@’PLOS | PATHOGENS

CrossMark

click for updates

E OPEN ACCESS

Citation: Zhai Y, Franco LM, Atmar RL, Quarles JM,
Arden N, Bucasas KL, et al. (2015) Host
Transcriptional Response to Influenza and Other
Acute Respiratory Viral Infections — A Prospective
Cohort Study. PLoS Pathog 11(6): €1004869.
doi:10.1371/journal.ppat. 1004869

Editor: Peter Palese, Icahn School of Medicine at
Mount Sinai, UNITED STATES

Received: October 31, 2014
Accepted: April 8, 2015
Published: June 12, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CCO public
domain dedication.

Data Availability Statement: Data used in this
manuscript are available in the NCBI Gene
Expression Omnibus - GEO (GSE68310; http://www.
ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE68310).

Funding: This work is supported by a contract from
the U.S. National Institutes of Health (NO1-Al-
030039). The content of this publication does not
necessarily reflect the views or policies of the
Department of Health and Human Services, nor does
mention of trade names, commercial products, or
organizations imply endorsement by the U.S.
Government. YZ is supported by a training fellowship

RESEARCH ARTICLE

Host Transcriptional Response to Influenza
and Other Acute Respiratory Viral Infections
— A Prospective Cohort Study

Yijie Zhai''?, Luis M. Franco®, Robert L. Atmar*®°, John M. Quarles®, Nancy Arden®, Kristine
L. Bucasas', Janet M. Wells®, Diane Nifio®, Xueqing Wang?, Gladys E. Zapata?, Chad
A. Shaw’, John W. Belmont">7*, Robert B. Couch®

1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
of America, 2 Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United
States of America, 3 Laboratory of Systems Biology, Division of Intramural Research (DIR), National Institute
of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States
of America, 4 Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of
America, 5 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,
United States of America, 6 Department of Microbial and Molecular Pathogenesis, Texas A&M University
System Health Science Center, College Station, Texas, United States of America, 7 Department of
Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America

* jbelmont@bcm.tmc.edu, jbelmont@bc.edu

Abstract

To better understand the systemic response to naturally acquired acute respiratory viral in-
fections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142
subjects were followed for detailed evaluation of acute viral respiratory iliness. We exam-
ined peripheral blood gene expression at 7 timepoints: enroliment, 5 illness visits and the
end of each year of the study. 133 completed all study visits and yielded technically ade-
quate peripheral blood microarray gene expression data. Seventy-three (55%) had an
influenza virus infection, 64 influenza A and 9 influenza B. The remaining subjects had a rhi-
novirus infection (N = 32), other viral infections (N = 4), or no viral agent identified (N = 24).
The results, which were replicated between two seasons, showed a dramatic upregulation
of interferon pathway and innate immunity genes. This persisted for 2-4 days. The data
show a recovery phase at days 4 and 6 with differentially expressed transcripts implicated
in cell proliferation and repair. By day 21 the gene expression pattern was indistinguishable
from baseline (enrollment). Influenza virus infection induced a higher magnitude and longer
duration of the shared expression signature of iliness compared to the other viral infections.
Using lineage and activation state-specific transcripts to produce cell composition scores,
patterns of B and T lymphocyte depressions accompanied by a major activation of NK cells
were detected in the acute phase of iliness. The data also demonstrate multiple dynamic
gene modules that are reorganized and strengthened following infection. Finally, we exam-
ined pre- and post-infection anti-influenza antibody titers defining novel gene expression
correlates.
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Author Summary

Gene expression profiling of human blood cells might uncover the complex dynamics of
host response to ARIs such as pandemic HIN1. However, only limited data are available
on the system level response to naturally acquired infections. To understand the molecular
bases and network orchestration of host responses, we prospectively enrolled 1610 healthy
adults in the fall of 2009 and 2010, followed the subjects with influenza-like illness (N =
133) for 3 weeks, and examined changes in their peripheral blood gene expression. We dis-
covered distinct phases of the host response spanning 6 days after infection, and identified
genes that differentiate influenza from non-influenza virus infection. We then moved the
focus from gene expression patterns to gene co-expression patterns. We detected gene
modules that are related to core features of regulatory networks and found a substantial in-
crease in the connectivity of the influenza responsive genes. Finally, we identified a molec-
ular signature that correlated significantly with antibody response to pHIN1 virus. Taken
together, our findings offer insights into the molecular mechanisms underlying host re-
sponse to influenza virus infection, and provide a valuable foundation for investigation of
the global coordinated responses to ARIs. Molecular correlates of the immune response
suggest targets for intervention and improved vaccines.

Introduction

Influenza viruses are highly contagious respiratory pathogens that cause about three to five
million cases of severe illness, and about 250 000 to 500 000 deaths worldwide each year [1]. In
the US, influenza affects an estimated 5% to 20% of the population yearly [2], and is responsi-
ble for an average of 3.1 million hospitalized days, and 31.4 million outpatient visits. Direct
medical costs are estimated to be at least $10.4 billion annually [3]. A new influenza virus ap-
peared in Mexico and the United States in April 2009 and caused extensive outbreaks of influ-
enza in the population. The virus was promptly identified as a swine-like influenza A (HIN1)
virus and shown to be a triple reassortant virus containing genes from swine, human, and
avian influenza A viruses [4]. Pandemic swine influenza (pH1N1) peaked in the United States
in October 2009, with minimal activity during the subsequent winter period of influenza and
reappeared during the winter of 2010-2011. Our recent studies showed that preexisting anti-
body to the seasonal A/HIN1 virus reduced pH1INI1 influenza virus infection and illness in
healthy young adults [5, 6].

Complex coordinated responses are triggered in the host following an acute respiratory viral
infection. Many aspects of host-pathogen interactions after influenza infection have been stud-
ied [7-12]. Blood transcriptome profiling provides a ‘snap shot’ of the systematic host immune
networks, as blood circulates throughout the body, carrying naive and educated immune cells,
whose transcriptional activity can be influenced by environmental stimuli such as a respiratory
virus illness [13]. Transcriptional signatures have been described in the context of ARIs caused
by different etiological agents, including influenza, rhinovirus (HRV), and respiratory syncytial
virus (RSV), as well as by influenza vaccination [14-23]. These studies have shown that blood
gene expression signatures are distinctive for individuals with infection-induced ARI. ARI gene
expression signatures show highly significant enrichment for transcripts encoding proteins in-
volved in interferon signaling and pattern recognition induced innate immunity responses [14,
16].

Transcriptome analysis in influenza-infected mouse lungs has revealed distinct phases of
the host response extending over at least a two month period after infection [20]. In previously
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reported studies in humans with AR, transcriptional profiling was only performed on RNA
samples collected either at a single timepoint of peak symptoms, or within the initial 2 to 3
days of hospitalization. The dynamic changes over the entire time course of naturally acquired
infection and illness in humans are less clear. Experimentally induced influenza infection has
been used to obtain information about changes in temporal gene expression [14, 21]. Huang

et al made important observations about the differences in response between asymptomatic
and symptomatic individuals. These studies, however, were limited by sample size and could
not contrast other common respiratory virus agents with influenza. Menachery et al reported a
contrasting gene signature between pHIN1 and coronavirus infected airway epithelial cells
[22]. The genes they investigated were limited to interferon-stimulated genes. Studies to char-
acterize the temporal dynamics of the systemic transcriptional response to ARI in humans are
necessary to better understand the biology of infection, the host response and occurrence of
disease. Furthermore, serum antibody responses to influenza virus infection have large inter-
individual variation [5, 6]. Several influenza vaccine studies showed genes that play a role in an-
tigen presentation and T cell recognition are associated with influenza vaccine-induced anti-
bodies [19, 23-25]. Whether the same sets of genes contribute to the variation in antibody
response to naturally acquired influenza infection is not known.

Approaches to uncover the modular organization and function of transcriptional systems
have shown promise in facilitating functional interpretation and discovering biological net-
works. These models have been successfully applied in several biological contexts [26-28].
Weighted Gene Co-expression Network Analysis (WGCNA) group sets of genes with similar
transcriptional patterns together to form a transcriptional module. Since the probability for
multiple transcripts to follow a complex pattern of expression across all the samples by chance
is low, such sets of genes should constitute coherent and biologically meaningful transcription-
al units [29, 30]. Recently developed differential co-expression analysis goes beyond identifica-
tion of differentially expressed genes (DEGs) or pathways to identify differential co-expression
pattern [31-33]. Under the premise that pairwise correlations between gene expression levels
result from regulatory relationships among the genes, major changes in co-expression patterns
between two conditions may indicate dysfunctional regulatory systems in disease.

The clinical, virological and immunological results of our prospective study of ARI in a
young adult population that included influenza and other known pathogenic viruses have been
reported [5, 6]. Using genome wide transcript profiling we provide evidence in this report for
three distinct phases of response among those persons with ARI: a) acute systemic activation of
the innate response; b) recovery with extensive cell repair and proliferation; and 3) restoration
of baseline gene expression patterns. These results provide new transcriptional correlates for
the evolution of ARI. The results indicate a central role for interferon and innate immunity in
the acute phase of the illness. The recovery phase has not been well characterized previously
and suggests new avenues for understanding the restoration of biological system equilibrium
after infection and illness.

