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Abstract

A collection of 5006 full-length (FL) cDNA sequences was developed in barley. Fifteen mRNA samples
from various organs and treatments were pooled to develop a cDNA library using the CAP trapper
method. More than 60% of the clones were confirmed to have complete coding sequences, based on com-
parison with rice amino acid and UniProt sequences. Blastn homologies (E<1E-5) to rice genes and
Arabidopsis genes were 89 and 47%, respectively. Of the 5028 possible amino acid sequences derived
from the 5006 FLcDNAs, 4032 (80.2%) were classified into 1678 GreenPhyl multigenic families. There
were 555 cDNAs showing low homology to both rice and Arabidopsis. Gene ontology annotation by
InterProScan indicated that many of these cDNAs (71%) have no known molecular functions and may
be unique to barley. The cDNAs showed high homology to Barley 1 GeneChip oligo probes (81%) and
the wheat gene index (84%). The high homology between FLcDNAs (27%) and mapped barley expressed
sequence tag enabled assigning linkage map positions to 151-233 FLcDNAs on each of the seven
barley chromosomes. These comprehensive barley FLcDNAs provide strong platform to connect pre-
existing genomic and genetic resources and accelerate gene identification and genome analysis in
barley and related species.
Key words: full-length cDNA; Hordeum vulgare; mRNA; gene ontology

Sato et al. (submitted for publication) assigned
linkage map positions to 2890 non-redundant 3’

1. Introduction

Cultivated barley (Hordeum vulgare L.) is a true
diploid with genome size estimated to be ca.
5000 Mb." In order to approach this large genome,
several projects have generated significant numbers
of expressed sequence tags (ESTs) (ca. 500 000)
(see HarvEST database http://harvest.ucr.edu/).
These large numbers of ESTs may represent most of
the barley genome’s transcripts.
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ESTs, providing the densest, reliable barley map avail-
able. Other projects have also mapped more than
1000 barley ESTs? (see also http://harvest.ucr.edu)),
but these are consensus maps. Barley ESTs were also
mapped on chromosome deletion stocks to estimate
their physical locations.®>* These mapped ESTs will
promote the analysis of barley genome structure
and are an essential foundation for genome sequen-
cing based on high quality genome libraries.>®
Quality-controlled barley EST sequences were used
to develop a GeneChip oligo-microarray” for analyz-
ing global expression of transcripts in different
organs and/or various growth stages.® However,
EST-based microarrays often lack complete gene
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annotation due to the lower homology between partial
sequences of cDNAs (ESTs) and the reference-
sequenced plant genomes (e.g. rice and Arabidopsis).
Full-length (FL) cDNA sequences are essential for
annotation of genome sequences via transcript
mapping.

There are several procedures for developing an
FLcDNA library. Of those, the biotinylated CAP trapper
method gives a high level of complete coding sequences
(CDSs) in FLcDNAs.?'° Using this technique, a signifi-
cantamountof plant FLcDNA sequences was generated.
The first comprehensive (14 668) set of FLcDNA
sequences was published for Arabidopsis thaliana.'
These FLcDNASs traced to 19 different mRNA samples,
covering most of the transcripts in this model plant
species for gene annotation. The rice (Oryza sativa)
FLcDNA project was the second in plants and released
28 469 sequences.'? In both cases, released genome
sequences were already available so that the FLcDNAs
assisted in mapping transcripts.' >

The number of organs in plants is limited, com-
pared with animals, which have various organs with
specific profiles of gene expression. The ‘body map’
described the spectrum of transcripts from each
organ of the human body collected from organ-
specific mRNA samples.'* The FLcDNA projects in
both Arabidopsis'' and rice'? used stress conditions
rather than organs to achieve higher transcript cover-
age. The stress induction of transcripts is a frequently
used approach in plant EST projects including barley
(http://pgrc.ipk-gatersleben.de/cr-est/liball.php) and
poplar.'®> Even if the stress conditions are similar,
responses to specific stresses could be different
among plant species.

