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A B S T R A C T

Objective: We tried to identify novel molecular subtypes of acute myeloid leukemia (AML) associated with histone
methylation and established a relevant scoring system to predict treatment response and prognosis of AML.
Methods: Gene expression data and clinical characteristics of patients with AML were obtained from The Cancer
Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Molecular subtyping was carried
out by consensus clustering analysis, based on the expression of 24 histone methylation modification regulators
(HMMRs). The clinical and biological features of each clustered pattern were taken into account. The scoring
system was constructed by using differential expression analysis, Cox regression method and lasso regression
analysis. Subsequently, the scoring system in the roles of prognostic and chemotherapeutic prediction of AML
were explored. Finally, an independent GSE dataset was used for validating the established clustering system.
Results: Two distinct subtypes of AML were identified based on the expression of the 24 HMMRs, which exhibited
remarkable differences in several clinical and biological characteristics, including HMMRs expression, AML-M0
distribution, NPM1 mutation, tumor mutation burden, somatic mutations, pathway activation, immune cell
infiltration and patient survival. The scoring system, M-RiskScore, was established. Integrated analysis demon-
strated that patients with the low M-RiskScore displayed a prominent survival advantage and a good response to
decitabine treatment, while patients with high M-RiskScore have resistance to decitabine, but they could benefit
from IA regimen therapy.
Conclusion: Detection of HMMRs expression would be a potential strategy for AML subtyping. Meanwhile, tar-
geting histone methylation would be a preferred strategy for either AML-M0 or NPM1 mutant patients. M-Risk-
Score was a useful prognostic biomarker and a guide for the choice of appropriate chemotherapy strategy.
1. Introduction

Acute myeloid leukemia (AML) is an age-distributed hematopoietic
stem cell differentiation disorder with the inhibition of hematopoietic
stem cell differentiation and the accumulation of immature cells at
various stages, as well as the reduced production of active hematopoietic
elements and cytokines (Ferrara and Schiffer, 2013; Short et al., 2018).
Meanwhile, AML is also a highly heterogeneous disease attributed to
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various pathogenetic factors, including various chromosomal and mo-
lecular abnormalities (Papaemmanuil et al., 2016; Prada-Arismendy
et al., 2017). Due to the progress in the development of new chemo-
therapeutic drugs, the application of allogeneic stem cell transplantation
and the proposal and implementation of the supportive treatment, the
overall prognosis of AML patients has been significantly improved (Fer-
rara and Schiffer, 2013). However, more than half of young adult patients
and approximately 90% of elderly patients still die of the disease itself or
.cn (H. Wang).

tember 2022
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:tongxzh@mail.sysu.edu.cn
mailto:wanghaih@mail.sysu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e10610&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e10610
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.heliyon.2022.e10610


D. Rong et al. Heliyon 8 (2022) e10610
the toxicity along with therapeutic drugs, and thereby the heterogeneity
of this disease remains the main obstacle (Ferrara and Schiffer, 2013;
Short et al., 2018).

Two main systems that have been used to classify AML into subtypes
are the French-American-British (FAB) classification and the newer
World Health Organization (WHO) classification (Hwang, 2020; Vardi-
man, 2012). FAB classification, a method that largely based on the
morphological features of leukemia cells with routine staining and
observation under amicroscope, can comprehensively divided AML cases
into subtypes M0-M7, based on the cell types, maturity or differentiation
status of leukemia cells in blood or bone marrow (Hwang, 2020; Vardi-
man, 2012). However, this FAB classification contributes a limited role in
guiding AML patient therapy, as so far, there are almost no differences in
the treatment regimens for other subtypes, except AML-M3 subtype (de
Th�e et al., 2017; Hwang, 2020; Vardiman, 2012). The World Health
Organization (WHO) classification of AML was established in 2001 with
the advances in sequencing technology (Jaffe et al., 2001). After two
updates in 2008 and 2016, respectively, the WHO system divides AML
into 11 subtypes, based on chromosomal and genetic mutations in AML
cells (Arber et al., 2016; Vardiman et al., 2009). In comparison with the
FAB classification, the WHO system displays more advantages in guiding
individual treatment, because it takes account many of the factors that
affect the diagnosis and prognosis of AML (Hwang, 2020; Vardiman,
2012). Nevertheless, the WHO classification does not cluster AML
comprehensively, due to the heterogeneity of AML cells during
leukemogenesis.