Results
Etiology and demographics of the subjects with ARIs

1610 healthy adults were prospectively enrolled before the influenza seasons of 2009-10 and
2010-11. Of these, 142 (8.8%) who subsequently developed a moderate influenza-like illness
were enrolled for follow up; none met the criteria for severe respiratory disease. Of the 142 en-
rolled ill subjects, 133 reported for all scheduled study visits and had technically adequate gene
expression data (vide infra). Table 1 summarizes the infection and demographic data for these
133 subjects. Viral culture and RT-PCR for respiratory viruses indicated that 64 were infected
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Table 1. Viral infections and demographic information of the 133 subjects with influenza-like iliness enrolled at Texas A&M University in Fall 2009
and 2010 from whom microarray expression data were available.

Infections
Influenza A
Influenza A + HRV
Influenza A + RSVB
Influenza A + OC43
Influenza A + 229E
Influenza B
Influenza B + HRV
HRV
HRV + RSVA
HRV + RSVB
HRV + NL63
HRV + HKU1
HRV + Entero
RSVA
NL63
HKU1
Entero
Unknown

Ethnicity/Race
White
Indian-American
African-American
Asian

2009 Cohort

- - O = = N O O O

-
~

58
10
5
0

2010 Cohort Total % of Subjects with ARI

N
-
S
a

33.8
6 12.0
<1

o

1

1

1 <1

1 <1
4 3.0
5 3.8
25 18.8
<1
<1
<1
23
<1
<1
<1
<1
<1
18.0

N OO 2 00 = 2 22400 hO = 2 2
e I e e T T 7 B T S

N
Y

49 107 80.5
6 16 12.0
3 8 6.0
2 2 15

*Influenza A = Influenza Virus type A; Influenza B = Influenza Virus type B; HRV = Human rhinovirus; RSVA = Respiratory Syncytial Virus type A;
RSVB = Respiratory Syncytial Virus type B; OC43 = Human coronavirus OC43; 229E = Human coronavirus 229E; NL63 = Human coronavirus NL63;
HKU1 = Human coronavirus HKU1; Entero = Enterovirus; Unknown: Our tests did not detect one of the viruses sought.

doi:10.1371/journal.ppat.1004869.t001

with influenza A virus, and 9 were infected with influenza B virus. Infection with a rhinovirus,
respiratory syncytial virus (RSVA/RSVB), coronavirus (OC43, 229E, NL63, HKU1), or entero-
virus (Entero) was also detected in a number of the subjects with influenza-like symptoms.
There were 24 individuals with an influenza-like illness for whom no virus was identified. The
subjects were predominantly European-Americans (80.5%), consistent with the study

area population.

Global gene expression profile for influenza infection in adults

We analyzed the global gene expression profiles of peripheral whole blood in the 133 adults
with an ARI at up to seven time points before, during, and after the occurrence of illness (Fig
1A and 1B). Because the subjects were enrolled prospectively we had control samples taken
from the same subject before occurrence of illness (baseline samples). A total of 890 microarray
analyses were completed. Samples which failed QC were excluded from the analyses (N = 10),
leaving 880 high quality arrays from which the subsequent analysis was conducted. Differential
expression analyses for each day, compared to the baseline were then stratified by viral agent.
We first analyzed the gene expression profiles in 49 subjects from whom an influenza virus
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Fig 1. Study design and analysis scheme. (A) 1610 individuals were enrolled before the influenza season
in 2009 and 2010. Peripheral blood samples and nasal secretion samples were collected from each subject
at the beginning of enroliment for influenza antibody tests. Genomic DNA and whole blood RNA were
obtained from blood samples. Those subjects who became ill with influenza-like symptoms (N = 142) were
seen within 48 hours of onset and 2, 4, and 6 days later for repeat evaluation, specimen collections, and
medical care and 21 days later for collection of convalescent specimens. Nasal wash samples were collected
for virus detection on day 0 and day 2. 1509 of the enrolled subjects completed the study and were called
back in the spring of the next year for collecting whole blood RNA, serum and nasal wash samples. (B)
Sample size and data generation.

doi:10.1371/journal.ppat.1004869.9001

infection was identified. The 24 subjects with influenza A virus infection in the 2009 cohort
were used as a discovery group, and the consistency of differential expressed genes was assessed
in another 21 influenza A virus infected subjects and 4 influenza B virus infected subjects in
the 2010 cohort as a validation group. After performing significance testing with corrections
for multiple tests, we detected highly significant expression differences in thousands of tran-
scripts during the period of influenza illness (days 0, 2, 4, 6) in both discovery and validation
groups. In contrast, once the subject had clinically recovered there were no significant expres-
sion differences detected (day 21, and spring samples).

A robust and dynamic host transcriptional response to influenza virus
infection still present after cell composition changes were taken into
account

Since blood is a complex tissue, changes in transcript abundance can be attributed to either
transcriptional regulation or changes in the composition of leukocyte populations. To “decon-
volute” these two phenomena, we computed a cell score derived from the expression profile of
each sample using a composite of lymphocyte, neutrophil or monocyte specific transcripts. We
found that lymphocyte lineagespecific transcripts were depressed in the acute phase of influen-
za virus infection, increased above baseline in the recovery phase, and then returned to baseline
on day 21 (Fig 2A). An opposite change in neutrophil score was observed (Fig 2B). Expression
levels of monocyte markers were increased in the acute phase and returned to baseline on day
6 (Fig 2C). These changes in established lineage markers of the broad cell populations probably
track the changes in cell composition in the peripheral blood. The changes in lymphocyte and
neutrophil proportions we predicted “in silico” are consistent with the changes described in
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Fig 2. A robust and dynamic host transcriptional response to influenza virus infection. (A-C) Peripheral blood cell composition was altered by
influenza virus infection. Cell scores for (A) lymphocyte, (B) neutrophil and (C) monocyte were computed for each sample from influenza-infected individuals,
by taking the PC1 of normalized expression levels of the lineage-specific gene sets (See S3 Table for the list of lineage specific genes). One-way analysis of
variance (ANOVA) was used to determine whether there are significant differences between each illness day and baseline. (D-E) Heatmaps demonstrating
the time course of the genes showing the most significant pattern of differential expression compared to baseline in patients with influenza virus and/or
rhinovirus infection. (D) 2009 Cohort, (E) 2010 Cohort. Each column corresponds to an individual RNA sample and each row represents the mean-centered,
normalized expression values for each of the differentially expressed genes (BH-corrected P values <0.05, |log, FC| >1 in both 2009 and 2010 cohorts).
Samples were grouped by day and subjects were grouped by infections status (influenza virus infection group includes influenza A, influenza B, influenza A
+rhinovirus and influenza B +rhinovirus infections). The transcript order was determined by hierarchical clustering and the order was the same in the two
heatmaps. There are three clear phases of transcriptional regulation in response to infection— 1) an acute phase seen on the first day of illness that persisted
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for 2—4 days; 2) a recovery phase that peaked on day 4 and day 6 after virus infection; 3) restoration of baseline gene expression patterns by day 21. A full list
of the 202 transcript probes in the heatmaps and their corresponding genes is provided in S1 Table. (F-G) Expression changes of (F) IFI27 and (G) PI3
discriminate between infections with influenza virus and rhinovirus. Fold Changes of IFI27 and PI3 were measured in paired day 0 —baseline samples from
patients with ARI. Subjects were grouped by infections status. Enterovirus, HKU1, NL63, and RSV infections were grouped together as “Other” virus. One-
way ANOVA was used to determine whether there are any significant differences between influenza virus infection groups (Grey) and each non-influenza
virus group (Black). ***, P <0.001; **, P <0.005; *, P <0.01.

doi:10.1371/journal.ppat.1004869.9002

experimental human challenges with influenza virus [34, 35]. Changes in lineage composition
could explain part of the differential gene expression observed during the infection. We there-
fore recomputed the differential expression analysis using the lymphocyte and neutrophil
scores as covariates in a series of contrasts focusing on days 0 to day 6 compared to baseline.
Although the p-values were slightly increased, the rank ordering of genes showing highly spe-
cific differential expression was nearly identical (Tables 2-5). This indicates that while cell
composition does affect estimates of total transcript abundance, the most important compo-
nent of the differential expression arises from changes in transcript abundance within those
populations. On a global scale, changes in the host transcriptomes were observed from the first
day of illness through day 6 evaluations. A total of 4,706 differentially expressed genes (DEGs)
(BH-corrected P values <0.05 in both cohorts) were identified over the course of 6 days of in-
fluenza virus illness (S1A Fig). 2119 transcripts, corresponding to 1421 genes, were responsive
to the infectious stimulus on day 0 (day 1 or 2 of illness). The number of DEGs peaked at day
4. On day 6, only a small number (N = 46) of DEGs were newly detected (i.e. DEGs that first
appeared on day 6 and were not detected at any time before). 738 out of the 1140 DEGs with |
log2 Fold-Change| > 0.3 were first detected on day 0 (S1B Fig).