Barley has special features compared with other
plant species. It was one of the earliest crops domesti-
cated in the Near East,'® and it is well adapted to
semi-arid conditions. It was also known to be more
tolerant to salt than wheat in ancient
Mesopotamia,'” but it is the cereal crop most sensi-
tive to aluminum toxicity under acid soil conditions.'®

Within the evolutionary tree of the grass family
(Poaceae), which involves many important cereal
species, e.g. rice and maize, barley (H. vulgare L)
belongs to the tribe Triticeae. This group includes
important crop species such as wheat (Tiriticum
aestivum L) and rye (Secale cereale L.).'® The genetic
relatedness between barley and other Triticeae
species, especially wheat, is well confirmed based on
both genetic nucleotide sequences and intergeneric
hybridization.?® Triticeae crop species may have a
common diploid ancestor with seven pairs of chromo-
somes, as was well demonstrated by the direct use of
primers from barley ESTs to develop a diploid wheat
genetic map.?! The relatively high genomic similarity
between barley and rice is known since the early
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synteny analyses based on restriction fragment
length polymorphism markers,>*? and it is used to
isolate genes of importance in barley.?*?> Thus,
barley cDNA sequences are expected to show high
similarity with wheat cDNA sequences and reasonably
high similarity with rice cDNA sequences.

In the present study, we collected a significant
number of barley FLcDNAs by using the biotinylated
CAP trapper method.>'® The FLcDNA sequences
were compared with rice and Arabidopsis genes, and
we evaluated the spectrum of transcripts represented
by Gene Ontology (GO) mapped by InterProScan. The
FLcDNA sequences are also compared with transcripts
from barley and wheat in order to obtain access to the
genomic and genetic resources available in these
species.

2. Materials and methods

2.1 Plant materials

Cultivated barley (H. vulgare L) cv. Haruna Nijo was
used to isolate all the RNA samples used in this study.
The types of samples are listed in Table 1.

For heat and cold stress treatments, plants were
grown on water agar in a growth chamber at 20°C
with a 16 h photoperiod and a light intensity
320 wmol/m?/s. The first leaf stage plants were
moved to treatment chambers with fluorescent light
and exposed to either 40°C (heat treatment) for
24 h or —1°C for 24 h (cold treatment).

All the other stress-treated plants were grown in
hydroponic culture. Seed samples were placed on
the moist filter paper in Petri dishes at 20°C in the
dark for 3 days. Seedlings were then mounted on
plastic frames with strips of polyurethane foam.
Frames were placed over 35 L plastic tanks containing
a nutrient solution consisting of the following com-
ponents (uM): Ca, 1000; Mg, 400; K, 1000; NOs3,
3400; NHy, 600; PO4, 100; SO4, 401.1; Cl, 78; Na,
40.2; Fe, 205 B, 23; Mn, 9; Zn, 0.8; Cu, 0.30 and Mo,
0.1. Iron was supplied as Fe-EDTA prepared from equi-
molar amounts of FeCl; and Na,EDTA. Throughout
the experiment, solutions were constantly aerated.
Plants were grown in a growth chamber at 20°C
with 16 h photoperiod and a light intensity of
320 wmol/m?/s. After 3 days in the nutrient solution,
the solution was completely changed, as described
below for each stress. In the Al stress treatment,
plants were exposed to 30 uM of AIK(SO4),:12H,0,
which was added to the complete nutrient solution,
adjusted to pH 4.3. In the NaCl stress treatment,
0.1 M of NaCl was added to the complete nutrient
solution, adjusted to pH 6.0. For the drought treat-
ment, plants were moved from the solution culture
to dry filter paper in the same growth chamber.
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Table 1. Tissues and stages used for generating an FLcDNA library of barley cv. Haruna Nijo

Stress-treated samples

Treatment Organ
AIK(SO4)-12H,0 (30 uM) Seedling root
NaCl (0.1 M) Seedling leaf
NaCl (0.1 M) Seedling root
cold (—1°C) Seedling leaf
Heat (40°C) Seedling leaf
Wound (5 cm cut) Seedling leaf

Drought on filter paper Seedling leaf and root

Organ samples

Stage Organ
Germinating seed Entire plant
Germinating seed Embryo
Seedling Shoot
Heading Upper three leaf blades
Booting Young spike (3—5 cm)
Vegetative stage Culm
Vegetative stage Root
Maturing Spike

Treatment period Condition

6 h Hydroponic, light
6 h Hydroponic, light
6 h Hydroponic, light
24 h Agar, light