Epigenetics refers to the covalent modification of DNA, RNA and
histones without changing the DNA sequence to affect the expression of
genes (Egger et al., 2004). Epigenetic inhibitor therapy usually targets
DNA methylation (decitabine and azacytidine) and histone acetylation
(Chidamide) to benefit AML patients. Epigenetic inhibitors not only
prove the value of targeting epigenetic regulators for AML treatment but
also urges understanding of epigenetic regulation and the discovery of
novel targets for effective AML treatment (Ball et al., 2017; Cashen
et al., 2010; Stahl et al., 2018; Tsai and So, 2017; Wang et al., 2020).
Histone methylation modification is one type of epigenetic modification
that alters chromatin structure by methylating the lysine or arginine
residues in histone tails to activate gene expression or silence it (Audia
and Campbell, 2016; Cheung and So, 2011; Hammond et al., 2017).
Similar to other epigenetic modifications, there are three types of reg-
ulators involved in histone methylation modification, namely histone
methyltransferases (“Writers”), histone demethylases (“Erasers”) and
histone methyl modification recognition factors (“Readers”), respec-
tively (Audia and Campbell, 2016). In recent years, emerging studies
have shown that aberrant histone methylation is closely related to
leukemogenesis (Salvatori et al., 2011; Schenk et al., 2012). Meanwhile,
a series of lead compounds targeting histone methylation regulators
have been completed in the preclinical and even entered clinical studies
(Kruger et al., 2013; Maes et al., 2018; Swords et al., 2015; Tsai and So,
2017; Wouters and Delwel, 2016). However, the current studies on the
use of histone methylation modification in AML are limited, attributed
to the fewer changes in one or a few single genes, while the mutation
patterns in genes related to leukemia often involve multiple genes that
interact in a highly coordinated manner in clinical practice (Ferrara and
Schiffer, 2013; Short et al., 2018). Therefore, it is necessary to sys-
tematically study the expression and characteristics of histone methyl-
ation regulators in AML, which would favor the diagnosis and treatment
of AML.

In this study, we established a comprehensive classification approach
for AML based on the expression level of 24 HMMRs in AML patients. At
the same time, we identified two distinct histone methylation modifi-
cation patterns that exhibit remarkable differences in several clinical and
biological characteristics, including AML-M0 distribution, mutations of
NPM1, survival, TMB, somatic mutations, and pathways activation and
immune cell infiltration. Besides, based on the clustering, we established
a novel scoring system, M-RiskScore, which not only acts as an
2

independent prognostic predictor but also guides an appropriate and
effective chemotherapy strategy.

2. Materials and methods

2.1. Data collection

Gene expression, mutation and clinical annotation data of AML cases
were obtained in The Cancer GenomeAtlas (TCGA) database (https://por
tal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO) database (http
s://www.ncbi.nlm.nih.gov/geo/). LAML cohort from the TCGA database
was used as the training dataset. GSE110087, GSE84334, GSE103424
and GSE71014 cohorts were acquired from the GEO database. Among
them, the first three cohorts were used for analyses of chemotherapy in
AML, and the last one was for validation.

24 HMMRs, including 13 writers (KMT2A, KMT2D, KMT5A, SETD2,
NSD1, SMYD3, NSD2, DOT1L, EZH2, SETD7, CARM1, SUV39H1,
EHMT2), 7 erasers (KDM1A, KDM2A, KDM4A, KDM5A, KDM5B,
KDM6A, KDM6B) and 4 readers (ATRX, EED, PC, RAG2), were chosen
and identified from the related studies for further analyses (Audia and
Campbell, 2016).

2.2. Landscape for histone methylation modification regulators in AML

Correlation analysis of the gene expression among the 24 histone
methylation modification regulators in AML was explored by the “corr-
plot” package. The Wilcoxon rank-sum test was used to investigate the
expression difference of histone methylome regulators in AML patients
with different RiskStatus. Information on somatic mutation and copy
number variations (CNV) of included genes were generated from cBio-
Portal website (https://www.cbioportal.org/).

2.3. Consensus clustering of 24 histone methylation modification
regulators

We conducted the Consensus clustering analysis to characterize and
identify distinct histone methylation modification patterns in AML cases
based on the expression of the above-mentioned 24 histone methylome
regulators to classify AML patients into possible subtypes for further
analysis. The number of clusters and their stability was determined by the
consensus clustering algorithm, and 1000 times repetitions were con-
ducted for guaranteeing the stability of classification (Wilkerson and
Hayes, 2010).

2.4. Features of distinct histone methylation modification patterns

A series of analyses were performed to validate the histonemethylation
modification patterns after finishing the consensus clustering. Principal
component analysis (PCA), a technique for reducing the dimensionality of
such datasets, increasing interpretability but at the same time minimizing
information loss (Jolliffe and Cadima, 2016), was conducted to verify the
quality of consensus clustering. The “Survival” package was applied to
explore the time-dependent prognostic value of the clusters.

Tumor mutational burden (TMB), a new promising biomarker that
emerged recently, is classically defined as the number of non-
synonymous exonic mutations per megabase (Mb) (Fumet et al., 2020).
The total number of mutations counted was divided by the exome size
(38 Mb was utilized as the exome size), by which we calculated the TMB
of each case. TMB correlation analysis was executed to explore the as-
sociation between TMB and the distinct clusters.

To discriminate the biological activity difference between the clus-
tered AML subtypes, we performed gene set variation analysis (GSVA)
enrichment analysis by using “GSVA” R packages, which is an unsuper-
vised and non-parametric method for estimating the variation in bio-
logical process and pathway activity in the samples of an expression
dataset (H€anzelmann et al., 2013). The gene sets of “h.all.v7.1.symbols”
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were downloaded from the MSigDB database (https://www.gsea-msigdb
.org/gsea/index.jsp) for GSVA analysis. The result was considered to be
statistically significant while its p-value was less than 0.05. Moreover, we
explored the somatic gene mutations in the different clusters by the
“maftools” package.

