waveforms classified as non-startles with minimum

aximum magnitudes presented in panel B Fig. 5 contain only low-level noise. Fig. 6 shows the

istribution of the maximum magnitudes from all ASR waveforms considered in this study. There is a

lear difference in the median maximum magnitudes for startles versus non-startles with the variance

ssociated with startles being much smaller than that of non-startles. Thus, the maximum magnitude

ill likely be a feature with high predictive power. 
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Fig. 5. Acoustic startle response waveforms for measurements producing the highest (panel A) and lowest (panel B) responses 

across all sessions included in this study for the startle I/O, 8 kHz and 16 kHz tone pre-pulse protocols, manually classified as 

startle (top) and non-startle (bottom). 

Fig. 6. Distribution of maximum magnitudes of all ASR waveforms for startle (blue) and non-startle (red) with vertical dotted 

lines indicating the median maximum magnitude of each distribution. 
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Fig. 7. Raw and normalized representative ASR waveforms collected using the Startle I/O protocol classified as startles (left) and 

non-startles (right) with the SES presented at 85 dB SPL from session 1268 presented in Fig. 1 including the A: raw waveform 

as well as several normalization methods including B: Z-score normalization using the entire waveform for mean and standard 

deviation, C: maximum magnitude normalization, D: minimum-maximum normalization, and E: Z-score normalization using 

the waveform before the SES was presented to for the mean and standard deviation. Note colors indicate different trials within 

the same session. 
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aveform pre-processing 

The ASR waveforms presented in Section 1 show the diversity typically found in acoustic startle

esponse data. In order to derive highly predictive features from ASR waveforms, the waveforms must

e normalized such that the waveforms having a range of amplitudes can be easily compared. Several

ethods of ASR waveform normalization were explored, such a Z-score normalization by subtracting

he mean and dividing by the standard deviation. In this case the mean and standard deviation was

omputed from both the entire waveform as well as the waveform before the SES was presented.

he Z-score normalization essentially transforms the ASR waveforms from voltage to the number of
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Fig. 8. Normalized ASR waveforms (using Z-score normalization with mean and standard deviation taken before the SES is 

presented) from the same four randomly selected 85 dB SPL startle I/O sessions presented in Fig. 1 . Note colors indicate 

different trials within the same session as well as the different scale for startles versus non-startles and panels without data 

indicate zero non-startles for that session and/or condition. 

 

 

 

 

 

 

 

 

 

 

standard deviations away from the mean used to compute the normalized waveform. In addition ,

ASR waveforms were normalized by dividing by their maximum magnitudes, scaling to the largest 

value to be equal to one, as well as min-max normalization such that every minimum waveform is

transformed to a value of zero and maximum amplitude into a value of one. 

Fig. 7 shows the effect these normalization techniques have on the same representative set of

representative ASR waveforms subject to the startle I/O protocol with a elicitor presented at 85 dB SPL

presented in Fig. 1 . Most normalizations techniques produce very similar results for both startles and

non-startles but with different scales. However, Z-score normalization using the mean and standard 

deviation taken before the SES, see plot E in Fig. 7 , shows significant differences in scale between

startles compared to non-startles. Fig. 8 shows the Z-score normalization with the mean and standard

deviation computed using the waveform before the SES. This produces normalized waveforms that 

have extremely different scales for ASR waveforms classified as startles compared to non-startle. This 

analysis shows that ASR waveforms classified as startles are up to 20 0 0 standard deviations away from

the pre-SES mean (rather 2 , 0 0 0 σ ) whereas non-startles are up to 80 σ . Thus, Z-score normalization

using the mean and standard deviation will applied to ASR waveforms used in this study before

feature extraction. 

Feature engineering 

Machine learning algorithms use features associated with the original ASR waveforms to build 

models to classify ASR waveforms startle or non-startle. Features must be extracted from the 

normalized ASR waveforms as the timeseries (each voltage in time) representing the raw ASR 
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Fig. 9. Distribution of the maximum magnitudes of normalized ASR waveforms for startle (blue) and non-startle (red) with 

vertical dotted lines indicating the median maximum magnitude of each distribution. 
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aveforms are generally not good predictors due to the variation of exact timing and shape of startle

esponses. Thus, features extracted from the normalized ASR waveforms as well as those derived from

arious transformations of the normalized ASR waveforms will have higher predictive capability than

he original waveforms themselves. 

aveform derived features 

Fig. 6 showed distribution of maximum magnitudes from the ASR waveforms collected prior

o waveform normalization with large differences between startles versus non-startles. However,

ig. 8 showed Z-score normalization using the mean and standard deviation of the ASR waveform

rior to the SES being presented produces even larger differences between startles versus non-startles.

he distribution of the maximum magnitude of normalized ASR waveforms is presented in Fig. 9 .

lthough Fig. 9 is similar to Fig. 6 for non-normalized ASR waveforms, the shape of the non-startle

istribution for normalized ASR waveforms favors lower magnitude startle responses when the ASR

aveforms are not normalized. In addition, the difference between the median maximum magnitudes

or startle versus non-startles is about 2 . 5 orders of magnitude as compared to normalized ASR

aveforms. 