24 h Agar, light

12h Hydroponic, light
2h Hydroponic, light
Day of sampling Condition

2nd day 20°C

2nd day 20°C

5th day 20°C, dark
120th day Filed grown
120th day Filed grown

60th day Filed grown

60th day Filed grown
140th day Filed grown

For the wounding stress, seedling leaves were cut for
5 cm from the top to the bottom of the leaf blade.
Organ-specific samples were collected at different
plant growth stages. Germinated seed samples were
collected from entire plants 2 days after germination.
Shoots and embryos were collected from 5-day-old
seedlings grown on moist filter paper in a Petri dish
at 20°C in the dark. Both whole root and whole
shoot samples were collected from 60-day-old
plants grown under standard field conditions in
Okayama University. Leaf blades of the upper three
leaves and young spikes (3—5 cm) were collected at
the stage of flag leaf emergence. Spikes at a maturing
stage (20 days after flowering) were also collected.

2.2 RNA preparation and cDNA library construction

Total RNA was prepared from each of the samples
and mixed as described in Table 1, for a total amount
of 4 mg. Each sample was ground with a mortar and
pestle in the presence of liquid nitrogen. The ground
powder was then mixed with 5 volumes of solution
(4 M guanidine thiocyanate, 25 mM trisodium citrate
dehydrate, 0.5% sodium N-lauroyl sarcosynate, 0.1 M
2-mercaptoethanol). The cellular debris was pelleted
out in microtubes (14 000 rpm for 10 min at 4°C).
The supernatant was layered on top of 1.1 mL of
5.7 M CsCl cushion solution (5.7 M CsCl, 0.1 M EDTA)
to create a step gradient and centrifuged for 16 hiin a
SW-60Ti rotor (Beckman, CA, USA) at 35 000 rpm in
20°C. The RNA pellet was dissolved in 10 mM Tris—
HCI (pH 7.5), 5 mM EDTA (pH 7.5). The supernatant

was mixed with an equal volume of phenol/
chloroform/isoamyl alcohol (25:24:1) and centri-
fugedat 14 000 rpmfor 5 min at 4°C. The supernatant
was transferred to a new tube, and the lower phase was
mixed with 10 mM Tris—HCI (pH 7.5), 5 mM EDTA
(pH 7.5) and centrifuged at 14 000 rpm for 5 min at
4°C. The supernatant and the previous supernatant
were mixed with the equal volume of chloroform and
centrifuged at 14 000 rpm for 5 min at 4°C. The
upper phase was collected and mixed with 1/3
volume of 8 M LiCl. The RNA was precipitated at 4°C
for 30 min and centrifuged at 14 000 rpm for
30 min. The pellet was washed with 70% ethanol and
centrifuged at 14 000 rpm for 10 min at 4°C. The
pellet was dried with centrifugal concentrator and
dissolved in diethylpyrocarbonate-treated water. The
tube was shaken using a tube mixer for 10 min, and
the absorbance was measured. RNA samples were
stored at —80°C until use.

An FLcDNA library was constructed essentially as
reported previously”'® by biotinylated CAP trapper
using trehalose-thermoactivated reverse transcrip-
tase.?® The mRNA isolated from RNA samples was
quality checked and used for first-strand cDNA
synthesis. After oxidation, biotinylation and RNase
digestion of first-strand cDNA/mRNA hybrids, FLcDNA/
RNA hybrids were captured on magnetic beads. RNA
was removed by alkaline treatment to collect first-
strand FLcDNA. The oligo(dG)-tailed first-strand cDNA
was used for second-strand cDNA synthesis. The cDNA
was restricted with BamHI and Xhol. After purification,
cDNA was cloned into a pFLC-Ill vector.
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2.3 DNA extraction and sequencing

Plasmid DNA was extracted with a multiscreen
plasmid extraction kit (Millipore) and then purified by
precipitation with polyethylene glycol. DNA sequences
were determined using the dye terminator cycle
sequencing method with ABI 3700 sequencer. DNA
clones were subjected to single-pass sequencing from
both 3’- and 5’-ends of the cDNA. 3’ ESTs were
assembled by phrap (http://www.phrap.org/) to
develop contigs and to identify singlets. From each
member of each contig, the corresponding 5’
sequences were assembled to align the sequences on
5’-end. When more than two 5’ assembled sequences
were grouped, they were assumed to be different tran-
scripts. The clone with the most extended sequence at
the 5’-end was assumed as a representative clone to
be sequenced. Individual 3’ singlets with 5’ sequences
were also assumed to be non-redundant FLcDNA
clones to be sequenced. All the representative clones
were cycle sequenced by ABI 3700. Primer walking
was used to sequence larger insert clones.