Subjects with influenza virus infection showed a characteristic three-
phase response at the level of the transcript profile

We plotted a heatmap of the 202 transcripts (S1 Table) showing the most significant pattern of
differential expression compared to baseline (Fig 2D and 2E), and determined the transcript
order by hierarchical clustering. These genes fall into two clusters: 1) genes that were regulated
in the acute phase of influenza virus infection, and 2) genes that became differentially expressed
at a later time-point (recovery phase). All individuals showed complete recovery to the baseline
transcript profile by day 21 after onset of illness. In the acute phase, there was a very large in-
crease in components of the interferon pathway and innate immunity (e.g. IFI44L, IFIT1,
MX1, IFITM3, OAS2, IF127 and IFIT3, see Table 2), as well as decreased expression of genes in-
volved in translational elongation and protein biosynthesis (e.g. RPS4X, RPS18, RPS6, RPS8
and RPL5, see Table 3). This was most intense on the first day of illness and continued for 2-4
days. This phase was followed by a characteristic recovery phase in which there was a transition
to genes involved in antigen binding and antibody secretion (IGJ, LOC652694, IGLLI and
MZBI1, see Table 4) and genes regulating cell morphogenesis (STRADB, DPYSL5, EPB42, LST1
and MAPIS, see Table 5). Inter-individual variations in the magnitude of transcriptional re-
sponse at each phase were observed (S2 Fig), and greater variations were seen at the times
when the transcriptional responses were strong. The expression profiles for individuals infected
with Influenza A and B virus were indistinguishable. Likewise individuals infected with both
influenza and rhinovirus were not different from those infected with influenza virus alone. No
statistically significant differences in expression of any transcripts were identified that marked
the mixed infection group.

PLOS Pathogens | DOI:10.1371/journal.ppat.1004869 June 12,2015 7/29
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Table 2. Top upregulated genes in the acute phase of influenza virus infection.

Gene Symbol Gene Name

logfFC adj.P Value After deconvolution

logFC adj.P Value

IFI44L interferon-induced protein 44-like 4.21 1.80E-35 4.18 6.29E-31
ISG15 ISG15 ubiquitin-like modifier 4.47 6.51E-26 414 9.86E-21
IFIT1 interferon-induced protein with tetratricopeptide repeats 1 4.13 5.54E-23 4.13 8.72E-22
IFI27 interferon, alpha-inducible protein 27 3.08 5.09E-12 4.09 2.27E-10
IFITM3 interferon induced transmembrane protein 3 3.70 1.93E-22 3.99 2.21E-15
RSAD2 radical S-adenosyl methionine domain containing 2 412 1.14E-25 3.80 2.81E-23
LY6E lymphocyte antigen 6 complex, locus E 3.42 2.44E-29 3.73 2.47E-26
MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) 3.65 2.10E-24 3.63 3.97E-22
IFIT3 interferon-induced protein with tetratricopeptide repeats 3 3.73 3.18E-25 3.62 8.81E-22
IFI6 interferon, alpha-inducible protein 6 3.48 8.64E-24 3.58 1.54E-23
HERC5 hect domain and RLD 5 3.86 1.48E-22 3.42 5.50E-19
EPSTI1 epithelial stromal interaction 1 (breast) 3.47 1.96E-26 3.30 2.71E-24
IFIT2 interferon-induced protein with tetratricopeptide repeats 2 3.51 4.98E-21 3.19 1.11E-18
IFl44 interferon-induced protein 44 3.29 2.44E-29 3.19 2.09E-24
OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kDa 3.37 1.25E-27 3.07 2.81E-23
OAS1 2'-5'-oligoadenylate synthetase 1, 40/46kDa 3.16 1.14E-25 2.88 2.85E-20
IRF7 interferon regulatory factor 7 3.20 6.51E-26 2.86 4.14E-19
OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa 3.24 5.86E-25 2.80 9.28E-21
OASL 2'-5'-oligoadenylate synthetase-like 3.16 5.41E-20 2.72 5.75E-16
MT1A metallothionein 1A 3.24 1.21E-19 2.71 7.04E-13
XAF1 XIAP associated factor 1 2.80 1.78E-31 2.68 1.10E-24
GBP1 guanylate binding protein 1, interferon-inducible 2.95 6.14E-22 2.64 2.15E-14
STAT2 signal transducer and activator of transcription 2, 113kDa 2.49 1.39E-22 2.36 2.99E-15
LAP3 leucine aminopeptidase 3 2.44 3.73E-21 2.28 5.16E-14
GBP5 guanylate binding protein 5 2.48 5.77E-20 2.11 4.16E-12

doi:10.1371/journal.ppat.1004869.t002

A shared host transcriptional response to acute respiratory viral
infections

Although there were significant differences in gene expression between the non-influenza virus
infection group (e.g. HRV, RSV, coronavirus and enterovirus) and the influenza group (Fig 2D
and 2E, S3 Fig), the patterns of the three-phase transcriptional responses were nearly identical,
and the differential expression was largely explained by differences in the magnitude of effect.
This indicates that the host response to acute respiratory viral infection, despite the distinctive
biology of these diverse viruses, is largely conserved. By performing differential expression
analysis comparing influenza virus and rhinovirus infection group (Criteria for DEGs were
BH-corrected P values < 0.0001), we found that comparing to rhinovirus, influenza virus infec-
tion and illnesses induced a larger magnitude and longer duration of activation of interferon
signaling pathway, and a greater depression in translation and protein biosynthesis (S4A and
S4B Fig, S2 Table). Some of the DEGs encode kinase or kinase inhibitor (e.g. MAPK1, PAK2,
CDKNIA and CDKN1B, S4C Fig). Several protein phosphatase encoding genes were also dif-
ferentially expressed, such as PPM 1M, PPP2R4, PPP3CA, etc. However, the magnitudes of dif-
ferential expression in these genes were small and there were only two transcripts showed |log,
fold-change| >1.5: IFI27 was consistently upregulated in the influenza virus group on days 0-6
but not upregulated in the rhinovirus or other infection groups (Fig 2F); in addition, PI3 was
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Table 3. Top downregulated genes in the acute phase of influenza virus infection.

Gene Symbol

PI3

ALPL
RPL3
EIF3L
RPS4X
RPL23AP64
RPS8
MME
RPL5
TXNDC12
RPS3
RPS27A
RPS5
EMR3
LOC729021
RPL7A
SGK1
EIF4B
CMTM2
EEF1G
RPL4
RPS6
RPS28
KLRB1
RPL14

Gene Name logFC adj.P Value After deconvolution
logFC adj.P Value
peptidase inhibitor 3, skin-derived -1.51 6.40E-10 -2.11 4.09E-09
alkaline phosphatase, liver/bone/kidney -0.87 1.41E-03 -1.18 4.73E-04
ribosomal protein L3 -1.30 9.50E-14 -1.05 4.73E-09
eukaryotic translation initiation factor 3, subunit L -1.12 3.25E-15 -1.02 5.08E-13
ribosomal protein S4, X-linked -1.21 5.55E-13 -1.01 1.18E-06
ribosomal protein L23a pseudogene 64 -0.85 1.39E-04 -1.00 6.99E-04
ribosomal protein S8 -1.16 2.13E-13 -0.99 1.80E-09
membrane metallo-endopeptidase -0.89 6.06E-07 -0.99 1.07E-05
ribosomal protein L5 -1.07 6.26E-13 -0.98 1.54E-08
thioredoxin domain containing 12 (endoplasmic reticulum) -1.03 1.68E-20 -0.98 1.45E-16
ribosomal protein S3 -1.20 3.87E-15 -0.96 3.11E-08
ribosomal protein S27a -0.95 4.55E-10 -0.96 1.93E-07
ribosomal protein S5 -1.24 8.98E-14 -0.93 1.80E-09
egf-like module containing, mucin-like, hormone receptor-like 3 -0.87 1.95E-12 -0.93 7.91E-09
hypothetical protein LOC729021 -0.51 3.25E-04 -0.93 1.56E-06
ribosomal protein L7a -0.94 5.26E-11 -0.90 1.68E-10
serum/glucocorticoid regulated kinase 1 -1.11 1.17E-15 -0.88 9.67E-08
eukaryotic translation initiation factor 4B -1.07 8.65E-15 -0.87 4.71E-14
CKLF-like MARVEL transmembrane domain containing 2 -0.52 8.21E-05 -0.87 1.73E-06
eukaryotic translation elongation factor 1 gamma -1.10 5.64E-16 -0.86 4.25E-08
ribosomal protein L4 -1.09 1.09E-14 -0.86 1.68E-07
ribosomal protein S6 -1.09 4.48E-12 -0.86 6.21E-07
ribosomal protein S28 -0.80 1.42E-03 -0.86 1.39E-03
killer cell lectin-like receptor subfamily B, member 1 -0.71 6.90E-09 -0.85 1.84E-06
ribosomal protein L14 -0.47 5.71E-04 -0.85 8.26E-07

doi:10.1371/journal.ppat.1004869.t003

consistently downregulated in the influenza-infected individuals but not in the other groups
(Fig 2G). The fold changes of IF127 and PI3 transcript levels comparing the first day of illness
with baseline were also measured by RT-qPCR, and were consistent with the microarray result

(S5 Fig).

We also examined the pattern of gene expression in the group of individuals reporting
symptoms of acute viral respiratory illness but who were negative in PCR or culture tests for
the tested viral pathogens. These individuals had gene expression profiles nearly identical to

those observed in the known virus groups, including the acute and recovery phases of gene ex-
pression. The transcript levels of IFI27 and PI3 in these subjects were more similar to the non-
influenza infection cases. Within this group there was some variability in the magnitude of the
transcriptional responses, including large variation in IFI27 and PI3, perhaps suggesting either
additional etiologic heterogeneity or incomplete sensitivity of the culture and PCR assays (S3
Fig).

Three subjects had a systemic expression profile consistent with activation of interferon sig-
naling on the day of enrollment (Fig 2D). One of these individuals had persistent elevations of
these transcripts throughout the study. One subject reporting illness symptoms did not have
the signature of acute systemic response on day 0 but had the typical signature by day 4. The re-
maining 4 subjects showed ‘off-cycle’ activation profiles consistent with additional intercurrent
infections with or without severe symptoms.
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Table 4. Top upregulated genes in the recovery phase of influenza virus infection.