The normalized ASR waveforms presented in Fig. 8 show variation in the time in which the

aximum magnitude within about 0 . 1 s after the SES is presented at t = 0 s. Fig. 10 shows the

istribution of the time the maximum magnitude occurred for the normalized ASR waveforms for

oth startles and non-startles with the maximum magnitude located between 0 . 05 s and 0 . 15 s for

oth startles and non-startles. Almost all startles waveforms occurring within this time-range have a

ignificant number of waveforms with the time of maximum magnitude outside of this time range as

ompared to non-startle waveforms. 
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Fig. 10. Distribution of the time of the maximum magnitude of normalized ASR waveforms manually classified as startle (blue) 

and non-startle (red) with vertical dotted lines indicating the median maximum magnitude of each distribution. 

Fig. 11. The maximum magnitude as a function of the time the maximum magnitude occurred extracted from each normalized 

ASR waveform manually classified to be a startle (blue) or a non-startle (red). The distribution of each feature is above (time 

of maximum magnitude) and to the right (maximum magnitude) of the individual data. 
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Fig. 12. Power spectral density estimate of the normalized ASR waveforms from the same four randomly selected 85 dB SPL 

startle I/O measurements presented in Fig. 8 manually classified as startle (blue) and non-startle (red). Inset shows the PSD for 

frequencies from 0 to 525 Hz. 
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Fig. 11 shows the individual maximum magnitudes for the normalize waveforms as a function

f the time of the maximum magnitude with the marginal distributions on each axis. This analysis

learly shows most startle waveforms present large maximum magnitudes ( > 5 × 10 2 ) at times

oncentrated around t = 0 . 1 s. However, there is some overlap in maximum magnitude and time

f the maximum magnitude for startles and non-startles, suggesting additional features must be

xtracted from the normalized ASR waveforms for successful classification via machine learning

lgorithms. 

ower spectrum density derived features 

Figs. 1 , 2 , and 4 display periodic behavior in the ASR waveforms with the magnitude, and possibly

he frequency content, varying between startles versus non-startles. These figures as well as the

ormalized ASR waveforms presented in Fig. 8 and distributions shown in Figs. 9 and 11 show

he magnitude of the periodic behavior also varies between startles versus non-startles. Thus, the

ower contained within a spectral density (PSD) estimate from each normalized ASR waveform is

xpected to also vary both in the magnitude of the power as well as which frequency contains the

aximum power. Fig. 12 show the power spectral density estimates from the same 85 dB SPL startle

/O normalized ASR waveforms presented in Fig. 8 . The frequency content is clearly concentrated

etween 50 Hz to 100 Hz with startles exhibiting about 5 orders of magnitude higher power on

verage compared to non-startles. 

Features extracted from the PSD estimate of the normalized ASR waveforms include the maximum

ower and the frequency at maximum power. Fig. 13 shows the distribution of the maximum PSD

ower for all normalized ASR waveforms considered in this study. This PSD analysis shows the median
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Fig. 13. Distribution of the maximum power spectral density estimate for each normalized ASR waveforms manually classified 

as startle (blue) or non-startle (red) with vertical dotted lines indicating the median maximum magnitude of each distribution. 

Fig. 14. The maximum power as a function of the frequency at which the maximum power occurred extracted from the power 

spectral density estimates from each normalized ASR waveform manually classified to be a startle (blue) or a non-startle (red). 

The distribution of each feature is above (frequency of maximum power) and to the right (maximum power) of the individual 

data. 