2.5. Estimation of immune cell infiltration

We explored immune cell infiltration patterns between the distinct
AML clusters with MCP-counter and CIBERSORT methods. MCP-counter
is a methodology based on transcriptomic markers that assess the pro-
portion of immune and stromal cell populations in the tumor microen-
vironment (TME) from transcriptomic data. There are 10 cell populations
estimated by MCP-counter, including T cells, CD8þ T cells, cytotoxic
lymphocytes, B lineage, NK cells, Myeloid dendritic cells, Neutrophils,
Endothelial cells and Fibroblasts (Becht et al., 2016). CIBERSORT, a
known deconvolution algorithm, is used to quantify the 22 infiltrated
immune cells, according to the normalized gene expression profiles. The
22 immune cells are composed of memory B cells, naive B cells, plasma
cells, resting/activated DCs, resting/activated NK cells, resting/activated
mast cells, eosinophils, neutrophils, monocytes, M0–M2 macrophages,
and 7 T-cell types (CD8þ T cells, regulatory T cells (Tregs), resting/
activated memory CD4þ T cells, follicular helper T cells, naive CD4þ T
cells and γδ T cells) (Newman et al., 2015).

Another 20 immune checkpoint genes (CD244, PDCD1, PD-L1,
CTLA4, CD80, CD86, CD28, TIGIT, PVR, CD96, SIRPA, CD47, LGALS9,
HAVCR2, ICOS, ICOSLG, TNFSF18, TNFRSF18, KLRD1, KLRC1) were
retrieved from a previous study (Burugu et al., 2018), and correlation
analysis was conducted to determine the differential expression of im-
mune checkpoint genes between the two characterized AML clusters.

2.6. Construction of histone methylation modification-related score
(M-RiskScore) in AML

We first conducted the empirical Bayesian approach with the limma
package to determine the differentially expressed genes (DEGs) among
the histone methylation modification patterns of AML cases. Then, we
performed a univariate Cox regression analysis to identify the prognostic
genes with a p-value less than 0.01 for further analysis.

The lasso regression analysis was subsequently applied to construct
the histone methylation modification-related score (RiskScore) by
“glmnet” and “survival” packages. In this analysis, a lasso penalty was
used to account for shrinkage and variable selection. The optimal value of
the lambda penalty parameter was defined by performing 10 cross-
validations. The calculation formula for the acetylation-related score
was as follows:

RiskScore¼ðcoefficient mRNA1 � expression of mRNA1Þ

þ ðcoefficient mRNA2 � expression of mRNA2Þþ � � �

þ ðcoefficient mRNAn � expression of mRNAnÞ
According to the median of the RiskScore, AML patients were divided

into two groups (high-risk or low-risk group). We then performed the
survival analysis based on this grouping strategy. A receiver operating
characteristic (ROC) curve, which is a plot of the sensitivity versus 1 �
specificity of a diagnostic test (Mandrekar, 2010), was constructed to
examine the prognostic accuracy to verify the RiskScore. Finally, to
validate whether the RiskScore could be an independent prognostic
marker in AML, we carried out the univariate and multivariate Cox
regression analyses.

2.7. Nomogram construction and validation

To improve the clinical application of RiskScore, we constructed the
nomogram based on the Cox regression model. There were 5 components
3

of the nomogram, including gender, FAB subtype, RiskStatus, age, and
RiskScore. Decision curve analysis was performed to compare the net
benefits of different prognostic models (FAB subtype, RiskStatus, Risk-
Score and nomogram). The concordance index, calibration plot, and ROC
curve were used to verify the nomogram.

Nomograms are a pictorial representation of a complex mathematical
formula (Grimes, 2008). Medical nomograms use biological and clinical
variables, such as tumor grade and patient age, to determine a statistical
prognostic model that generates a probability of a clinical event, such as
cancer recurrence or death, for a particular individual (Balachandran
et al., 2015).

Model performance was evaluated through calibration and discrimi-
nation (Alba et al., 2017). Bias corrected calibration for 3 years and 5
years overall survival rate was performed by 1000 bootstrap resamples to
evaluate the consistency between the observed and estimated survival
probability with “rms” package. Discrimination was evaluated by Har-
rell's concordance index (C-index) and ROC curve. A higher C-index
value demonstrated better model-fitting performance. Area under the
ROC curve (AUC) value is an effective way to summarize the overall
diagnostic accuracy of the test, taking values from 0 to 1, where a value of
0 indicates a perfectly inaccurate test and a value of 1 reflects a perfectly
accurate test, indicating a higher AUC value revealed superior model
discriminative ability (Mandrekar, 2010).

Decision curve analysis (DCA) was further performed to measure and
compare the clinical utilities of the different prognostic models. DCA is a
method for evaluating the benefit of a diagnosis test across a range of
patient preferences for accepting the risk of undertreatment and over-
treatment to facilitate decisions about test selection and use (Fitzgerald
et al., 2015).

2.8. Biological characteristics of RiskScore

GSVA analysis, TMB analysis, Somatic gene mutations analysis and
immune cell infiltration analysis were performed to exhibit the biological
characteristics of the high-RiskScore group and low-RiskScore group,
respectively.

3. Results

3.1. Landscape of genetic variation of histone methylation modification
regulators in AML

The overview of this work is shown in the form of a flowchart
(Figure 1). The clinical profiling of TCGA-LAML cohorts was summarized
in Table 1.