Gene
Symbol

IFI27
IGJ

IGLL1
LOC652694
TXNDC5
LY6E
EPSTI1
HSP90B1
MZB1
RGS18
XBP1
SEC11C
ITGB1
IFIT1
IFl44L
IFl44

IL8
GZMA
ARGLU1
ADD3
PSMA6
TMEM123
EVI2A
ZRANB2
ITM2C

Gene Name

interferon, alpha-inducible protein 27

immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu
polypeptides

immunoglobulin lambda-like polypeptide 1

similar to Ig kappa chain V-I region HK102 precursor
thioredoxin domain containing 5 (endoplasmic reticulum)
lymphocyte antigen 6 complex, locus E

epithelial stromal interaction 1 (breast)

heat shock protein 90kDa beta (Grp94), member 1
marginal zone B and B1 cell-specific protein

regulator of G-protein signaling 18

X-box binding protein 1

SEC11 homolog C (S. cerevisiae)

integrin betai (fibronectin receptor)

interferon-induced protein with tetratricopeptide repeats 1
interferon-induced protein 44-like

interferon-induced protein 44

interleukin 8

granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3)

arginine and glutamate rich 1

adducin 3 (gamma)

proteasome (prosome, macropain) subunit, alpha type, 6
transmembrane protein 123

ecotropic viral integration site 2A

zinc finger, RAN-binding domain containing 2

integral membrane protein 2C

doi:10.1371/journal.ppat.1004869.t004

logfFC

2.80
1.35

1.16
1.40
0.98
0.95
0.87
0.82
0.56
0.47
0.68
0.47
0.62
0.35
0.54
0.48
0.42
0.60
0.50
0.49
0.32
0.50
0.39
0.45
0.41

adj.P
Value

1.74E-14
3.36E-05

5.71E-05
4.45E-05
2.62E-04
1.02E-07
2.78E-06
8.25E-06
3.24E-03
1.14E-03
1.45E-05
7.85E-05
2.97E-06
2.44E-02
1.01E-03
5.05E-04
1.91E-04
1.23E-05
1.12E-05
3.75E-05
9.41E-04
1.70E-05
6.90E-04
2.36E-05
2.09E-03

After
deconvolution

logfC adj.P
Value

2.84 6.01E-12

1.51 7.66E-05

1.45 3.72E-05
1.42 5.30E-04
1.06 1.55E-04
0.98 8.20E-06
0.87 1.55E-04
0.73 6.36E-04
0.72 3.28E-04
0.62 4.03E-04
0.59 3.83E-04
0.56 5.05E-05
0.54 3.23E-04
0.53 1.53E-02
0.52 2.96E-03
0.49 7.68E-04
0.49 4.94E-04
0.48 1.31E-03
0.48 3.57E-04
0.48 9.41E-04
0.47 5.89E-04
0.46 6.62E-04
0.45 1.50E-03
0.43 8.58E-04
0.43 2.50E-03

Expression changes in lineage and activation state markers reveal
increased activated NK cells during the acute phase of influenza

infection

We used previously published lineage and activation state marker sets to compute cell type
scores for each sample (S3 Table). Lineage specific transcripts lists were obtained and then
mapped on to the Illumina array probe identifications. The expression levels of the lineage-spe-
cific markers on each day were computed by taking the average of all the influenza-infected in-
dividuals. The changes in the expression levels are likely influenced by both the proportion of
the cells in the peripheral blood as well as the transcriptional state of those cells. In the acute
phase of infection there was a slight depression of lineage markers for NK cells, followed by up-
regulation of the marker gene GPR56 on day 2 that became stable by day 21 and thereafter (Fig
3A). The same procedure was used to compute a score for the activation status. Notably, NK
cells showed very dramatic increases in activation state during the acute infection but then the
activation signature rapidly resolves in the convalescent phase as the infection subsided (Fig
3B). The changes observed in the 2009 cohort were replicated in the 2010 cohort. Our findings
of the dramatic activation of NK cells during the early phase are consistent with the

PLOS Pathogens | DOI:10.1371/journal.ppat.1004869 June 12,2015
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Table 5. Top downregulated genes in the recovery phase of influenza virus infection.

Gene Symbol

Gene Name

LOC100131726 HCC-related HCC-C11_v3

RNF213
RN28S1
STRADB
EPB42
TPRA1
DPYSL5
TESC
ADIPOR1
SPRYD3
GYPC
CSDA
ASCC2
UBXN6
MAP1S
TSPAN5
NECAP2
SLC25A37
LOC729021
MUC6
HAGH
TAGLN2
SLCA4A1

LST1
SORL1

ring finger protein 213

RNA, 28S ribosomal 1

STE20-related kinase adaptor beta
erythrocyte membrane protein band 4.2
transmembrane protein, adipocyte associated 1
dihydropyrimidinase-like 5

tescalcin

adiponectin receptor 1

SPRY domain containing 3

glycophorin C (Gerbich blood group)
cold shock domain protein A

activating signal cointegrator 1 complex subunit 2
UBX domain protein 6
microtubule-associated protein 1S
tetraspanin 5

NECAP endocytosis associated 2
solute carrier family 25, member 37
hypothetical protein LOC729021

mucin 6, oligomeric mucus/gel-forming
hydroxyacylglutathione hydrolase
transgelin 2

solute carrier family 4, anion exchanger, member 1 (erythrocyte membrane protein band 3,

Diego blood group)
leukocyte specific transcript 1
sortilin-related receptor, L(DLR class) A repeats containing

doi:10.1371/journal.ppat.1004869.t005

logFC

-1.49
-1.41
-1.14
-1.12
-1.02
-0.98
-0.92
-0.89
-1.01
-0.90
-0.81
-0.85
-0.83
-0.82
-0.81
-0.79
-0.74
-1.00
-0.95
-0.76
-0.73
-0.79
-0.76

-0.82
-0.75

adj.P
Value

1.04E-06
6.96E-06
1.03E-03
3.81E-05
1.49E-06
1.47E-05
2.02E-05
8.54E-06
5.87E-06
8.48E-05
4.39E-05
7.02E-05
6.55E-05
1.18E-05
1.10E-06
7.95E-07
2.70E-06
4.95E-06
2.62E-07
2.09E-05
1.01E-04
7.76E-07
2.41E-04

4.22E-06
7.97E-07

After

deconvolution

logfFC adj.P
Value

-1.33 1.41E-04
-1.24 5.44E-04
-1.07  6.48E-03
-0.92  3.03E-03
-0.89 2.37E-04
-0.84  7.78E-04
-0.80 1.02E-03
-0.80 5.61E-04
-0.77  1.03E-03
-0.77 2.19E-03
-0.73  2.03E-03
-0.71  3.59E-03
-0.71  3.52E-03
-0.71 9.75E-04
-0.71 1.51E-04
-0.70  1.33E-04
-0.69 1.67E-04
-0.68  1.14E-03
-0.67  6.45E-05
-0.66  9.70E-04
-0.65  3.34E-03
-0.64 1.51E-04
-0.62  9.94E-03
-0.60 7.71E-04
-0.60 4.85E-05

observations from influenza-infected mouse lungs [20]. These data show an intense activation

of NK cells during the acute phase of infection.

Functional annotation and classification of differentially expressed

genes induced by ARls

After the gene expression status of the peripheral blood cells of influenza-infected individuals
were profiled over the time course of illness, we then searched for molecular, cellular and bio-
logical processes that best correspond to the host gene expression responses. For this, we ana-
lyzed the functional annotation of differentially expressed genes using DAVID gene ontology.
Analyses of significant differentially expressed genes on day 0 and day 2 (BH-corrected P value
<0.05 in both discovery and validation cohorts) revealed that the upregulated genes were
mostly enriched in defense response, response to other organism, response to virus, innate im-
mune response, positive regulation of cytokine production, and positive regulation of tumor
necrosis factor production (Fig 4A), while the downregulated genes were involved in transla-
tional elongation, translation, cellular protein metabolic process, rRNA binding, and cellular
macromolecule biosynthetic process (Fig 4B). The functional interpretation of differentially

PLOS Pathogens | DOI:10.1371/journal.ppat.1004869 June 12,2015
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expressed genes in the recovery phase (day 4 and 6) is much less clear: there are a range of pro-
tein metabolic process and regulation of ubiquitin-protein ligase activity functions represented
in the upregulated genes (Fig 4A), and actin cytoskeleton organization functions associated
with the downregulated genes (Fig 4B), but how these changes may be integrated will require
further investigation. We observed a higher level of gene enrichment in the interferon signaling
and the tumor necrosis factor production pathway in the acute phase of influenza virus infec-
tion compared to rhinovirus infection.
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Fig 3. There is little change in the expression of NK cell lineage markers (A), but a significant increase
in NK cell lineage activation genes (B) during the course of influenza. Lineage specific transcripts lists
were obtained (S3 Table) and then mapped on to the lllumina array probe identifications. The fold changes of
the lineage-specific markers on each day represent the differences to the baseline expression levels on a
log, scale. Error bars show one standard deviation above and below the average of all the influenza-

infected individuals.

doi:10.1371/journal.ppat.1004869.g003
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Fig 4. Top GO terms enriched in differentially expressed genes over the course of 6 days after
influenza virus infection. DAVID was used to identify over-represented Gene Ontology terms among (A)
up-regulated genes and (B) down-regulated genes on each day (BH-corrected P values <0.05 in both 2009
and 2010 cohorts). The length of the bar (x-axis) represents the—log1o (Benjamini-adj.P value). The bars are
colored by day.