T.J. Fawcett, C.S. Cooper and R.J. Longenecker et al. / MethodsX 8 (2021) 101166 13 

Fig. 15. Continuous wavelet transform power spectra of four randomly selected normalized ASR waveforms from a single 85 dB 

SPL startle I/O session whose normalized ASR waveforms (shown in white) are presented in Fig. 1 . Note: the scale of the 

normalized ASR waveforms is not constant for each panel. 
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aximum PSD power for startles is about 5 orders of magnitude higher than that of non-startles,

ndicating higher magnitude periodic behavior for startles versus non-startles. The maximum PSD

stimates presented in Fig. 13 will occur at slightly different frequencies. Fig. 14 shows the individual

aximum PSD power as a function of the frequency of the maximum PSD power for each normalized

SR waveform. This analysis shows the distributions of the frequency of the maximum PSD power for

tartles is similar to that for non-startles. 

ontinuous wavelet transform derived features 

Close inspection of the ASR waveforms and normalized ASR waveforms presented in Figs. 1 , 2 , 4 ,

nd 8 shows the timing of the maximum high magnitude periodic activity is drastically different

etween startles and non-startles. Startles generally exhibit high magnitude periodic behavior within

 . 05 s and 0 . 15 s after the SES is presented. Many non-startles also exhibit a maximum magnitude

ithin the same time frame, but many also exhibit high magnitude periodic behavior throughout

he waveform. The power spectral density estimate is based on the Fourier Transform and computed

ower as a function of frequency based on the entire waveform, not any one period of time. Thus, the

SD estimate weights the frequency content the same across all times. This equal weighting does not

llow for the computation of the power spectral density as a function of both frequency and time in

rder to analyze the temporal changes in the normalized ASR waveforms. One alternative would be

o use the short time Fourier Transform (STFT) for the analysis of frequency content as a function of

ime. However, Zhang et al. [18] provided evidence for the advantageous use of a continuous wavelet

ransform, which exhibited good time-frequency resolution, as well as accurate time-frequency power

stimation. 
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Fig. 16. Distribution of the maximum continuous wavelet transform (CWT) power versus the time of the maximum CWT power 

for normalized ASR waveforms manually classified as startle (blue) or a non-startle (red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The continuous wavelet transform (CWT) power spectra of normalized ASR waveforms from four 

randomly selected trials from a single 85 dB SPL session (whose normalized ASR waveforms are

presented in Fig. 8 ) are presented in Fig. 15 . These CWT power spectra show large magnitudes when

the associated normalized ASR waveform contains high-magnitude frequency content. Specifically, the 

CWT power spectra of the startles presented, panels A and B, show high CWT power in a small time

window (0 . 05 to 0 . 15 s) as well as a small period range (2 −6 to 2 −7 Hz) whereas the non-startles

contain CWT power at inconsistent times. The CWT power spectra for the non-startles shown in

panels C and D of Fig. 15 show high-magnitude frequency content well after (panel C) and well before

(panel D) the SES is presented. 

Characteristics of the CWT power spectra of each normalized ASR waveform provide insight into 

their time-dependent frequency content, allowing for the extraction of features with high predictive 

capability. Fig. 16 shows the distribution of maximum CWT power of the normalized ASR waveforms

as a function of the time in which the maximum CWT power occurred. This analysis shows the

maximum CWT power to be elevated for startles when compared to non-startles. In addition, the time

of the maximum CWT power is between 0 . 05 and 0 . 15 s after the startle elicitor for startles versus

non-startles whose time of maximum CWT power spans the entire recording time. Fig. 17 shows the

mean CWT power (over all times and periods) as a function of period of the maximum CWT power.

The period at maximum CWT power is generally lower for startles when compared to non-startles.

However, the mean CWT power is generally equal across almost all normalized ASR waveforms and is

not a highly predictive feature. 

Inspection of the CWT power spectra presented in Fig. 15 shows that the combination of time,

period, and CWT power allows for the extraction of features with high predictive capability. The CWT

power before the SES was presented ( t < 0 s) is essentially zero across all periods for startles (panels

A and B) but can be non-zero for non-startles (panel D) while the CWT power around the time the SES
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Fig. 17. Distribution of the mean continuous wavelet transform (CWT) power across all periods and times as a function of the 

period of maximum CWT power for normalized ASR waveforms manually classified as startle (blue) or a non-startle (red). 
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s presented ( t > 0 . 005 and t < 0 . 15 s) is high for a subset of periods for startles for the representative

WT power spectra shown in Fig. 15 . Fig. 18 shows the mean CWT power (across all periods) around

he time the SES is presented as a function of the mean CWT power before the SES is presented (all

imes before t = 0 s) for all normalized ASR waveforms sampled for this study. 

The CWT power spectra across all periods 50 msec before the SES is shown in Fig. 15 . The CWT

ower spectra are essentially zero for both startles (panels A and B) as well as the non-startle in panel

 but is not zero for the non-startle in panel D. Fig. 19 shows the distribution of the mean CWT power

across all periods) at 50msec before the SES is presented. This analysis shows significant separation

etween startles and non-startles in the distribution of mean CWT power 50msec before the SES

s presented, making the mean CWT power 50 msec before the SES a feature with high predictive

apability. 