A total of 24 HMMRs were finally identified in this study, including
13 writers, 7 erasers and 4 readers. The dynamic reversible process of
histone methylation mediated by HMMRs was summarized in Figure 2A.
We analyzed the gene expression profile of these 24 regulators in AML
patients regarding their RiskStatus level, and results showed that there
were 6 regulators endorsed with remarkable gene expression uniqueness
in RiskStatus, including 1 writer (CARM1), 2 readers (ATRX and PC) and
3 erasers (KDM2A, KDM4A and KDM5B) (Figure 2B). Among them, up-
regulation of ATRX, PC, KDM2A and CARM1 featured a poor Risk-
Status in AML progression and prognosis, while up-regulation of EZH2
and KDM5B in turn suggested a favorable RiskStatus feature (Figure 2B).

Given the interplaying among HMMRs, we performed a co-expression
analysis and demonstrated that there were two positive co-expression
zones (red boxes), in which the bigger one displayed that SETD2, a his-
tone methyltransferase, has a positive correlation with ATRX, KDM5A,
NSD1 and KMT2A in gene expression, respectively (Figure 2C). Mean-
while, the 3 writers (SUV39H1, DOT1L and EHMT2) that contained in
the smaller box form a co-expression loop (Figure 2C). A significant
negative correlation in gene expression was unveiled between KDM5B
and SETD7, KDM5A and SUV39H1, along with ATRX and DOT1L,
respectively (Figure 2C). Eventually, we summarized the incidence of the
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Figure 1. Study flowchart.
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somatic mutation and copy number variation (CNV) of 24 regulators in
AML patients and showed no obvious relationship among them in terms
of genetic alteration in other regulators, except KMT2A that exhibited a
significant CNV alteration, including fusion and amplification in copy
number (Figure 2D).

3.2. Histone methylation modification patterns mediated by 24 regulators
in AML

To verify whether these 24 HMMRs can be used to classify the AML
cases, the R package of ConsensusClusterPlus was approached to classify
the patients with qualitatively measured histone methylation modifica-
tion patterns based on the expression levels of these 24 HMMRs. Results
showed that the optimal consensus clustering can be obtained when the K
value of the consensus matrix was set as 2 (Figure 3A, S1). This result was
further confirmed by the result of the Consensus Cumulative Distribution
Function (CDF) Plot (Figure 3B) and Delta Area Plot (Figure 3C). Taken
together, two clearly distinct histone methylation modification patterns
of AML subtypes were eventually identified, 95 cases in patterns A and 56
cases in patterns B. We assigned these two patterns as Cluster A and
Cluster B, respectively. Principal component analysis (PCA) of the tran-
scriptome profiles of these two modification patterns was also performed
and showed that there was a significant distinction existed between them
(Figure 3D). To validate these established histone methylation modifi-
cation AML patterns, we repeated the correlation analyses by using
another independent AML-cohort, GSE71014, whose clinical profiles
were summarized in Table 1. As shown in Figure S2A-C, the best
consensus clustering was also obtainedwhen the K value of the consensus
matrix was set as 2, which was consistent with the above-mentioned
4

clustering analyses (Figure 3A-D, S1). Moreover, the survival analysis
displayed that the patients of Cluster A had a more prominent survival
advantage than those of Cluster B in both TCGA-LAML and GSE71014
cohorts (Figure 3E-F).

Subsequently, unsupervised clustering of 24 HMMRs was conducted
to explore the clinical features of these two histone methylation modi-
fication AML patterns in TCGA-LAML cohort annotated with factors/
features of FAB subtypes, typical gene mutations, gender, age, fustat and
futime. As shown in Figure 3G and S3, the gene expression levels of most
of the 24 HHMRs were remarkably upregulated in Cluster A, compared
with Cluster B. Thus, Cluster A showed an up-regulation tendency in
these 24 genes overall (Figure 3G and S3). It is worth noting that there
was a significant discrepancy between Cluster A and Cluster B in terms of
the distribution of FAB category, in which the AML-M0 subtype was only
distributed in Cluster A, but not in Cluster B. Besides, more patients with
NPM1 mutation distributed in Cluster B than Cluster A. However, there
were no obvious differences between the patients in Cluster A and Cluster
B with features of FLT3mutation, IDH1mutation, activating Ras, gender,
age, fustat and futime.

3.3. Biological characteristics of distinct histone methylation modification
patterns in AML

To determine the biological character distinction between Cluster A
and Cluster B, we first analyzed their distribution of somatic mutations in
TCGA-AML cohort with maftools package. The result of somatic mutation
analysis showed that Cluster A presented a more extensive tumor mu-
tation burden (TMB) than Cluster B, with the altering frequency 62.5%
against 48.15% (Figure S4A-B). Furthermore, the tumor mutation burden



Table 1. Clinical characteristics of AML cohort for classification and validation.