doi:10.1371/journal.ppat.1004869.9004

Pathway enrichment analysis and interaction network of differentially
expressed genes in acute and recovery phases of the host response to
ARls

We next examined how biological pathways might be altered during the course of influenza
with respect to baseline, by performing separate content analyses of DEGs on day 0 or day 6.
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We found that upregulated genes in acute influenza virus infection were enriched for canonical
pathways specific to interferon signaling (S6A Fig), role of pattern recognition receptors of
virus, TREMI signaling, antigen presentation pathway, activation of IRF by cytosolic pattern
recognition receptors. Cellular processes such as dendritic cell maturation and crosstalk be-
tween dendritic cells and NK cells were also enriched, indicating the activation of these path-
ways in acute influenza. On the other hand, the downregulated genes were significantly
enriched for pathways related to gene translation and cell proliferation, such as EIF2 signaling,
regulation of eIF4 and p70S6K signaling and mTOR signaling. A group of pathways distinct
from those seen in the acute phase were enriched in DEGs in the recovery phase (S6B Fig). A
large number of upregulated genes in the recovery phase were functioning in the protein ubi-
quitination pathway. Stress response pathways (e.g. hypoxia signaling in the cardiovascular
system and NRF2-mediated oxidative stress response) were also enriched. In addition, signifi-
cant enrichment in multiple growth factor signaling pathways (e.g. GM-CSF signaling, HGF
signaling and PDGF signaling) and cell cycle regulation (e.g. mitotic roles of polo-like kinase)
were observed.

Dynamic transcriptional co-expression modules in response to influenza
virus infection

Highly co-expressed genes usually share common regulatory mechanisms or participate in the
same biological process. To reveal distinct patterns on how host genes are co-expressed in dif-
ferent stages of influenza virus infection, the WGCNA method was applied to the gene expres-
sion profiles of samples from the first or second day of illness (day 0), day 2, day 4 and day 6,
thereby the network organization is approached through inference of variable gene co-expres-
sion patterns and dynamic pathway activity rather than a fixed predefined gene annotations.

We examined the differentially expressed transcripts (BH-corrected P values <0.05 and |
log2 Fold-Change| > 0.3 in both cohorts) and detected 6 co-expression modules on day 0 (des-
ignated Day 0_1 to Day 0_6) (Table 6). Module Day 0_1 contains genes that are highly upregu-
lated (Fig 5A), and many of them are interferon signaling pathway genes (e.g. IFI6, IFI44L,
IFIT1, IFIT3, IRF7 and STATI). Genes in module Day 0_2 are enriched for translational elon-
gation, the majority of the transcripts in this module are downregulated on day 0 but the tran-
script levels then gradually increased and became above baseline on day 4 (Fig 5B), suggesting
the host translation system was attenuated in the acute phase of influenza but then recovered
during the later phase.

We applied the same method to DEGs identified on day 2, day 4 and day 6 (Table 6). Al-
most all the GO terms over-represented in day 2 modules were observed on day 0, with the ex-
ception of the GO terms enriched in module Day 2_5: Hemoglobin complex / oxygen
transport. We found many hemoglobin genes in this module, and their transcript levels were
decreased on day 4, including HBD, HBE1, HBG1, HBG2, HBAI, etc (Fig 5C). DEGs on day 4
were grouped into 9 modules and these modules became more diverse in GO term enrichment.
A small module Day 4_4 contains some of the top upregulated genes (Fig 5D), such as IGLLI,
IGJ, LOC652694, MZB1, which are involved in antibody secretion.

To elucidate transcriptional regulatory networks within each module, we performed tran-
scriptional factor (TF) enrichment analysis using Pscan. The results for module Day 0_1, Day
0_2,Day2_5and Day 4_4 are shown in the networks (Fig 5E-5H) with the red nodes repre-
senting enriched TFs. Module Day 0_1 is regulated by the TFs in the interferon signaling path-
way. Module Day 0_2 involves genes targeted by ETS transcription factor family. Meanwhile,
the binding motifs of ARNT and MYCN are enriched in both Module Day 2_5 and Day 4_4.
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Table 6. GO functional enrichment analysis for the 26 modules detected by WGCNA on different days after influenza virus infection.

Module No. of transcripts Representative GO functional enrichment Benjamini-adj. P value
Day 0_1 180 Response to virus 8.8E-4
Response to other organism 1.2E-2
Defense response 1.8E-2
Day 0_2 281 Translational elongation 1.5E-54
Cytosolic ribosome 1.5E-42
Translation 2.5E-38
Day 0_3 34 NA
Day 0_4 81 Ribonucleoprotein complex 3.8E-3
Day 0_5 419 Response to other organism 1.3E-6
Response to virus 2.3E-6
Innate immune response 6.7E-5
Day 0_6 128 Translational elongation 3.1E-11
Cytosolic ribosome 1.1E-9
Ribosome 3.1E-9
Day 2_1 69 Cytosolic ribosome 1.5E-2
Ribosomal subunit 2.8E-2
Day 2_2 428 Response to virus 4.7E-16
Response to other organism 1.3E-13
Defense response 7.3E-9
Day 2_3 200 Translational elongation 1.2E-17
Cytosolic ribosome 1.4E-16
Translation 3.8E-15
Day 2 4 47 NA
Day 2 5 169 Hemoglobin complex 7.3E-5
Oxygen transporter activity 5.3E-3
Oxygen transport 2.9E-2
Day 2_6 111 NA
Day 4_1 103 Generation of precursor metabolites and energy 3.1E-2
Day 4 2 60 RNA binding 9.6E-4
Day 4_3 120 Receptor activity 6.2E-3
Protein complex binding 9.4E-3
Plasma membrane 4.7E-2
Day 4_4 32 Endoplasmic reticulum part 1.4E-4
Nuclear envelope-endoplasmic reticulum network 9.7E-3
Endoplasmic reticulum membrane 1.1E-2
Day 4 5 38 NA
Day 4_6 58 NA
Day 4 7 187 Hemoglobin complex 1.1E-6
Oxygen transporter activity 1.6E-4
Oxygen transport 9.4E-4
Day 4_8 242 Response to virus 5.9E-16
Response to other organism 1.5E-12
Defense response 2.5E-7
Day 4 9 45 Caspase inhibitor activity 6.7E-3
Negative regulation of cell death 1.9E-2
Negative regulation of programmed cell death 2.7E-2
Day 6_1 125 NA
(Continued)

PLOS Pathogens | DOI:10.1371/journal.ppat.1004869 June 12,2015 15/29



@'PLOS | PATHOGENS

Acute Respiratory Infection Systems Biology

Table 6. (Continued)

Module
Day 6_2

Day 6_3
Day 6_4

Day 6_5

No. of transcripts
56

51
106

73

Representative GO functional enrichment Benjamini-adj. P value
Intracellular organelle lumen 7.7E-3

Intracellular membrane-bounded organelle 1.1E-2

NA

Endoplasmic reticulum membrane 1.4E-2

Nuclear envelope-endoplasmic reticulum network 1.5E-2

Endoplasmic reticulum part 2.7E-2

NA

*NA = No significant (Benjamini-adj. P value < 0.05) GO term enrichment were observed.

doi:10.1371/journal.ppat.1004869.t006

Many genes in these networks contain binding motifs of multiple TFs, implying the TFs are
highly coordinated in regulating downstream targets.

An enhanced gene co-expression pattern after influenza virus infection
revealed by differential co-expression analysis

Differential co-expression patterns, wherein the level of co-expression of gene groups differs
between illness and pre-illness, can arise from an influenza infection-related change in the reg-
ulatory mechanism governing that set of genes. We performed differential co-expression analy-
sis on all the genes that are differentially expressed on day 0 in influenza-infected individuals.
We found that the correlations between gene expression levels of all the gene pairs are higher
on day 0 compared to baseline (Fig 6A). Particularly, the modules 1 in the lower left corner
have significant correlation differences between day 0 and baseline, suggesting that the module
genes are in the same regulatory network. For example (Fig 6B), the correlation coefficient be-
tween the expression levels of OAS2 and RNASEL gene are nearly 0 at baseline, yet they became
highly correlated (r = 0.72) on day 0. We computed the correlation coefficients among all gene
pairs and plotted the results as a function of the magnitude of correlation or connectivity (Fig
6C). The co-expression patterns among these genes peaked on the first day of illness, gradually
weakened thereafter, and become indistinguishable with baseline by day 21. The gene expres-
sion correlation also increased, though to a lesser extent, in HRV infection group (57 Fig).