2.4 Procedure for sequence annotation

InterProScan version 4.3 (http://www.ebi.ac.uk/
Tools/InterProScan/) was installed on an eight-set
PC server, using subprograms of coils, blastprodom,
superfamily, seg, scanregexp, profilescan, hmmtigr,
hmmsmart, hmmpir, hmmpfam, gene3d and fprints-
can. The versions of InterPro databases were release
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14 for a total of 5006 sequences and release 16.1
for the selected 555 sequences. A PC cluster was
established by the software OSCAR 5.0 (http://oscar.
openclustergroup.org/), and the FLcDNA sequences
were distributed on each server. The output from
InterProScan was analyzed to obtain GO categories
of each sequence. GO terms in the second hierarchy
of the GO database and the GO edit.obo file (date:
19:12:2007 10:07) were used as a top parent of
each category. GO terms in the second hierarchy of
the GO database described in the edit.obo file (date:
19:12:2007 10:07), listed in the ‘GO term’ of
Table 2, were used as a top parent of each category.
Categories of a GO term were defined as a set of the
top parents that are accessible from the GO term
through the GO graph structure. A set of categories
of all GO terms obtained by InterProScan was calcu-
lated for each FLcDNA, and the number of clones in
the category was counted for all of the categories.
Blast homology was analyzed on an in-house blast
server installed with the software package Dynaclust
(Dynacom Co.).

3. Results and discussion

3.1 Clone selection and insert sizes of FLcDNAs

A total of 45897 5’ reads and 47 143 3’ reads
were sequenced from both ends of cDNA clones. All
the 3’-end sequences were assembled by phrap

Table 2. InterProScan analysis and molecular function GO for 5006 FL barley cDNA clones and 555 selected clones showing low blastn

homology (E>1E-5) with both rice and Arabidopsis genes

Function GO term All FLcDNA Low homology FLcDNA to
rice and Arabidopsis
No. of clones % No. of clones %
Total 5006 100.0 555 100.0
InterProScan results 4980 99.5 535 96.4
No GO clones 1824 36.4 375 67.6
Categories®
Binding G0O:0005488 1632 32.6 86 15.5
Catalytic activity G0:0003824 1586 31.7 61 11.0
Transporter activity G0O:0005215 243 4.9 13 2.3
Structural molecule activity G0:0005198 206 4.1 11 2.0
Transcription regulator activity G0:0030528 107 2.1 8 1.4
Antioxidant activity G0:0016209 52 1.0 2 0.4
Enzyme regulator activity G0:0030234 48 1.0 15 2.7
Translation regulator activity G0:0045182 33 0.7 1 0.2
Molecular transducer activity G0:0060089 33 0.7 2 0.4
Nutrient reservoir activity G0:0045735 14 0.3 1 0.2
Motor activity G0:0003774 5 0.1 0 0.0
Metallochaperone activity G0O:0016530 1 0.0 0 0.0

Categories with namespace of molecular function are displayed.
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(http://www.phrap.org/), and a total of 4853 contigs
and 1613 singlets were identified from the assembly.
For each of the 4853 3’ contig members, respective
5’-end sequences were assembled, although 69 3’
contigs did not have any 5’-end sequences. Singlets
were also checked for the availability of 5’-end
sequences. A total of 4596 contigs and 1459 singlets
were available for 5-end sequences. These 6055
cDNA clones were served as a basis for complete
sequencing of inserts, 5006 of which were success-
fully sequenced. These cDNA sequences provide for
an estimated 15% of the genes of barley. This estimate
is based on the number of non-redundant barley
transcripts (32 690) by CAP3 assembly,”” using
3’-end sequences of FLcDNA libraries (Sato, unpub-
lished data).