Clinical Characteristics Number Percent (%)

TCGA-LAML (n ¼ 124)

Survival status Survival 47 37.9

Death 77 62.1

Age �60 years 51 41.1

<60 years 73 58.9

Gender Female 57 46.0

Male 67 54.0

IDH2-R132 mutation Negative 112 90.3

Positive 12 9.7

IDH2-R140 mutation Negative 114 91.9

Positive 10 8.1

IDH2-R172 mutation Negative 122 98.4

Positive 2 1.6

NPM1 mutation Negative 93 75.0

Positive 31 25.0

FLT3 mutation Negative 88 71.0

Positive 36 29.0

Activating RAS mutation Negative 116 93.5

Positive 8 6.5

FAB subtype M0 12 9.7

M1 30 24.2

M2 27 21.8

M3 13 10.4

M4 27 21.8

M5 12 9.7

M6 2 1.6

M7 1 0.8

Risk status Favorable 28 22.6

Intermediate 71 57.3

Poor 25 20.1

GEO-GSE71014 (n ¼ 104)

Survival status Survival 68 65.4

Death 36 34.6
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quantification analysis also confirmed that Cluster A was markedly
correlated with a higher TMB level (Figure 4A), although no significant
difference in microsatellite instability was observed between Cluster A
and Cluster B (Figure 4B). To further investigate the physiological
characteristics of Cluster A and Cluster B, we performed GSVA enrich-
ment analysis and manifested that Cluster A showed a remarkable
enrichment in protein and RNA metabolism pathways, including RNA
degradation pathway, spliceosome pathway, valine leucine and isoleu-
cine biosynthesis pathways, and so on (Figure 4C). Whereas, Cluster B
presented enrichment pathways associated with energy metabolisms,
such as oxidative phosphorylation, pantothenate and CoA biosynthesis
and lysosome pathways (Figure 4C).

The tumor microenvironment (TME), composed of tumor cells, stro-
mal cells, immune cells and multiple secreted factors, plays a crucial role
in tumor progression (Hinshaw and Shevde, 2019; Yuan, 2016). We then
performed the MCP-counter method to examine the immune cell infil-
tration status of these two AML clusters. Results revealed that Cluster A
cases presented a higher immune cell infiltration of T cells, B cells, NK
cells and endothelial cells, but a lower infiltration of monocytes and
neutrophils that were the noumenon of tumor cells (Figure 4D). Then, we
conducted the CIBERSORT method to verify the result of the
MCP-counter method. Consistently, the result also showed that the
infiltration of CD4þ memory T cells, naive B cells, resting NK cells and
plasma cells in Cluster A were all higher than those in Cluster B, except
for the lower infiltration of monocytes (Figure S4C).

Enlightened by the results of immune cell infiltration, we compared
the expression of some immune cell markers, chemokines and cytokines
5

between Cluster A and Cluster B to figure out more about the immune
characteristics of histone methylation modification patterns in AML. As
shown in Figure 4E, a series of immune-activating factors were up-
regulated in Cluster A, including CD244 which is a marker of NK cells,
CD96 which plays a role in the adhesive interaction of activated T and NK
cells, inducible T cell costimulatory ligand (ISOSLG), TNFRSF18 and
CD47, in comparison with Cluster B. At the same time, some immune-
inhibiting factors were downregulated in Cluster A, including HAVCR2,
CD86 and LGALS9. Taken the previous results that the expression of most
of the 24 HMMRs were generally upregulated in Cluster A (Figure 3G),
we speculated HMMRs might play a role in the active expression of a
series of immune-activating factors in AML.

3.4. Establishment of histone methylation modification-related
M-RiskScore in AML

To further evaluate the changes in transcriptome of Cluster A and
Cluster B, we conducted the empirical Bayesian approach of the limma
package to separate the differentially expressed genes (DEGs) between
these two clusters. The volcano plots exhibited that there were lots of
DEGs between Cluster A and Cluster B, in which 61 DEGs even with the
log2 (fold change) value up to �3 (Figure 5A). The clusterProfiler
package was also used to perform GO enrichment analysis for these
DEGs. As shown in Figure 5B, the immune system-related pathways were
directly enriched in Cluster A, rather than Cluster B, indicating again that
histone methylation modification plays a non-negligible role in regu-
lating TME landscapes in AML.

To directly predict the individual therapeutic effect and prognosis of
the patients with AML basing on the histone methylation modification
patterns, we established a scoring system to quantify the histone
methylation modification alteration of AML patients based on the indi-
cated DEGs in Figure 5A. We termed this scoring system as M-RiskScore.
Univariate Cox analysis identified the genes that are eligible for lasso
regression analysis and 8 genes were further selected as marker genes, all
of which possessed meaningful p-value (less than 0.01) (Figure 5C). The
lasso regression analysis drew a formula for calculating the M-RishScore,
in which 6 genes were finally included, including ADAMTS15, CADM1,
CDO1, SYT17, FAM163A and POF1B (Figure 5D-E).

3.5. M-RiskScore is effective in prognosis prediction of AML

To explore the potential practical value of our M-RiskScore system in
predicting the outcome of AML patients, we divided all AML patients into
the high and low M-RiskScore groups when the medium value was set as
the cutoff value. Prognosis analysis showed that the low M-RiskScore
group exhibited a better survival rate than the high M-RiskScore group
(Figure 6A). Impressively, the results of correlation analysis between
histone methylation modification patterns and M-RiskScore displayed
that Cluster A possessed a lowerM-RiskScore (Figure S5A), indicating the
reliable and practical importance of M-RiskScore.