Genes that show evidence of correlation between gene expression and
the magnitude of the antibody response

We measured serum antibody to the pHINI1 viruses in all subjects at enrollment and after sur-
veillance for illness [5, 6], and thus were able to record the magnitude of antibody response
(delta HINTI titers). We wished to identify the genes whose transcripts levels are correlated
with antibody response. The Day 0 transcript levels of 2119 DEGs were tested for their correla-
tion with the delta antibody titers among 58 ill subjects with HIN1 infection. We found that a
total of 229 genes showed evidence of significant correlation between gene expression on the
first day of illness and the antibody response (Fig 7, S4 Table). Of these, 168 showed evidence
of positive correlation and 61 of negative correlation. LILRB4 (Leukocyte immunoglobulin-like
receptor subfamily B member 4) showed most significant positive correlation, and a member
of the forkhead transcription factors, FOXO3 exhibited most significant negative correlation.
Content analysis revealed that immune response (GO:0006955) were most enriched in the
genes showed positive correlation with antibody response (e.g. OAS1, CD14, APOBEC3G,
IFITM3 and LILRB4). B-cell proliferation genes (e.g. CD40, SASH3, CDKNIA and TICAM1)
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Fig 5. TF networks within the WGCNA modules over the course of influenza iliness. (A-D) Groups, or modules, of co-regulated DEGs were identified by
WGCNA. Representative Gene Ontology (GO) categories for each module were identified by functional enrichment analysis and shown in Table 6. Module
expression patterns across different time points were represented by violin plots of log, fold-change in gene expression relative to baseline. (E-H) Pscan was
used to scan the promoter regions of all genes in each module and identify the over-represented transcription factor binding sites (TFBS). The predicted
transcription factors, which marked in red and their target genes (z-score > 2) were connected by edges in the networks.

doi:10.1371/journal.ppat.1004869.9005

were strongly correlated with high antibody response. Genes that showed negative correlation
(e.g. FOXO3, DAPK2, SGK1, and TP53INPI) were enriched for apoptosis and programmed cell
death pathways (GO:0012501).

Discussion

This prospective study of 2009 pandemic influenza A virus infections and illnesses in healthy
adults in a university community detected clear gene expression patterns correlating with mod-
erate influenza. Transcriptional profiles for ill subjects were examined at 7 time points, includ-
ing baseline, the first day of illness and up to 21 days after as well as after the influenza season.
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Fig 6. Host gene network connectivity became stronger after the subjects were infected with influenza virus. (A) In the comparative correlation
heatmap, the upper diagonal of the main matrix shows a correlation between pairs of genes among samples collected from the individuals after influenza
virus infection (Left: Day 0, Right: Day 4). The lower diagonal of the heatmap shows a correlation between the same gene pairs in these individuals on
baseline. Red color corresponds to positive correlations, and blue corresponds to negative correlations. (B) Changes in the correlation between genes OAS2
and RNASEL. Each dot corresponds to an individual and the axes mark the log, expression values of the two transcripts in that individual. The genes are
uncorrelated on baseline (r=-0.01) but are positively correlated on day 0 (r= 0.72, P <0.001), and this correlation became attenuated on day 4 (r = 0.09).

doi:10.1371/journal.ppat.1004869.9006

The aim of this study was to use an unbiased genome-wide approach to identify genes whose
expression is regulated by occurrence of an ARI and networks that are activated in the host re-
sponse to infectious stimuli during different stages of an acute respiratory viral illness.

The results show a gene expression signature that strongly corresponds to influenza virus
infection. Components of interferon pathway and innate immunity (IFI44L, IFITM3, MX1,
IRF7, OAS2, STAT?2, etc.) are significantly upregulated in the acute phase of infection, while the
expression levels of genes involved in translational elongation and protein biosynthesis are de-
creased. Other researchers have identified host gene expression patterns that are associated
with viral infection in human airway epithelial cells [17] and bronchial epithelial cells [28].
DEGs in type I interferon or STATI signaling were similar to those found in our current study.
In particular, IFI27, an antiviral molecule that regulates interferon-mediated apoptosis, was the
most highly up-regulated gene in these studies [14,17]. Our study identified IFI27 and PI3 as
the most differentially expressed genes comparing influenza virus and rhinovirus infections.
IF127 up-regulation was observed in hospitalized infants with RSV bronchiolitis [36], yet it was
not seen in the three healthy adults infected with RSV in our study. PI3 (peptidase inhibitor 3)
encodes elafin, a potent neutrophil elastase inhibitor, localized to the injury sites in the lung
[37]. PI3 protein was shown to possess antimicrobial and anti-inflammatory activities [38]. Its
mechanism of action is, however, poorly understood and down-regulation of PI3 has been re-
ported previously in patients with acute respiratory distress syndrome (ARDS) [39], but not in
studies of viral infections.
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Fig 7. A total of 229 genes showed evidence of significant correlation between gene expression and
the antibody response. (Left) Each individual is represented by a column in the heatmaps. The top
heatmap displays the magnitude of the antibody response (delta titer). The bottom heatmaps display the
deviations around the expression mean for each transcript. (Right) LILRB4 showed the greatest positive
correlation (r = 0.42, P <0.005) and FOXO3 showed the greatest negative correlation (r=-0.48, P <0.001)
between gene expression on day 0 and the magnitude of the antibody response to influenza virus infection.

doi:10.1371/journal.ppat.1004869.9007

A key finding in this study was a recovery phase that involves differential expression of a set
of genes distinct from those observed in the acute phase of infection. Molecular characteriza-
tion of a recovery phase has not been previously reported and the functions in the immune re-
sponse of most of the differentially expressed genes are much less clear. Protein ubiquitination
pathways and protein metabolic process are associated with the genes upregulated in the recov-
ery phase. Symptomatic influenza cases exhibited extensive regulation in multiple growth fac-
tor signaling and cell proliferation pathways during the recovery phase. How these results may
be integrated will require further investigation.

Comparison of influenza and rhinovirus illnesses indicated that the intensity of the increase
in activation of the interferon and innate immunity pathways is less in rhinovirus infections. In
addition to IFI127 and PI3 that have the largest expression difference between influenza and
HRV, CDKNI1A and CDKNIC, which are essential genes involved in cell cycle control, ap-
peared to be differentially expressed specifically in influenza virus infection. It has been re-
ported that influenza virus infection induced cell cycle arrest in G1/S phase [40], and the
transcriptional reprogramming of cell cycle correlated with the severity of influenza illness
[41]. The differences in host transcriptional response to influenza virus and rhinovirus infec-
tion might be explained by the fact that influenza virus replicates in the nucleus of host cells
while HRV replicates in cytoplasm [42], or explained by the distinct viral mechanisms in his-
tone modification [22]. Individuals who did not have an identified pathogen associated with ill-
ness had conserved systemic expression signatures that were indistinguishable from the
influenza and rhinovirus groups, with a large variation in the intensity of transcriptional re-
sponse. This suggests that they were actually infected with one of the respiratory viruses for
which we tested but which was not detected, or that they had an infection with another
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infectious agent that induces a similar transcriptional response. This question will be the sub-
ject of future investigation using highly sensitive next generation sequencing methods.

The finding of ‘out of cycle’ individuals suggests that there are many subclinical infections
or other subclinical disorders in healthy adults. Given that acute viral infection stimulates gene
pathways known to be involved in adult onset autoimmune disorders raises the possibility that
the number and intensity of infections may alter risk in genetically susceptible individuals. One
individual exhibited activation at all time points. This may represent a systemic disorder, a pos-
sibility that is now being examined in that subject. This suggests the possibility that gene ex-
pression profiles may be used in the detection of such disorders as an adjunct to standard
immunological testing.

We used weighted gene co-expression network analysis (WGCNA) to cluster the DEGs de-
tected on day 0 —day 6 into 26 modules. This module construction strategy takes advantage of
the biological variability inherent in the prospective cohort study in order to uncover the mod-
ular organization and function of transcriptional systems. The time-course transcriptional pro-
files make it possible to study the transcriptional regulation of these gene co-expression
networks during different phases of influenza illness. While GO terms enriched in the acute
phase modules are “response to virus” and “translational elongation”, recovery phase modules
are over-represented in a new set of GO terms, such as “endoplasmic reticulum part”, and
“programmed cell death”. We also found the hemoglobin genes in module Day 2_5 (e.g. HBD,
HBEI, HBG1) are downregulated in response to influenza virus infection, however, whether
this is due to true transcriptional regulation, or a decrease in their percentage in comparison to
the white cells will need further investigation. Furthermore, the TF regulatory networks in 4
modules were uncovered, which provides better insights to the underlying mechanisms of host
response to ARIs and will facilitate drug and vaccine development.

Our study went beyond gene co-expression and investigated the differential co-expression
patterns in influenza virus and rhinovirus infections. The idea behind this is that the identifica-
tion of changes in gene co-expression patterns between illness and baseline samples could pro-
vide information about infection-affected regulatory networks. Our result demonstrates that
the gene expression correlations are enhanced on a global scale in the response to ARI; a small
module containing 273 transcripts has the largest increase in network connectivity strength.
This suggests qualitative change in the gene network upon an infectious stimulus.

We know there are several cell-types in whole blood sample and the proportion of these
cell-types varies across samples, so it is possible that the co-expression modules were driven by
variation in markers for various cell-types. However, the differences in gene expression correla-
tion between baseline and the first day of illness are so large that it cannot be fully explained by
the variation in the expression values of the cell lineage markers, which does not change much
between baseline and illness. Thus, the changes in regulatory mechanisms are the major con-
tributor to the differential co-expression patterns.

The pandemic influenza A/HIN1 virus emerged in April 2009 and was the dominant influ-
enza virus circulating in humans in our study periods. By measuring the HIN1 antibody titers
on the same individual before and after the influenza season, we were able to record the magni-
tude of antibody response (delta HINT1 titers) and account for individual variation in a way
that would not have been possible otherwise. We identified 229 genes whose transcriptional
levels were correlated with the antibody response. Although the sample size we had for the cor-
relation analysis is relatively small, over 1/3 of the genes identified in this study have previously
been shown to be correlated with antibody response to influenza vaccination [24]. B cell prolif-
eration genes, which predict influenza vaccine-induced antibody response [23], were also cor-
related with the antibody response to naturally occurring influenza infection. These findings
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provide more insight into the molecular mechanisms of antibody production and secretion,
and may also contribute to influenza vaccine development.