After trimming the vector sequences, insert sizes of
5006 clones ranged from 167 to 6780 bp, with an
average size of 1474 bp (Fig. 1), which is reasonably
large compared with rice (30—16 311 bp; average
=1107 bp) (rep_orf_nucfa: N =30192, http://
rapdb.dna.affrc.go.jp/). This indicates that the most
of the cDNA clones were sufficiently large to include
open reading frame (ORF) sequences.

3.2 Comparison with rice and Arabidopsis gene

The homologies of the FLcDNA sequences with
rice (rap2_rep_nuc: N=31439) and Arabidopsis

600+

400+

No. of clones

200+

0 1000 2000 3000 4000 5000 6000 7000
Insert size (bp)

Figure 1. Distribution of insert sizes of 5006 FL barley clones.
Average insert size is 1474 bp, with the range of 167—-6780 bp.
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Figure 2. Blastn search among barley FLcDNAs, rice genes and
Arabidopsis genes (E<1E-5).

(TAIR7_seq_20070320: N =37 022) were deter-
mined by blastn®® (Fig. 2). The threshold of E <1E-
5 revealed 4451 and 1798 FLcDNAs with homology
to rice and Arabidopsis, respectively. With the
threshold of E <1E-30, 3909 FLcDNAs showed hom-
ology to rice. The numbers of FLcDNAs showing hom-
ology to both species, only rice and only Arabidopsis
were 1788 (36%), 2663 (53%) and 10 (0.002%),
respectively. Other 555 (11%) FLcDNAs did not
show homology to either rice or Arabidopsis.

Subsequently, homologies (E <1E-5) to rice repre-
sentative of ORF amino acid sequences (1397)
(rap2_rep_orf_aa: N =30 192) and Arabidopsis CDS
(2172) (TAIR7 _pep_20070425: N=31924) were
also analyzed by blastx.?® The threshold of E <1E-
30 revealed 3853 and 3679 FLcDNAs with homology
to rice and Arabidopsis, respectively.

All the homologous barley FLcDNAs were mapped to
the rice pseudomolecule (IRGSP built 3) to show the
homology to rice locus, MRNAs and CDS. The Gbrowse
data set is accessible online from http://map.lab.nig.ac.
jp:8090/cgi-bin/gbrowse/Oryza_vs_Hordeum/.

3.3 Estimation of ORF completeness in barley
FLcDNAs
The completeness of ORFs in each FLcDNA
sequence was estimated by the blastx analysis,
using rice ORF and UniProt (http://beta.uniprot.
org/) sequences. The results are available at
Supplementary Table S1. An ORF was judged as FL
when an FLcDNA satisfies the following criterion:
(i) strand =1, (ii) subject start position <20 bp and
(iii) subject start position < FLcDNA start position.
Based on this criterion, 2912 and 304 FLcDNAs
were estimated to have complete ORFs compared
with rice ORF and UniProt sequences, respectively.
Thus, at least 60% of the FLcDNAs probably have
complete ORFs.
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Since only 3853 of the FLcDNAs have high (E <1E-
30) homology with rice ORF amino acid sequences,
many of the FLcDNAs were lacking the homologous
rice genes to compare with. Therefore, the estimate
of 60% may underestimate the ORF completeness of
the FLcDNAs. A preliminary estimate based on
random 5’ sequencing of 96 clones picked from the
cDNA library suggested 92% of completeness based
on homology search with the GenBank nt database
(data not shown). The precise estimate of ORF com-
pleteness will have to wait until barley genome
sequence is available.

3.4 GO annotation and orthologous gene comparison
for FLcDNA sequence

InterProScan analysis of the 5006 FLcDNA clones
produced results for 4980 clones (Supplementary
Table S2). Of the 4980 clones, 3156 had GO
results. GO-positive sequences were categorized
using their GO terms and categories with the name-
space of molecular function (Table 2). ‘Binding’
(32.6%) and ‘catalytic activity’ (31.6%) were the
most frequent functions of the FLcDNAs. For all
other functions, the percentage of FLcDNAs was less
than 5%. The 555 FLcDNA clones that showed no sig-
nificant homology to either rice or Arabidopsis genes
were separately categorized by GO annotation: 70%
had no GO. For positives, the category spectrum was
similar to that for the total set of clones.