To validate the prediction accuracy of M-RiskScore, two receiver-
operating characteristics (ROC) curves were created. As shown in
Figure 6B-C, M-RiskScore exhibited the highest AUC (area under the
curve) value in both the cohorts of 3-years and 5-years, verifying its
remarkable predictive accuracy compared with other prognostic markers
of AML. In addition, results of univariate and multivariate Cox regression
analyses showed that the Hazard ratio of M-RiskScore was significantly
higher than those with other prognostic markers of AML (Figure 6D-E),
suggesting the independent and accurate potential role of M-RiskScore
system in AML patient prognosis.

To further improve the prognostic application of M-RiskScore in AML,
we performed the nomogram associating M-RiskScore with other prog-
nostic markers of AML, including FAB subtype, gender, RiskStatus and
age (Figure 6F). Results of the decision curve analysis (DCA) from the
nomogram indicated that M-RiskScore had a robotic higher Net Benefit
value than those independent prognostic markers in terms of the Risk



Figure 2. Landscape of genetic variation of 24 HMMRs in AML.
A. Graphical summary of the dynamic process of histone methylation modification.
B. The expression of 24 HMMRs among AML with different Risk statuses. *p < 0.05; **p < 0.01; ***p < 0.001.
C. Co-expression analysis of 24 HMMRs in AML. Positive co-expression, red; Negative co-expression, blue.
D. Overview of somatic mutations and chromosomal variations of 24 HMMRs in AML.
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Figure 3. The establishment of histone methylation modification patterns in AML.
A. Consensus matrix of TCGA-LAML cohort for k value is equal to 2.
B. Cumulative distribution function (CDF) plot of the consensus matrices for k ¼ 2–9.
C. Delta area plot of CDF plot.
D. Principal component analysis for the transcriptome profiles of the two histone methylation modification patterns.
E. Survival analysis for the two histone methylation modification patterns of TCGA-LAML cohort.
F. Survival analysis for the two histone methylation modification patterns of GSE71014 cohort.
G. Unsupervised clustering of 24 HMMRs in the TCGA-LAML cohort. The histone methylation modification patterns, FAB subtype, activating RAS, gender, age, fustant,
fustime and mutations of genes (FLT3, NPM1, IDH1-R172, IDH1-R140, IDH1-R132) were used as annotation. **p < 0.01; ***p < 0.001.
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Figure 4. Biological characteristics of the two AML histone methylation modification patterns.
A. Tumor mutation burden analysis of two histone methylation modification AML patterns. **p < 0.01.
B. Microsatellite instability analysis for the above two histone methylation modification patterns. ns: no statistically significant.
C. GSVA enrichment analysis shows the activation states of biological pathways in the distinct histone methylation modification patterns. The heatmap was used to
visualize these biological processes. Activated pathways were represented in red and inhibited pathways were represented in blue.
D. The abundance of each TME infiltrating cell in the two histone methylation modification patterns. **p < 0.01; ***p < 0.001.
E. The expression of typical immune checkpoint proteins between the two histone methylation modification patterns. **p < 0.01; ***p < 0.001.

D. Rong et al. Heliyon 8 (2022) e10610

8



Figure 5. Establishment of M-RiskScore system.
A. A volcano plot showing the differential expression genes (DEGs) between the two histone methylation modification patterns. The value of log2 fold change was set
as �3.
B. Functional annotation of 61 DEGs with GO enrichment analysis. The color depth of the bar plots represents the activation of the pathways. The length of the bar
plots represents the number of the genes enriched.
C. The prognostic analyses of 61 DEGs in the TCGA-LAML cohort with a univariate Cox regression model. The genes highlighted were selected for lasso regression
analysis.
D and E. Results of lasso regression analysis. The determination of the value of λ (D) and the determination of the coefficient values of the selected genes from C (E).

D. Rong et al. Heliyon 8 (2022) e10610

9



Figure 6. Application of M-RiskScore in the prognostic prediction of AML
A. Survival analysis of the low and high M-RiskScore patient groups with TCGA-LAML cohort.
B–C. ROC analyses of prognostic prediction accuracy of 3-year survival rate (B) and 5-year survival rate (C) of M-RiskScore, Gender, Age, FAB subtype and Riskstatus
in TCGA-LAML cohort.
D-E. Univariate Cox regression model (D) and multivariate Cox regression model (E) for prognostic analyses of M-RiskScore, Gender, Age, FAB subtype and Riskstatus
in TCGA-LAML cohort.
F. Construction of nomogram composed of M-RiskScore, Gender, Age, FAB subtype and Risk status.
G. The decision curve analysis of nomogram and its components.
H. The calibration plot of a nomogram of the probability of survival of 1 year, 3 years and 5 years, respectively.
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Threshold range (Figure 6G). Moreover, all the calibration plots for the
probability of survival of 1-year, 3-year and 5-year ran very close to the
diagonal with an outstanding calibration effect (Figure 6H). However,
the result of the ROC analysis of nomogram exhibited no notable increase
in the prediction accuracy, compared with independent M-RiskScore in
both the cohorts of 3-years and 5-years (Figure 6B-C, Figure S5B).

