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Abstract

Background: Parkinson’s disease (PD) is a prevalent neurological disease in the elderly with increasing morbidity
and mortality. Despite enormous efforts, rapid and accurate diagnosis of PD is still compromised. Metabolomics
defines the final readout of genome-environment interactions through the analysis of the entire metabolic profile
in biological matrices. Recently, unbiased metabolic profiling of human sample has been initiated to identify novel
PD metabolic biomarkers and dysfunctional metabolic pathways, however, it remains a challenge to define reliable
biomarker(s) for clinical use.

Methods: We presented a comprehensive metabolic evaluation for identifying crucial metabolic disturbances in PD
using liquid chromatography-high resolution mass spectrometry-based metabolomics approach. Plasma samples from
3 independent cohorts (n = 460, 223 PD, 169 healthy controls (HCs) and 68 PD-unrelated neurological disease controls)
were collected for the characterization of metabolic changes resulted from PD, antiparkinsonian treatment and
potential interferences of other diseases. Unbiased multivariate and univariate analyses were performed to determine
the most promising metabolic signatures from all metabolomic datasets. Multiple linear regressions were applied to
investigate the associations of metabolites with age, duration time and stage of PD. The combinational biomarker
model established by binary logistic regression analysis was validated by 3 cohorts.

Results: A list of metabolites including amino acids, acylcarnitines, organic acids, steroids, amides, and lipids from
human plasma of 3 cohorts were identified. Compared with HC, we observed significant reductions of fatty acids
(FFAs) and caffeine metabolites, elevations of bile acids and microbiota-derived deleterious metabolites, and alterations
in steroid hormones in drug-naïve PD. Additionally, we found that L-dopa treatment could affect plasma metabolome
involved in phenylalanine and tyrosine metabolism and alleviate the elevations of bile acids in PD. Finally, a metabolite
panel of 4 biomarker candidates, including FFA 10:0, FFA 12:0, indolelactic acid and phenylacetyl-glutamine was
identified based on comprehensive discovery and validation workflow. This panel showed favorable discriminating
power for PD.
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(Continued from previous page)

Conclusions: This study may help improve our understanding of PD etiopathogenesis and facilitate target screening
for therapeutic intervention. The metabolite panel identified in this study may provide novel approach for the clinical
diagnosis of PD in the future.
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Background
Parkinson’s disease (PD) is the most prevailing movement
disorder and represents the second most common neuro-
degenerative disease, affecting approximately 1% of the
population above 60 years [1, 2]. The main neuropatho-
logical characteristics of PD are marked loss of dopamin-
ergic neurons within substantia nigra and the presence of
intracytoplasmic α-synuclein-containing Lewy bodies,
manifesting as reduced facilitation of voluntary movement
[2, 3]. The current diagnosis of PD essentially relies on
evaluation of clinical signs. Although neuroimaging tech-
nologies have improved the diagnosis and staging of PD,
these detections are expensive and labor intensive [4, 5].
Therefore, many studies have been dedicated to the dis-
covery of biomarkers that may assist the diagnosis of PD.
However, no peripheral blood derived biomarkers have
been used clinically at present [6–8]. Accumulated evi-
dence indicated that PD is multifactorial; a combination of
age, genetics and environmental factors might contribute
to its onset and progression [9, 10].
Emerging evidence indicated that peripheral alterations in-

cluding metabolic dysregulations might precede and contrib-
ute to neurodegeneration [11–14]. Deciphering the
molecular networks that distinguish PD from healthy indi-
viduals and patients with other PD-unrelated diseases might
lead to novel insight into PD pathogenesis and the identifica-
tion of crucial biomarkers. Liquid chromatography-mass
spectrometry- (LC-MS) based metabolomics is a powerful
tool to profile metabolite changes. It has been utilized to de-
cipher metabolic reprogramming in many types of disease in-
cluding neurodegenerative disorders [12, 15, 16]. Previous
studies indicated the involvement of oxidative stress and dys-
homeostasis in metabolism of catecholamine, tryptophan
and caffeine in PD [3, 16, 17]. Several potential biomarkers
have been identified, such as acylcarnitines [18], quinolinic
acid (QA)/kynurenic acid (KA) ratio [19], N8-acetyl spermi-
dine and lipids [10, 20]. However, many studies cannot cor-
roborate each other, possibly due to the limited sample size,
lack of validation cohort and confounding factors from clin-
ical heterogeneity, analytical methodology and antiparkinso-
nian medication. Recently, bile acid (BA) metabolism has
been linked to liver diseases, diabetes, inflammatory bowel
diseases and neurodegenerative disorders [12, 21, 22]. In
addition to their important roles in lipid digestion and ab-
sorption, BAs act as signaling molecules by activating mem-
brane and nuclear receptors as well as ion channels [23].