Periods of high magnitude activity and recovery to baseline are represented by the CWT power

t 50 msec and 350msec after the SES is presented. Fig. 20 displays the mean CWT power at 350

sec after SES compared to 50msec after SES. Generally, startle responses show a decreased mean

WT power 350 msec after SES as compared to the non-startle responses. This illustrates that activity

eturns to baseline for classified startles as compared to non-startles, when using the normalized ASR

aveforms. However, the mean CWT power 50 msec after the SES is presented is generally low for

on-startles but is almost uniformly distributed for startles. This is due to the variable latency in the

nimal’s startle response following the startle elicitor. 

The variable latency of the high magnitude activity for normalized ASR waveforms classified

s startles shown in Fig. 8 and embedded with the corresponding CWT power spectra in

ig. 15 highlights the difficulty in choosing any specific time in which to extract CWT power. However,

nspection of the representative CWT power spectra presented in Fig. 15 show the high magnitude



16 T.J. Fawcett, C.S. Cooper and R.J. Longenecker et al. / MethodsX 8 (2021) 101166 

Fig. 18. Distribution of the mean continuous wavelet transform (CWT) power across all periods around the SES was presented 

( t > −0.005 and t < 0.15 s) as a function of the mean CWT power before the SES was presented ( t < 0 s) for normalized ASR 

waveforms manually classified as startle (blue) or a non-startle (red). 

Fig. 19. Distribution of the mean continuous wavelet transform (CWT) power across all periods at t = 50 msec before the SES 

was presented for normalized ASR waveforms manually classified as startle (blue) or a non-startle (red). 
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Fig. 20. Distribution of the mean continuous wavelet transform (CWT) power across all periods at t = 50msec after the SES was 

presented as a function of the mean CWT power at t = 350 msec after the SES was presented for normalized ASR waveforms 

manually classified as startle (blue) or a non-startle (red). 
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c  

b  
ctivity occurs at a frequency near the resonant frequency of the piezoelectric transducers of 100 Hz

r a period of 2 6.64 s. Fig. 21 shows the log transform of the same representative CWT power spectra

resented in Fig. 15 . Analysis of the log transformed CWT power spectra show significant differences

n high frequency (low period) activity for startles with an approximately 5 orders of magnitude

reater CWT power at 2048 Hz across all times for non-startles versus startles. Fig. 22 shows the

ean CWT power across all times at 2048 Hz versus that at 100 Hz. 

eature pre-processing 

A total of 17 features were extracted from the ASR waveforms as described in Fawcett et al.

 [4] , Table 1] with their distributions presented in Figs. 11 , 14 , 16 –20 , and 22 . Feature variability was

ssessed to ascertain which, if any, features have little to no variability. Features with little to no

ariability would be considered poor candidates for features use in machine learning. Table 1 shows

he majority of features had over 99% unique value. The four features that contained less than 99%

nique values also maintained a ratio of less than three when placing the most prevalent value over

he second most prevalent value. A ratio value of three is smaller than the ratio of 20 described by

uhn and Johnson [12] which was used to classify predictors as having variance that approximates

ero. As a result of all the features having a near-zero variance, none were removed from the feature

pace. 

Next, the correlation between features was analyzed to determine if any pairs of features are highly

orrelated and thus contain redundant information. Features containing redundant information must

e removed from the feature space prior to the use of machine learning algorithms [ 5 , 17 ]. Fig. 23
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Fig. 21. Log transform of the same continuous wavelet transform power spectra of four randomly selected normalized ASR 

waveforms from a single 85 dB SPL startle I/O session presented in Fig. 15 . Dotted lines represent the period corresponding to 

100 Hz and 2048 Hz. 

Table 1 

Feature variability. 

Feature Frequency Ratio Percent Unique 

before.mean 1.0 0 0 0 96.4385 

before.sd 1.0 0 0 0 96.5084 

max.mag 1.0 0 0 0 96.5084 

t.max.mag 1.0870 35.5726 

max.psd 1.0 0 0 0 96.5084 

max.psd.log10 1.0 0 0 0 96.5084 

freq.max.psd 2.6388 0.3771 

mean.cwt.power.before.startle 1.0 0 0 0 96.5084 

max.cwt.power 1.0 0 0 0 96.5084 

t.max.cwt.power 1.1071 34.8324 

freq.max.cwt.power 1.2391 0.3073 

mean.cwt.power 1.0 0 0 0 96.5084 

mean.cwt.power.100.Hz 1.0 0 0 0 96.5084 

mean.cwt.power.around.startle 1.0 0 0 0 96.5084 

mean.cwt.power.50 ms.before.startle 1.0 0 0 0 96.5084 

mean.cwt.power.50 ms.startle 1.0 0 0 0 96.5084 

mean.cwt.power.350 ms.after.startle 1.0 0 0 0 96.5084 

mean.cwt.power.high.freq 1.0 0 0 0 96.5084 
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Fig. 22. Distribution of the mean continuous wavelet transform (CWT) power across all times at 100 Hz as a function of the 