3.6. M-RiskScore is useful in the chemotherapy regimen decision of AML
patients

Chemotherapeutic drugs still play an important roles in AML treatment
due to their universal and highly effective cytotoxicity (Short et al., 2018).
Thus, we tested the potential of M-RiskScore in predicting the efficacy of
chemotherapy in AML patients. Three GEO-AML cohorts accompanying
with chemotherapeutic information were downloaded and analyzed here.
They were GSE84344 with the response information of decitabine treat-
ment, GSE103424 with clinical characteristics before and after IA regimen
(idarubicin þ cytarabine) treatment, and GSE10087 with clinical infor-
mation after different standard induction chemotherapy, including IA
regimen,CIA regimen (clofarabineþ idarubicinþ cytarabine), FAI regimen
(fludarabineþ cytarabineþ idarubicin), decitabine,BIDFAregimen (twice
daily fludarabine þ cytarabine) and CECA regimen (cyclophosphamide þ
etoposideþ carboplatinþ cytarabine). The basic clinical characteristics of
these threeGEO-AMLcohortswere summarized inTable2.Results revealed
that patients with low M-RiskScore possessed more obvious therapeutic
advantages in both the complex-chemotherapy-treatment and the
decitabine-treatment, compared to those with high M-RiskScore
(Figure 7A-B). In contrast, AML patients with high M-RiskScore benefited
more from the IA regimen treatment (Figure 7C). The somatic mutation
analysis of AML-TCGA cohort displayed that the three most frequently
mutated genes of the patients with low M-RiskScore were DNMT3A, KIT
andWT1. In contrast, in the highM-RiskScore group,NPM1, DNMT3A and
RUNX1 were observed the most frequently mutated genes (Figure 7D-E).
DNMT3A, a DNA methyltransferase encoded by DNMT3A, is one of the
well-known targets of decitabine (Watts and Nimer, 2018), we speculated
that the highmutation frequency of DNMT3Awould be the authentic cause
of poor chemotherapeutic response to decitabine treatment in the high
M-RiskScore group (Figure 7B, D). Likely, we suspected that the mutated
KIT and/ormutatedWT1 could play a crucial role in the progression of low
M-RiskScore AML patients, while mutations of NPM1 and/or RUNX1 en-
dows worse progression in high M-RiskScore patients.

4. Discussions

Individualized treatment is the ultimate and ideal goal of cancer
treatment, which can effectively alleviate the disease, minimize the risk
Table 2. Clinical characteristics of AML cohort for correlation analysis.

Patient series GSE103424 GSE103424 GSE103424

No. of patients 52 45 41

Age

�60 years NA 45 25

<60 years NA 0 16

Gender

Female 24 17 14

Male 28 28 27

Risk status

Favorable 5 0 4

Intermediate 30 23 15

Poor 10 14 22

NA 7 8 0

Response to chemotherapy

Yes 17 18 11

No 35 27 30
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of complications or side effects and is economical, basing on a compre-
hensive consideration of various physiological or clinical characteristics
of the patients, including gender, age, genetic characteristics, and treat-
ment histories (Buettner et al., 2013; Mendelsohn, 2013; Senft et al.,
2017). The achievement of individualized cancer therapy requires both
extensive pathologic subtyping of the tumors for their heterogeneity and
diagnosis of genome alterations of the cancers (Senft et al., 2017). Ad-
vances in sequencing technique provide unprecedented views of the
complex genetic and nongenetic heterogeneity within individual tumors,
which not only discloses the alterations of gene expression of the pa-
tients, but also provide an opportunity for tumor subtyping or classifi-
cation (Buettner et al., 2013; Mendelsohn, 2013; Senft et al., 2017).

With the abundant sequence information of AML cases of various
public cohorts, we established a repeatable clustering and scoring system
of AML based on 24 HMMRs' expression levels of the patients with AML.
Patients with low expression of 24 HMMRs were mainly divided into a
cluster, exhibiting a better survival advantage, a higher TMB value and a
more significant immune cell infiltration, compared with those who
possessed a higher expression of related genes in another independent
cluster. Among them, cell adhesion molecule 1 (CADM1) is an apoptosis-
inducing tumor suppressor that is inactivated by methylation in a variety
of tumor types, which may play a role in chemotherapy-induced cell
death in AML (Fisser et al., 2015), but the other 5 genes’ role was rarely
reported in AML. ADAMTS15 is used to predict the survival of human
breast carcinoma with the inhibitory functions to tumor growth and in-
vasion of colorectal cancers (Porter et al., 2006; Viloria et al., 2009). The
high FAM163A expression is associated with short survival time in he-
patocellular carcinoma and affects the occurrence and development of
neuroblastoma (Chen et al., 2022; Qiao et al., 2019). The methylation
status of CDO1 was specifically high in small bowel cancer (SBC) (Kojima
et al., 2019), which indicates it is a biomarker of SBC. It is also overex-
pressed in Sezary syndrome (SS), a rare, aggressive CD4þ cutaneous
T-cell lymphoma (Booken et al., 2008). SYT17 is down-expressed in the
responders vaccinated with tumor-loaded dendritic cells (DCs) than in
the non-responders of indolent non-Hodgkin lymphoma (iNHL) (Fuc�a
et al., 2021). POF1B is a cytoplasmic actin-binding protein involved in
the regulation of cell adhesion, but no information on AML (Crespi et al.,
2015; Lacombe et al., 2006). Thus, it is likely that these genes may also
play important roles in AML, although the underlying mechanism is yet
to be uncovered. A close connection between the histone methylation
modification profile and M-RiskScore is validated with the obvious
overlap of the patient cluster and the M-RiskScore classification. The
remarkable survival advantage of patients is observed in the lowe
M-RiskScore group, indicating the impressive role of M-RiskScore as a
dependent prognostic marker in AML. Moreover, M-RiskScore also can
serve as a diagnostic index for chemotherapy strategy.