However, to the best of our knowledge, there has been no
systematic study on the profiling of BAs in PD population.
Herein, we utilized a LC-MS based untargeted metabo-

lomics approach to investigate the metabolic changes as-
sociated with PD in 3 well-characterized cohorts. Using a
method of targeted extraction and integration of the chro-
matographic peak, we also presented a comprehensive
analysis of BA profiles in PD. Additionally, the influences
from various variables (gender, age, duration, stage, and
pharmacological treatment) to the level of metabolites
were also investigated. We aimed to identify the most
promising metabolic biomarkers for the diagnosis of PD,
and corresponding metabolic pathways that might con-
tribute to a better understanding of the biochemical im-
pairments involved in the disease.

Methods
Participants
Totally, 460 plasma samples including 223 from PD, 169
from healthy controls (HCs) and 68 from patients with
PD-unrelated neurological diseases were enrolled at the
First Affiliated Hospital of Dalian Medical University.
PD patients were diagnosed by at least two experienced
neurologists based on the Movement Disorder Society
Clinical Diagnostic Criteria for Parkinson’s disease, and
their favorite response to L-dopa therapy [24]. HC sub-
jects were recruited from the Health Examination Cen-
ter. In cohort 1, all the PD patients were drug-naïve. In
cohort 2, 97 individuals were included, of which 51 were
treated and 14 were drug-naïve, and 32 were HC. In co-
hort 3, apart from PD and HC, a matched PD-unrelated
neurological disease control (NDC) group comprised of
27 cerebrovascular diseases, 9 epilepsy, 9 peripheral ver-
tigo, 8 peripheral neuropathy, 8 anxiety/sleep disorders,
5 syncope and 2 myasthenia gravis were included. Most
of the patients in NDC did not receive regular medica-
tions, except for epilepsy patients who were routinely
treated with antiepileptic drugs. Detailed descriptions of
the participants are given in Table 1. All subjects or their
legally authorized caregivers provided informed consents
and this study was approved by the Ethics Committee of
the hospital.

Biospecimen collection and processing
Fasting venous blood samples were collected into
ethylene diamine tetra-acetic acid containing
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vacutainers (Insepack, SEKISUI medical technology)
by direct venipuncture. Subsequently, plasma samples
were transferred into sterile tubes after centrifugation
at 3000 rpm for 5 min and stored at − 80 °C. Before
metabolomics analysis, plasma samples were visually
checked for hemolysis, and there were no hemolytic
specimens used in our study. Plasma samples were
prepared as previously described with slight modifica-
tions [25]. 130 μL of plasma was deproteinized with 4
volumes of methanol containing internal standards
(ISs, Table S1). After centrifugation at 13,000 g for
10 min, the resulting supernatant was divided into
two aliquots and lyophilized. The dried samples were
reconstituted in 65 μL of methanol/water (1/3) and
analyzed by LC-MS operated in ESI positive (ESI+,
basic species) and negative (ESI-, acidic species)
modes. To evaluate the repeatability of sample pre-
treatment and monitor the stability of instrument
analysis, quality control (QC) samples were made by
mixing equal amounts of each sample, prepared iden-
tically to the analytical sample, and analyzed after 10
sample runs. Additionally, blank samples with ultra-
pure water instead of plasma were made and treated
with the same method and analyzed before the

sequence was run to assess potential background
interference during the experimental process.