GO category (molecular function) comparison
between the barley FLcDNAs (Table 2) and rice rap2
(http://rapdb.dna.affrc.go.jp/RAP2 _statistics.html)
showed similar spectra. However, the frequencies of
GO molecular functions (GO slim) in Arabidopsis
(http://www.arabidopsis.org/tools/bulk/go/index.jsp)
were different from those in barley and rice.
Considering the genomic similarity between barley
and rice, it may be reasonable to say that the barley
FLcDNAs comprised clones, reflecting the spectrum
of functions of all genes in grass species.

Orthologous relationships between barley FLcDNAs
and rice/Arabidopsis proteins were compared using
the GreenPhyl Iterative Ortholog Search Tool
(i-GOST) with GreenPhylDB®*®  (http://greenphyl.
cirad.fr), which contains 6421 mutigenic families
half automatically clustered including 492 TAIR
(http://sss.arabidopsis.org/), 1903 InterPro (http://
www.ebi.ac.uk/interpro/) and 981 KEGG (http://
www.genome.jp/kegg/) families. Of the 5028
possible amino acid sequences derived from the
5006 FLcDNAs, 4032 (80.2%) were classified into
1678 GreenPhyl families (Supplementary Table S3).
A total of 997 protein families were identified
at GreenPhylDB clustering level 1 (Inflation 1.2).3'
Other protein families were identified at under
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clustering level 2—4 (Inflation 2-5). Category levels
were due to clustering stringency (http://greenphyl.
cines.fr/html/cluster.htm). The abundant families
are listed in Table 3. The most abundant were
kinase and/or LRR superfamilies, with 84 amino
acid sequences from FLcDNA.

Table 3. Abundant orthologous families of barley FLcDNA
analyzed by GreenPhyl Ortholog Search Tool with GreenPhylDB
(http://greenphyl.cirad.fr), which contain all rice and Arabidopsis
gene families

No.of FL  GreenPhylDB Family

cDNAs ID

84 20828 Kinase and/or LRR superfamily

61 20842 RNA-binding family (RNP-1)

53 20833 Kinase superfamily

40 20878 Ras GTPase family

40 20839 Cytochrome P450 family

29 20863 Peroxidase family

29 20843 WD40 repeat family

26 20918 Ubiquitin-conjugating family. See at
level 2

25 20834 Pentatricopeptide (PPR) repeat-
containing protein family

22 20884 AAA-type ATPase family

20 20883 Sugar transporter family

20 20862 Dehydrogenase/reductase (SDR)
family

19 21037 Chlorophyll a/b binding family

19 21014 Proteasome family

19 20866 Heat shock protein DnaJ family

19 20853 ABC transporter family

18 20954 Cellular retinaldehyde binding/alpha-
tocopherol transport family (SEC14)

18 20872 20G-Fe(ll) oxygenase family

18 20841 Zinc finger (C3HC4-type RING finger)
family

17 20909 Thioredoxin family

16 20993 O-methyltransferase family

16 20908 Mitochondrial substrate carrier family

14 20849 Glycosyltransferase-family 1

13 21544 Glyceraldehyde-3-phosphate
dehydrogenase family

13 20928 Glycosyl hydrolase family 1

12 20994 Peptidyl-prolyl cis—trans isomerase
cyclophilin-type family

12 20925 Elongation factor family. See at level 2

12 20922 Papain family. See at level 2

11 21176 Histone H2A family

11 21044 Actin and actin-like family

11 20991 Alcohol dehydrogenase, zinc-

containing family 2

Continued
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Table 3. Continued

No.of FL  GreenPhylDB Family

cDNAs ID

11 20891 Proton-dependent oligopeptide
transport (POT) family similar to
LeOPT1 family

10 21419 Histone H4 family

10 21103 Tubulin family

10 21046 Chaperonin Cpn60/TCP family

10 21021 Heat shock protein 70 family

10 20952 Major intrinsic family (MIP)

10 20906 Serine carboxypeptidase S10 family

3.5 Comparison with published barley EST sequences

The 5006 FLcDNAs were searched using blastn,
against all the barley EST sequences in GenBank. Of
these, 4753 (95%) showed high homology (E <1E-
30) and 253 showed homology below the threshold.
The blastn homology with rice genes showed that
152 of these 253 FLcDNAs showed homologies (E
<1E-5) to rice gene sequences, indicating that these
genes may be expressed at low levels and their detec-
tion is due to our systematic program of MRNA
sampling. The other 101 FLcDNAs did not show hom-
ologies to any rice genes (all are included in the 555
genes noted in Table 2), Arabidopsis genes or barley
ESTs. The blastn search with IRGSP build 4 rice pseudo-
molecule (http://rapdb.dna.affrc.go.jp/) revealed that
only three of these cDNA sequences showed hom-
ologies to rice genome. These results indicate that
most of these genes may be novel transcripts specific
to barley.