FAB classification is the first and the most comprehensive classifica-
tion method of AML in morphology (Vardiman, 2012). However, only
AML-M3, which also referred to acute promyelocytic leukemia (APL), can
be specifically cured with the combination treatment of retinoic acid
(RA) with arsenic (de Th�e et al., 2017), the other seven subtypes still
share similar treatment regimens. Interestingly, we showed that almost
all patients of AML-M0 subtype based on FAB classification were divided
into Cluster A. As AML-M0 indicates acute leukemia with minimal sign of
myeloid differentiation (Vardiman, 2012), we deduced that the activity
of HMMR expression profile could be closely associated with AML-M0
occurrence. Consistent with our findings, compounds specific to key
histone methylation-modifying enzymes were developed in AML man-
agement (Tsai and So, 2017), indicating that targeting histone methyl-
ome would have the potential for AML-M0 patients.

The mutation status of NPM1 is well-known to be associated with
leukemogenesis and is an important marker for the WHO classification of
AML. We find here that patients with the high M-RiskScore have
frequently NPM1mutation (as the top three mutated genes), hinting that
NPM1mutation would be associated with the inactive gene expression of
HMMRs in AML. Coincidently, it is reported that SP2509, a KDM1A



Figure 7. Validation of M-RiskScore in chemotherapy of AML.
A. Correlation analysis of M-RiskScore with complex-chemotherapeutic response in GSE110087-AML cohort.
B. Correlation analysis of M-RiskScore with decitabine treatment response in GSE84334-AML cohort.
C. Correlation analysis of M-RiskScore with IA regimen treatment response in GSE103424-AML cohort.
D. Somatic mutation analysis of low (left) and high (right) M-RiskScore patients' groups with AML progression in TCGA-LAML cohort.
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antagonist, induces more apoptosis in mutant NPM1-expressing AML
cells than those with mixed-lineage leukemia fusion oncoproteins (Fiskus
et al., 2014). Similarly, the inhibitor of histone methyltransferase DOT1L
exhibits potent cytotoxicity to theNPM1-mutated AML cells (Zhang et al.,
2018). But more study is still needed to be conducted to ascertain the
causality between mutation of NPM1 and the inactive expression of
HMMRs. We believe that these HMMRs are promising targets for
NPM1-mutated AML therapy.

Likely, we speculate that the mutation of RUNX1 (RUN family tran-
scription factor 1), which also is a distinct factor of the WHO classification
of AML (Bullinger et al., 2017) and one of the top three mutated genes of
the patients with high M-RiskScore, contributes to the leukemogenesis of
patients with high M-RiskScore individually or in combination with
mutant NPM1. In contrast, mutated KIT (KIT proto-oncogene, receptor
tyrosine kinase) and/or WT1 (WT1 transcription factor) would be the
oncogenic cause of AML patients with lowM-RiskScore, thus they should
be included as the potent entities for AML classification, as studies have
shown that mutated KIT and WT1 are critically associated with leuke-
mogenesis (Ayatollahi et al., 2017; Coombs et al., 2016; Jawhar et al.,
2019; Niktoreh et al., 2019; Pronier et al., 2018; Rocquain et al., 2010;
Wang et al., 2015).
12
Given that RUNX1 and WT1 are both transcription factors for a
broad spectrum of genes, directly disrupting their function causes un-
bearable side effects. However, it is possible to conduct drug develop-
ment of their target gene-encoding proteins, especially enzymes. KIT, a
protein tyrosine kinase receptor, would be a good and direct chemo-
therapy target for AMLpatients. Imatinib, an inhibitor of BCR-ABL
tyrosine kinase inhibitors (TKI) and the first-line chemotherapeutic
drug for most patients with chronic myelogenous leukemia (CML)
(Braun et al., 2020; Moslehi and Deininger, 2015), exhibits an effective
inhibition on KIT kinase activity (Guida et al., 2007; Heinrich et al.,
2000), implying its potential therapeutic application to the KIT-mutated
AML patients.

Our results further demonstrate that patients with low M-RiskScore
have a better response to the chemotherapy in an AML-cohort, implying
that the lower the M-RiskScore is, the better chemotherapeutic response
would outcome, especially to the treatment of decitabine, rather than IA
therapy regimen. As the cohorts used in our study here do not contain
abundant patient samples and differences between different races, there
is no statistical difference in the current analysis. Nevertheless, our re-
sults still indicate that M-RiskScore is a novel and accurate prognostic or
diagnostic marker for AML patients.
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5. Conclusion

In conclusion, our study demonstrates that histone methylation
modification profile plays a curial role in the diagnosis and prognosis of
AML, and our M-RiskScore system could be a valuable tool not only for
the classification of AML but also for the therapy strategy of the patients
with AML.
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