LC-MS analysis
Metabolic profiling was performed on an Ultra Perform-
ance Liquid Chromatography (UPLC, Waters, Manches-
ter, UK) coupled with tripleTOF™ 5600 plus (Applied
Biosystems, Foster City, CA) MS system. In ESI+ mode,
extracts were retained and gradient eluted from an
ACQUITY UPLC BEH C8 column using water and
acetonitrile with 0.1% formic acid solution. In ESI-
mode, extracts were retained and gradient eluted from
an ACQUITY UPLC HSS T3 column using water and
95% methanol containing 6.5 mM ammonium bicarbon-
ate. Detailed chromatographic and MS conditions are
given in Supplementary Materials. Instrument control
and data acquisition were conducted using Analyst TF
1.7 software.

Raw data preprocessing
Total ion chromatograms were analyzed using Peakview
(version 1.2.0.3, Applied Biosystems). The acquired raw
data were imported into Marker View (version 1.2.1.1,
Applied Biosystems) for peak extraction and alignment.

Table 1 Study population features

PD(n = 223) HC (n = 169) NDC (n = 68) p value a

Cohort 1

Number of individuals 36 43 –

Age, mean ± SE 64.4 ± 1.5 65.5 ± 1.2 – 0.6826

Gender (m/f) 20/16 25/18 – 0.8173

Duration of disease (year), mean ± SE 4.4 ± 0.8 – –

H&Y stage, mean ± SE 2.1 ± 0.1 – –

Cohort 2

Number of individuals 65 32 –

Age, mean ± SE 66.2 ± 1.3 64.6 ± 1.7 – 0.6367

Gender (m/f) 36/29 18/14 – 0.9651

Duration of disease (year), mean ± SE 5.1 ± 0.5 – –

H&Y stage, mean ± SE 2.1 ± 0.1 – –

Cohort 3

Number of individuals 122 94 68

Age, mean ± SE 68.2 ± 1.0 68.6 ± 0.8 68.6 ± 1.1 0.9576

Gender (m/f) 68/54 51/43 37/31 0.9720

Duration of disease (year), mean ± SE 5.6 ± 0.4 – –

H&Y stage, mean ± SE 2.4 ± 0.1 – –
a The Mann–Whitney U test (PD and HC) or one-way ANOVA (PD, HC and NDC) was used to calculate the statistical significance difference in age distribution
between the groups in each cohort. A chi-square test was applied to investigate the difference in gender composition
In cohort1, all the PD patients were drug-naïve patients. In cohort 2, 14 were drug-naïve, 51 were treated PD patients (L-dopa-treated, pramipexol-treated or the
combination of L-dopa and pramipexol-treated). In cohort 3, 27 were drug-naïve, 95 were treated PD patients. Most of the patients in NDC group did not receive
regular medications, except for 9 patients with epilepsy who were treated with antiepileptic drugs. There is no significant difference in caffeine consumption
between PD and controls. m/f indicates ratio of the number of males to the number of females
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Features that detected in at least 80% of acquired sam-
ples in disease or control group were retained [26]. Be-
sides, due to the automatic peak alignment process, the
information of low abundance of metabolites may be
lost. To obtain a comprehensive and accurate profile of
BA, we performed a method of targeted extraction and
integration of the chromatographic peak using Multi-
Quant (version 2.1, Applied Biosystems) software (Sup-
plementary Materials). Prior to statistical analysis,
original datasets were calibrated by ISs. Each ion feature
in QC sample was calibrated with all ISs and the relative
standard deviation (RSD) after each calibration was cal-
culated. We used IS that can achieve the minimum RSD
in QC sample to calibrate the ion features in analytical
samples. For metabolites identified in 3 datasets, the ori-
ginal peak areas were calibrated using identical ISs.

Metabolite identification
The processing of metabolite identification was carried
out with the OSI/SMMS software [27]. In brief, the re-
tention time of each ion feature was calibrated using ISs
to estimate fluctuations between batches. The calibrated
retention time and MS data of ion features in analyzed
samples were searched against an in-house database by
comparing the qualitative information of each metabolite
with that of reference chemical standards. Comprehen-
sive procedures including precursor ion alignment and
ion fusion, database searching and scoring were applied
to remove the artifacts and background noise [27].