3.6 cDNA sequences as tools for gene isolation
and genome analysis in the Triticeae

There were high levels of homology with other
Triticeae EST-based resources. At E <1E-30, the
numbers of significant hits and percentages were as
follows: Affymetrix Barley 1 GeneChip (4060; 81%),
wheat gene index (4199; 84%) and EST sequences
on the genetic map of Sato et al. (submitted for pub-
lication) (1328; 27%), which comprised 2890 non-
redundant sets of 3’ barley ESTs. The blastn scores
and target sequence information are available in
Supplementary Table S4. Genetic map positions of
FLcDNAs are available in Supplementary Table S5
and cMAP viewer online at http://map.lab.nig.ac.
jp:8085/cmap/. The 1328 mapped cDNA sequences
are well-distributed on each chromosome (160, 233,
211, 151, 214, 168 and 191 cDNAs on chromo-
somes 1H to 7H, respectively). Mapped FLcDNAs will
be useful for cloning genes, especially when the
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mapped loci are also represented on an expression
profiling array such as the Affymetrix Barley 1
GeneChip. As shown in Supplementary Table S4,
4060 (81%) cDNA sequences are formatted on
Barley 1 GeneChip and 1300 of them are assigned
genetic map positions. As an example, expressed
probes on the Barley 1 GeneChip with genetic map
positions in barley were used to identify orthologous
transporter gene in rice.'® This strategy led to identi-
fying the corresponding FLcDNAs in barley and ulti-
mately cloning and characterizing the function of
Aluminium tolerance gene in barley.

There is general colinearity and content of the
barley and wheat genomes.>>?3 Therefore, it is not
surprising that 84% of the wheat genes showed a
high level of sequence similarity with the barley
FLcDNAs. The homology between barley and diploid
wheat (Triticum monococcum and Triticum boeoticum)
is complete, except for the reciprocal translocation
between chromosomes 4A and 5A2! (see online at
http://map.lab.nig.ac.jp:8085/cmap/). There are some
excellent examples of how the complementary use of
wheat and barley genetic resources, based on homeo-
logy, can be of benefit to gene discovery in both
species.?>32

3.7 Conclusions

The 5006 barley FLcDNAs are the first published
sequences in the Triticeae and third largest resource
in plants, after rice and Arabidopsis. The present
barley FLcDNA sequences are of as high quality as
those reported for rice and Arabidopsis. These
sequences provide access to nucleotide and amino
acid sequences in barley and other related species,
especially wheat.

Since a whole genome sequence is not yet available
for barley, evaluation of these FLcDNA sequences by
alignment with genome sequence is not possible, as
for Arabidopsis'' and rice.'? However, the FLcDNAs
will be immediately useful after the release of the
genome sequence of barley. The efficiency was
demonstrated by Sato (unpublished data), who
sequenced 400 Haruna Nijo BAC clones mapped on
the barley chromosome 3H. The FLcDNAs in this
study can be aligned on these BAC sequences for
gene identification.

The mapped ESTs can be assigned physical coordi-
nates using cytogenetic stocks, such as barley—
wheat addition lines. For example, barley EST
markers on the barley chromosome deletion stocks
can estimate the physical location of these ESTs.>*
Moreover, cDNAs with large insert sizes can be
directly mapped to the chromosomes by fluorescent
in situ hybridization. Thus, the combination of mul-
tiple genomic resources, including EST maps and
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FLcDNAs, will assist in finally revealing the complete
structure and function of the barley genome.

Sequence data from this article have been deposited
with the DDBJ/EMBL/GenBank Data Libraries under
accession nos AK248134—-AK253139. The online
database with annotation is available at http://www.
shigen.nig.ac.jp/barley/.
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