mean CWT power at 2048 Hz for normalized ASR waveforms manually classified as startle (blue) or a non-startle (red). 
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hows the correlation matrix of all pairs of features extracted from the ASR waveforms with most

airs of features having small correlation coefficients. Although there are several pairs of features that

re somewhat correlated, this analysis shows that no pair of features exceed the highly correlated

hreshold of r > ±0 . 9 [1] , allowing all features to be included in the feature space use for the machine

earning model development described below. 

Similar to the correlation analysis described above, any feature which is a linear combination

f other features contains redundant information and must be removed from the feature set [12] .

o features were removed from the feature set since no feature was determined to be a linear

ombination of any other features. 

ata partitioning 

Features were extracted from 6911 ASR waveforms and randomly split into two sections: 80% was

sed for training and 20% was used for testing and validation. Additionally, all model training included

0-fold cross validation to help reduce training biases across the specific subsets of data [ 10 , 13 , 14 ]. As

reviously mentioned, all features were centered and scaled within their data partitions to use via

achine learning methods as outlined in the next section. 

achine learning methods 

No combination of single features or feature pairs shown in the previous data can differentiate

 startle from a non-startle. In order for machine learning algorithms to distinguish startles

nd non-startle responses with little error, machine learning techniques must be applied to
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Fig. 23. Feature correlation plot. 

 

 

 

 

 

 

 

combine the features described previously [ 7 , 12 ]. In an attempt to employ algorithms to find

optimal feature combinations, various techniques from diverse algorithm families including Linear 

classification (logistic regression and linear discriminant analysis), Bagged classification (bagged tree 

and random forests), Boosted classification (extreme gradient boosted and C5.0), and Discriminative 

classification via kernels (support vector machine) were employed as reported in Fawcett et al. [4] .

All machine learning algorithms were implemented in the caret package [11] in the R programming

language. 

Individual model performance 

Fig. 24 shows the Receiver Operating Characteristic (ROC) curve for the prediction of ASR 

waveforms being a startle or non-startle for all machine learning algorithms listed above. The Random

Forest (rf) algorithm produced the best classification (up to 100% training accuracy) and demonstrates 

the ROC curve farthest from the 45 ° line. The specificity, sensitivity, and ROC when predicting 25

randomly selected training examples for all machine learning algorithms tested is presented in Fig. 25 ,

again showing Random Forests (rf) is the highest performing algorithm followed closely by eXtreme 

Gradient Boosting Tree (xgbTree). 

Fig. 25 shows the distributions of several performance metrics include the Receiver Operating 

Characteristics (ROC), Sensitivity (Sens), and Specificity (Spec) when predicting a ASR waveform to 

be a startle or non-startle with the training dataset as well as the accuracy of predicting the correct
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Fig. 24. Receiver Operating Characteristic (ROC) Curve for all individual machine learning used in this study. 

Fig. 25. Individual machine learning model performance. 
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Fig. 26. Machine learning model correlation plot. 

 

 

 

 

 

 

classification on the testing dataset for each of the individual machine learning methods described 

above. All mean ROCs were over 0 . 95 with Random Forests demonstrating the greatest performance

within the individual models with a ROC of 0 . 9779 and a testing accuracy of 0 . 9266 [4] . 

Ensemble model performance 

In addition to the individual machine learning algorithms listed above, multiple models have been 

ensembled together via stacking [ 2 , 16 ] in order to produce an extremely robust model that generalizes

well to test and validation data. However, similar to correlated features, highly correlated models 

should be not be included in an ensemble model and thus removed. Fig. 26 shows the correlation

between the predictions between pairs of individual machine learning models. The ensembled 

machine learning workflow was implemented in R using the caretEnsemble package [3] . 

A Generalized Linear Model (GLM) was used to determine the optimum weight of each model.

The ensembled model performance using all models is presented in demonstrated a training ROC 

of 0 . 9779 and testing accuracy of 0 . 9301. The Bagged tree (treebag) as well as the Support Vector

Machine with Linear and Polynomial kernels were removed from the final ensembled model as 

they possessed statistically insignificant weights, indicating these models are highly correlated with 

other models. Removing models based on the statistical significance of their coefficient versus 

correlation coefficient alone in order to decide which model in the pair of highly correlated models

to keep. 
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