Statistics
SIMCA (version 13.0.0.0., Umetrics AB, Umea, Sweden)
was used to perform multivariate analysis including prin-
cipal component analysis (PCA), partial least square dis-
criminant analysis (PLS-DA) and orthogonal PLS-DA
(OPLS-DA). Permutation test was conducted to avoid a
potential risk of overfitting. We used the Mann-Whitney
U test to calculate the statistical significance. A standard
Benjamini-Hochberg method was applied to control the
false discovery rate (FDR) for multiple hypothesis testing
[28]. Linear regressions were applied to investigate associ-
ations of metabolites with age, duration and disease sever-
ity using PASW Statistics (version 18.0.0). Hierarchical
cluster analysis was performed using the MeV software
package (version 4.8.1). Binary logistic regression analysis
was applied to generate a mathematical model for PD dis-
crimination. The predictive performance of the model was
assessed by estimating the area under the receiver operat-
ing characteristic (ROC) curve (AUC), which is commonly
used to evaluate overall discriminant ability [29].

Results
The demographic and clinical characteristics of the in-
volved subjects are presented in Table 1. A total of 460

individuals were enrolled and divided into 3 independent
cohorts (Fig. 1). There was no significant difference in
age distribution or gender composition between the
groups in each cohort, which indicated that the subjects
in each group were comparable.
After instrumental analysis, peak detection and align-

ment, and metabolite recognition, 226, 202 and 204 me-
tabolites were identified in cohort 1, cohort 2 and cohort
3, respectively (Fig. 2). The data matrices of the identi-
fied metabolites were used for the following statistical
analysis. We first assessed the metabolomic data quality
of the datasets drawn from 3 independent cohorts. As
shown in Figure S1a-1c, the QC samples clustered in
the center on the PCA score plots, suggesting that the
analyses were repeatable and robust. Then we further
analyzed the RSD of metabolites in QC samples (Figure
S1d-1f), 90.3, 99.5 and 98.5% of the metabolites had
RSD values < 30% in each cohort, which further con-
firmed the reliability of the data.
Considering that the detections of fatty acids (FFAs)

might be interfered with residuals from plastic con-
tainers [30], we further analyzed and compared the con-
tents of FFAs in blank (ultrapure water) and analytical
samples (QC samples). Totally, 35 FFAs were detected
in plasma samples. Among them, 8 FFAs were not de-
tectable in blank sample. For the rest of 27 FFAs, the
contents of 19 FFAs in the blank were less than 10% of
the analytical sample. We found that the contents of
only 2 FFAs were more than 30% of the analytical sam-
ple (Table S2). Besides, we used stable isotope labeled
FFAs as IS to calibrate the original raw data to reduce
systematic errors drawn from sample pretreatment and
instrumental analysis processes. After IS calibration, 94%
FFAs had RSDs of less than 15% and all the FFAs had
RSDs of less than 30% in QC samples (Table S2), which
implied that the interference derived from plastic con-
tainers did not significantly affect the detection reprodu-
cibility and relative quantification of FFA in this study.

Metabolic signatures of drug-naïve PD
A comparative study involving drug-naïve PD (DN-PD)
and matched HC was initially performed to investigate
the metabolic signatures of PD and rule out potentially
confounding effects of symptomatic medications. The
metabolic differences between males and females in DN-
PD and HC were firstly investigated. As shown in Figure
S2, there was no clear separation between males and fe-
males in both HC and DN-PD on the PCA score plot.
By performing univariate analysis with FDR calibration,
24 metabolites including acetylcholine, creatinine, sev-
eral amino acids, phosphatidylcholines (PCs) and sphin-
gomyelins (SMs) were found different between genders
in HC (Table S3). However, no gender difference was
found in DN-PD. These findings suggested that the
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metabolic profile of PD was significantly altered com-
pared to that of healthy individuals.
To maximize identification of differential metabolites in