Several limitations of this study are noteworthy. First, we studied two cohorts of healthy
young adults. Those subjects who subsequently developed influenza-like illness had moderate
symptoms [5]. Children, the elderly, were not included and, fortunately, none of the research
subjects developed severe illnesses. Second, this study did not allow analysis of the subjects
who had influenza infection without symptoms. Based on seroconversion rates, 38% of the sub-
jects were probably infected with influenza A HIN1 but did not have symptoms sufficient to
trigger a follow up study visit. Third, all the subjects with influenza-illness enrolled in year
2009-2010 were infected with influenza A HIN1. And in year 2010-2011, only 9 were infected
with influenza B and 3 were infected with influenza A H3N2, all the others were infected with
HINI1 infection. Thus the sample size was not sufficient for comparing host transcriptional re-
sponse to influenza A HIN1, H3N2 and influenza B. Fourth, the transcriptional responses to
infection of cells residing in the secondary immune tissues, like lymph nodes or spleen, might
be different from that of peripheral blood. Future research may investigate the correlations of
gene expression between cells residing in different tissues. Finally, while antibody titers have
been used to assess humoral immune responses, it is clear that they do not capture the com-
plexity of the host response to ARIs. Additional studies would be necessary to establish the
causal relationship between the genes identified and the antibody response, and whether they
also regulate cytokine or chemokine levels.

Despite these limitations, the findings in this study demonstrate the power of serial mea-
surements of gene expression, within the context of a prospective clinical trial, to identify can-
didate genetic mechanisms that determine responses to infection. We have genotyped all these
research subjects and have begun analyzing the impact of common genetic variation on the
gene expression patterns. Because we have made repeated measurements on the same individu-
al over time, we should be able to account for the effect of person in a way that would not have
been possible using cross-sectional methodologies. The dynamic nature of the measurements
should also allow the identification of genetic effects that are either enhanced by or only evident
after the strong perturbation of acute infection.

Materials and Methods
Ethics statement

The study was conducted at Texas A&M University, College Station, TX. The protocol and in-
formed consent were approved by the Baylor College of Medicine and Texas A&M University
institutional review boards before the study began. Healthy adults age 18 to 49 at the college
and in the community were invited to enroll to be followed for acute respiratory illness (ARI)
through two consecutive influenza seasons 2009-2010 and 2010-2011. All adult subjects pro-
vided written informed consent.

Human subjects

After subjects provided consent, a medical history was taken to ensure good health, and base-
line specimens were obtained. Surveillance for influenza began during the September 2009 en-
rollment period because pHIN1 as a cause of influenza was identified in the population during
enrollment. Subjects were given thermometers and instructions to call and report for evalua-
tion within 48 hours of onset for any ARI (Fig 1A). Except for the Thanksgiving holiday period
and 4 weeks of the Christmas holiday period, a coordinator and physician enrolled persons
presenting within 48 hours of onset with a new ARI with fever or that caused them to miss
school, work, or social activities. Specimens were obtained and medical care was provided,
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including the antiviral zanamivir if indicated. Enrolled persons were seen 2, 4, and 6 days later
for repeat evaluation, specimen collections, and medical care and 21 days later for collection of
convalescent specimens. These subjects are those included in the present report. Surveillance
for influenza was terminated after 5.5 months; all subjects were asked to return for specimen
collection and to provide a medical and ARI history. The study was repeated 2010-2011 with
surveillance for influenza limited to January to April as community surveillance did not detect
influenza before the Christmas break.

llinesses

A study physician obtained an oral temperature, completed a symptom survey, and performed
a respiratory system examination at each illness visit. All cases were classified as clinically mod-
erate using standard criteria.

Serology

Serum specimens obtained at enrollment, acute and convalescent visits for illnesses, and the

terminal visit were tested simultaneously using hemagglutination-inhibition (HAI) antibody
tests following previously described methods. Virus antigens were a locally obtained pH1N1

virus (A/Baylor/09) and the most recently prevalent seasonal A/HINI1 virus (A/Brisbane/59/
07), A/H3N2 virus (A/Perth/16/09), and B virus (B/Brisbane/60/08).

Virus infections

A combined 8-mL nasal wash and throat swab specimen was collected at each illness visit.
Specimens from the day 0 and 2 visits were tested for all respiratory viruses in tissue cultures.
All specimens were also tested by reverse-transcriptase polymerase chain reaction (RT-PCR)
for respiratory viruses including influenza A, pHIN1 influenza, influenza B, picornavirus/rhi-
novirus, respiratory syncytial virus, human metapneumovirus, parainfluenza viruses, coronavi-
ruses, and adenoviruses.

RNA purification from peripheral whole blood

We collected peripheral whole blood samples (2.5 mL) in PAXgene RNA stabilization tubes
(QIAGEN Inc., Valencia, CA, U.S.A.) at each visit of those enrolled for illness and froze the
samples at—80°C until RNA purification to minimize gene expression changes induced by
handling and processing. RNA purification was performed using the PAXgene Blood RNA sys-
tem (QIAGEN Inc., Valencia, CA) according to manufacturer’s instructions. Quality control of
RNA samples was performed using spectrophotometry (NanoDrop-1000 Spectrophotometer,
Thermo Fisher Scientific, Waltham, MA, U.S.A.) and microfluidic electrophoresis (Experion
Automated Electrophoresis System, Bio-Rad Laboratories, Hercules, CA).

Gene expression profiling

cRNA synthesis. We performed in vitro transcription assay on all peripheral whole blood
RNA samples prior to chip hybridization. Ambion Illumina TotalPrep RNA Amplification
Kits for 24 reactions (Applied Biosystems/Ambion, Austin, TX) were used according to the
manufacturer’s protocol. Briefly, 11uL of 50ng/uL total RNA was reverse-transcribed with an
oligo(dT) primer bearing a T7 promoter, using ArrayScript reverse transcriptase (RT). The
cDNA then went through second strand synthesis to produce the template for in vitro tran-
scription with T7 RNA Polymerase. MEGAscript in vitro transcription (IVT) and biotin UTP
(provided in the kit), were used to generate biotinylated, antisense RNA copies (CRNA) of each
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mRNA in a sample from the template cDNA. cRNA samples were eluted once using 40 uL nu-
clease-free water. Spectrophotometry (NanoDrop-1000 Spectrophotometer, Thermo Fisher
Scientific, Waltham, MA, U.S.A.) and microfluidic electrophoresis (Experion Automated Elec-
trophoresis System, Bio-Rad Laboratories, Hercules, CA) were performed to QC samples be-
fore hybridization onto Illumina Human HT-12v4 Expression BeadChips (Illumina, San
Diego, CA).

INlumina Expression BeadChip Assay. Biotin-labeled RNA (cRNA) was hybridized to
Mlumina Human HT-12v4 Expression BeadChips (Illumina, San Diego, CA) according to the
manufacturer’s protocol and scanned on an Illumina iScan Reader (Illumina, San Diego, CA).
The initial standard quality control thresholds were imposed on the raw intensity signals of the
microarray using the iScan Control Software (Illumina, San Diego, CA). Microarrays which
failed this QC step were excluded from the analysis.

Microarray data processing. Initial quality control of the signal intensity data was per-
formed on the transcript probes in the microarray using the algorithms in the lumi package in
R statistical software, version 2.14.1 [43]. Integration of raw probe profiles was carried in Geno-
meStudio software (Illumina). Background adjustment, variance stabilization transformation,
and rank invariant normalization were carried out using corresponding functions in the R
package lumi. A detection p-value cut-off of 0.05 was imposed on the normalized intensities to
consider a transcript as detected. All differential expression analyses were restricted to 17,708
transcript probes in the microarray with detection P values < 0.05 in at least 70% of
the samples.

Differential gene expression analyses

All statistical analyses on the gene expression data were performed in R Statistical Software
[44], version 2.14.1. Differential gene expression analyses with cell composition covariates con-
trasting the individual day-specific data with the baseline sample obtained at the time of enroll-
ment were performed using function for linear model fitting in the limma R package [45]. The
significance of differences in gene expression was tested using a Bayes moderated t-test [46].
Correction for multiple testing was addressed by controlling the false discovery rate (FDR)
using the Benjamini and Hochberg (B.H.) method. A transcript probe was considered signifi-
cantly differentially expressed if the B.H. corrected P value was < 0.05. The heatmap function
in R Statistical Software was used to generate a heatmap of mean-centered normalized
expression values.

Cell decomposition analysis

Gene expression profiles were investigated for correlation with cell composition in the whole
blood. Cell lineage and activation state markers were used as described in Abbas et al [47]. A
full list of marker genes we used to compute the cell scores is provided in S1 Table. Cell lineage
scores for all individuals were obtained by taking the first Principal Component (PC1) of aver-
age-normalized expression values for each of the lineage-specific gene sets. [When this method
was used to compute the cell scores for the 121 subjects whose whole blood transcriptional pro-
file and Complete Blood Count (CBC) are publicly available at Gene Expression Omnibus
(GEO accession: GSE30119), the resulting expression-based lymphocyte and neutrophil scores
showed a high correlation (r* = 0.64 and 0.65, respectively) with actual measurements of per-
cent lymphocyte and neutrophil in the CBC (S8 Fig).] Neutrophil and lymphocyte scores were
then introduced as quantitative covariates in the linear models of the differential expression
analyses to account for the differences in cellular composition between individuals.
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Real-time PCR

TagMan (Applied Biosystems, Foster City, CA) quantitative real-time reverse transcriptase po-
lymerase chain reaction (RT-PCR) was performed on baseline and Day 0 paired RNA samples
from 18 randomly selected subjects with influenza infection only and 11 subjects with rhinovi-
rus infection only. cDNA was first synthesized from approximately 2 ug of total RNA in a
20-ul reaction volume using the High Capacity RNA to cDNA kit (Applied Biosystems). Taq-
Man probes, available as “Assay on Demand”, were used in the analyses of the expression levels
of 2 target genes, IFI127 (Hs01086373_g1) and PI3 (Hs00160066_m1), as well as endogenous
control gene GAPDH (Hs03929097_g1). Quantitative RT-PCR was performed on 1ul of cDNA
in triplicates with the CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules,
CA). The fold increase in mRNA expression was determined using the AACt method with the
baseline sample of each pair as calibrators.