PD patients, we constructed a PLS-DA model. The plasma
metabolome of DN-PD was clearly separated from HC on
the score plot (Fig. 3a). Permutation test was performed to
ensure that the model was not overfitted (Figure S3a). Of
the 226 metabolites, 75 metabolites contributed signifi-
cantly to the distinction of DN-PD and HC with VIP
values > 1. We further performed a Mann-Whitney U test
with FDR calibration and found 60 metabolites were sig-
nificantly changed (Fig. 3b). The overlapped 50 metabo-
lites were considered as differential metabolites in PD
(Fig. 3c). Of these, levels of 43 metabolites were decreased,
including acyl carnitines, PCs, FFAs, FFA amides (FFADs),

indolelactic acid, trigonelline and kynurenine, among
others. Conversely, levels of 7 metabolites including
phenylacetyl-L-glutamine, p-cresol glucuronide, p-cresol
sulfate, proline, cortisol, corticosterone, and phosphate
were significantly increased in PD (Fig. 3d, Table S4).
Based on these differential metabolites identified in PD,
we further carried out pathway analysis and found that
metabolic dysregulations in unsaturated FFAs biosynthesis
(especially linoleic acid, linolenic acid, and arachidonic
acid metabolism), steroid hormone biosynthesis, panto-
thenate and CoA biosynthesis and amino acids
metabolism might be involved in PD etiopathogenesis
(Figure S4).
Then, we investigated the associations of the differen-

tial metabolites with disease severity, duration, and age.

Fig. 1 Flow chart of the experimental design. Totally, 460 plasma samples were collected and divided into three independent data sets for
metabolomics analysis

Fig. 2 Overview of the detection and identification of metabolites in three cohorts. Briefly, each plasma sample was analyzed by both LC-MS ESI+
mode and ESI- mode to facilitate the ionization and detection of alkaline compounds and acidic compounds, respectively. After peak detection
and alignment and metabolite recognition, 226, 202 and 204 metabolites were identified in each cohort
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The disease severity of PD was assessed based on Modi-
fied Hoehn - Yahr (H-Y) staging [31]. We found that
FFA 14:1 was positively associated with disease severity
(Fig. 3e, Table S5). Levels of FFA 14:1, PC 34:2 and
indolelactic acid were positively associated with the dur-
ation time of the disease, whereas FFA 20:5 and FFA 16:
2 were negatively associated (Fig. 3e, Table S6). Interest-
ingly, metabolites in HC and PD showed different age
associations. Aldosterone, pantothenic acid, and N-
acetyl-L-methionine were associated with age in HC,
however, only 1 metabolite FFA 12:0 showed association
with age in PD (Fig. 3e, Table S7). These findings

provided further evidence that HC and PD had different
metabolic patterns.

Impacts of drug therapies on plasma metabolome of PD
Generally, PD patients are usually treated with different
types of antiparkinsonian medication. To assess the pos-
sible drug-induced changes in plasma metabolome, we
recruited an independent population including DN-PD,
treated PD (L-dopa-treated PD (DO-PD), pramipexole-
treated PD (PR-PD) and the combination of L-dopa and
pramipexole-treated PD (CO-PD)) and HC for metabo-
lomics analysis.

Fig. 3 Altered metabolic profiles in drug-naïve PD compared with HC. a PLS-DA score plot of DN-PD and HC in cohort 1. R2X = 0.212, R2Y = 0.758, Q2 =
0.594. The analysis of variance was based on cross-validated prediction residuals (CV-ANOVA) data: p= 9.6139E-014, F factor = 26.7611. b Volcano plot of
the differential metabolites in DN-PD filtered by univariate analysis. c Venn plot of the differential metabolites filtered by PLS-DA model and univariate
analysis. d Heat map of the 50 differential metabolites in DN-PD. Blue indicates a decreased level, orange indicates an increased level. e Associations of
metabolites with disease severity, duration time and age. DT: duration time; IAA: indolelactic acid; Ald: aldosterone; Pan: pantothenic acid;
AceMet: N-acetyl-L-methionine
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As shown in Figure S1b, the plasma metabolome of
PD showed a trend of separation from HC, whereas dif-
ferent subgroups of PD displayed partial overlap. To in-
vestigate the impacts of medications on plasma
metabolome, we constructed PLS-DA models between
DN-PD and different types of treated PD. We found that
the metabolome of DN-PD showed a difference from
that of DO-PD on the score plot of PLS-DA model with-
out overfitting (Fig. 4a, Figure S3b). However, PLS-DA
models between DN-PD and PR-PD or CO-PD did not
show clear separation. These findings implied that L-
dopa treatment could cause significant impact on the
plasma metabolome. However, neither pramipexole
treatment nor the combination of L-dopa and pramipex-
ole treatment could cause significant impacts. Based on
multivariate and univariate statistical analyses (VIP
value, p value and FDR), 11 metabolites including phenol
sulphate, lysophosphatidylcholine (LPC), PC, SM, L-3-
methoxytrosine, phenylalanine, etc. were found relevant
to L-dopa treatment. We found that L-dopa treatment
resulted in a remarkable increase in the level of L-3-
methoxytyrosine, which is a major metabolite of L-dopa
(Fig. 4b). Based on univariate statistical analysis solely,
no metabolites were found relevant to pramipexole
treatment alone, and 3 metabolites including phenylalan-
ine, L-3-methoxytyrosine and PE o-38:6 were related to
combinational treatment (Fig. 4c).