Functional enrichment and pathway analysis

Gene lists were analyzed using Ingenuity Pathway Analysis (IPA) software and DAVID Ontol-
ogy (http://www.david.abcc.ncifcrf.gov) to identify significantly enriched pathways. Expressed
genes represented in the full dataset were used as the background. The Biological Process, Mo-
lecular Function and Cellular Component subsets of the Gene Ontology (GO) were used for
enrichment analysis. DAVID Ontology uses t-test to derive P values and applies the Benja-
mini-Hochberg method to correct for multiple testing. IPA uses a right-tailed Fisher’s exact
test to derive P values for identifying significantly overrepresented pathways. A smaller P value
indicates the overrepresentation of a pathway or a GO term by the DEGs is less likely due to
random chance.

De-novo network (module) analysis

To identify groups of host transcripts that showed coordinated regulation in response to acute
illness, we applied the weighted gene co-expression network analysis (WGCNA) [29]. The
WGCNA method constructs networks or modules consisting of groups of genes that are highly
correlated across a set of samples. Briefly, the absolute value of the Pearson correlation coeffi-
cient is calculated for all pairwise comparisons of gene-expression values. The Pearson correla-
tion matrix is then weighted and transformed into an adjacency matrix. WGCNA uses the
topological overlap matrix based dissimilarity measure as input of hierarchical clustering. A
dendrogram (cluster tree) of the network is then obtained from hierarchical clustering. Finally,
modules are defined by cutting branches off the dendrogram. WGCNA was performed using
the WGCNA package provided in R software.

Transcription factor binding site motifs enrichment analysis

JASPAR is an open-access database (http://jaspar.cgb.ki.se) derived exclusively from sets of nu-
cleotide sequences experimentally demonstrated to bind transcription factors. Transcription
factor binding specificity is represented by position-specific scoring matrices (PSSM) in JAS-
PAR. Employing the profiles available in JASPAR, Pscan (http://www.beaconlab.it/pscan)
scans a set of sequences (promoters positions -450 to +50 with respect to the transcription start
site) from co-regulated or co-expressed genes and identifies the enriched transcription factor
binding site motifs by comparing the average matching value of the matrix on the sequences
analyzed and that on the whole promoter set (same set of regions with respect to the transcrip-
tion start site) of the same organism. Z-test was used to derive P values and Bonferroni method
was applied to correct for multiple testing.
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Differential co-expression analysis

All the transcripts showed differential expression on Day 0 were used in the differential co-ex-
pression analysis (DiffCoExpr) [31]. To detect changes in correlations between gene pairs with-
in module and also between pairs of modules during ARIs, DiffCoExpr, an untargeted
approach in which gene modules are not pre-defined, was carried out for each day contrasted
with the baseline. Briefly, an adjacency matrix as the Spearman correlation coefficients for all
pairs of genes was built for each day and baseline. Then, the correlation changes on each day
compared to baseline were quantified by the difference between signed squared correlation co-
efficients. Finally, the Topological Overlap based dissimilarity matrix was derived from the ad-
jacency change matrix, and was used as input for gene clustering and module detection.

Supporting Information

S1 Fig. Dynamics of global gene expression changes after influenza virus infection. Differ-
ential expression analysis was performed for each day, contrasted to baseline. (A) A total of
4,706 differentially expressed genes (BH-corrected P values <0.05 in both 2009 and 2010 co-
horts) were identified over the course of 6 days after influenza virus infection, (B) 1140 of the
DEGs also passed the threshold |log, Fold-Change| > 0.3. Bars indicate the number of DE
genes on each day. Colors indicate the day on which differential expression of the genes were
newly detected, e.g. brown: differentially expressed genes newly detected on day 0 compared to
baseline; blue: differentially expressed genes that appeared at day 4 and were not differentially
expressed at any time before.

(TTF)

S2 Fig. The magnitude of the transcriptional response varied between individuals in (A) in-
fluenza virus infections and (B) rhinovirus infections. Fold change of the acute phase genes
and recovery phase genes were computed in each individual comparing each illness day and
baseline. A full list of the genes is provided in S1 Table. Each dot represents the average |log,
FC| of all the acute phase genes or recovery phase genes in a subject after infection. White back-
ground indicates 2009 cohort and grey background indicates 2010 cohort.

(TTF)

S3 Fig. Host transcriptional response to non-influenza virus infections involved the same
transcripts that were differentially expressed in the influenza virus infection. Heatmap was
plotted as in Fig 3 with the identical transcript list. Subject were grouped by infections status as
represented by different colors above columns-Orange = Entero+HRV, Yellow = Entero,

Grey = HKU1+HRV, White = HKU1, Purple = NL63+HRYV, Light Blue = NL63, Brown = RSV
+HRV, Gold = RSV, Black = Unknown. Five individuals with FluA infection and five with
HRYV infection were included in the heatmap for comparison purposes (Red = FluA,

Green = HRV).

(TIF)

S$4 Fig. Heatmaps demonstrating the time course of the genes showing the most significant
pattern of differential expression comparing influenza virus with rhinovirus infection. (A)
2009 Cohort, (B) 2010 Cohort. Each column corresponds to an individual RNA sample and
each row represents the mean-centered, normalized expression values for each of the differen-
tially expressed genes (BH-corrected P values <0.0001). Samples were grouped by day and sub-
jects were grouped by infections status (influenza virus infection group includes influenza A,
influenza B, influenza A +rhinovirus and influenza B +rhinovirus infections). The transcripts
fall into 3 groups: 1. transcripts that had contrasting fold-changes between influenza virus and
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rhinovirus infection group; 2. transcripts that were responsive to rhinovirus infection but had
no change in influenza virus infection; 3. transcripts that were responsive to influenza infection
but had no change in rhinovirus infection. A full list of the transcript probes in the heatmaps
and their corresponding genes is provided in S2 Table. (C) CDKNIA, CDKNIB and CDKNI1C
are among the DEGs detected when comparing influenza virus and rhinovirus infection. Fold
Changes of CDKNIA, CDKNI1B and CDKNIC were measured in paired day 0 -

baseline samples.

(TIF)

S5 Fig. The expression changes of IF127 and PI3 measured by RT-PCR are consistent with
the microarray data. Fold Changes of IFI27 and PI3 transcript levels were measured in paired
day 0 -baseline samples by microarray (Black) and qPCR (Grey). Subjects are grouped by in-
fections status—Left = FluA (N = 14), Middle = FluB (N = 4), Right = HRV (N = 11).

(TIF)

S6 Fig. Canonical pathways enriched by differentially expressed genes on (A) day 0 and (B)
day 6 after influenza virus infection, as determined by Ingenuity Pathway Analysis (http://
www.ingenuity.com). The percentage indicates the proportion of upregulated (red) and
downregulated (green) genes in relative to all the genes present in a pathway. The numbers at
the end of columns indicate the total number of genes in that pathway. The-log (p-value) in-
creases as a pathway is more significantly associated (as indicated by the orange dot along the
X-axis).

(TIF)

S7 Fig. Gene network connectivity became stronger after the subjects infected with rhinovi-
rus. In the comparative correlation heatmap, the upper diagonal of the main matrix shows a
correlation between pairs of genes among samples collected from HRV-infected individuals on
the first day of illness. The lower diagonal of the heatmap shows a correlation between the
same gene pairs in these individuals on baseline. Red color corresponds to positive correlations,
and blue corresponds to negative correlations.

(TIF)

S8 Fig. PC1 of lymphocyte and neutrophil markers are highly correlated with actual mea-
surement of cell proportions for the 121 individuals in GSE30119. The first principle com-
ponents (PC1) of average-normalized expression values of lymphocyte, neutrophil and
monocyte specific genes (See S3 Table for the list of lineage specific genes) were plotted along
the x-axis. Percent lymphocyte, neutrophil and monocyte in the blood were transformed by
quantile normalization and plotted along the y-axis. The squared correlation coefficients (r”)
between PC1 and cell proportions for lymphocyte, neutrophil and monocyte were 0.64, 0.65,
and 0.16 respectively. Liner regression line is shown in red and the black lines represent 95%
prediction interval.

(TIF)

S1 Table. A list of the transcript probes that were plotted in the time-course expression
heatmaps contrasting aris and baseline (enrollment).
(DOCX)

S2 Table. A list of the transcript probes that were plotted in the time-course expression
heatmaps contrasting influenza and rhinovirus infections.
(DOCX)
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S3 Table. Cell lineage and activation state markers selected from the published literatures
for computing the cell scores.
(DOCX)

S$4 Table. Genes showed evidence of correlation between gene expression on day 0 and the
magnitude of antibody response.
(DOCX)

S5 Table. Differentially expressed genes on day 0 —day 6 of influenza virus infection.
(XLSX)
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