BA profiles in PD patients
We demonstrated a significant elevation of liver-derived
primary bile acid CA, and bacterially generated second-
ary bile acid DCA as well as conjugated bile acid TDCA,
GDCA, GDCS, TCAS and GLCAS in PD compared to
HC. Notably, both L-dopa and combinational treatments
could alleviate the elevations of BAs in PD patients.
However, no significant alterations were found after pra-
mipexole treatment alone (Table 2). Interestingly, UDCA
and TUDCA, which were reported neuroprotective in
PD [32], were decreased in the plasma of PD patients, al-
though there was no statistical significance. By calculat-
ing the ratios of BAs, we assessed the activities of
enzymes involved in BA synthesis and found a signifi-
cant elevation of CA/CDCA in PD, indicating a shift in
initial cholesterol metabolism from alternative pathway
to primary pathway. Besides, most of the ratios were in-
creased in DN-PD compared to HC, the elevations of
these BA ratios tend to be alleviated by medication.

Discriminant model establishment and validation
To further validate the metabolic changes in PD and
identify potential biomarkers, we collected another set of
plasma sample for metabolomics analysis. In contrast to
the majority of “case-control” studies, we included not
only a HC but also a disease control group. Because the
disease control group contains a variety of disease types,

Fig. 4 Impacts of drug therapies on plasma metabolome of PD. a PLS-DA score plot of DN-PD and DO-PD in cohort 2. R2X = 0.179, R2Y = 0.863,
Q2 = 0.323. CV-ANOVA data: p = 0.0030, F factor = 5.0488. b Volcano plot of the significantly changed metabolites in the plasma of PD patients
after L-dopa treatment. c Heat map of differential metabolites between treated PD and DN-PD, which showed possible drug effects to the
plasma metabolome
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we applied OPLS-DA to remove the data variation that
is independent of categorical variable and decrease the
false positive rate. We found that the metabolic profiles
of PD, HC and NDC showed a tendency for separation

although partially overlapped (Fig. 5a). Six metabolites
were identified changed in PD compared to both HC
and NDC (Table S8). Besides, we also investigated the
impact of antiepileptic medication on the levels of these

Table 2 Statistical results of bile acids contents and ratios in drug-naïve PD, treated PD and healthy controls in cohort 1 and cohort
2

Category BAs/ratios Cohort 1 Cohort 2

DN-PD vs. HC DN-PD vs. HC DO-PD vs. DN-PD CO-PD vs. DN-PD

p FDR FC1 p FDR FC2 p FDR FC3 p FDR FC4

Primary CA 0.0183 0.1034 2.64 0.4102 0.6766 1.98 0.9096 0.9096 0.83 0.9329 0.9912 1.09

CDCA 0.1978 0.3422 1.53 0.4378 0.6766 1.48 0.5702 0.7455 0.77 0.8531 0.9912 0.94

Secondary DCA 0.0033 0.0499 1.76 0.7114 0.7802 1.02 0.2237 0.6337 0.81 0.3545 0.7532 0.90

UDCA 0.2595 0.4201 0.67 0.9905 0.9905 0.92 0.0770 0.2908 0.43 0.6494 0.9912 0.95

LCA 0.4026 0.6029 1.19 0.7837 0.8074 1.03 0.3384 0.6907 0.67 0.9866 1.0000 0.87

Primary conjugated GCA 0.0424 0.1601 1.43 0.0272 0.2314 1.72 0.0055 0.0376 0.40 0.0529 0.3594 0.81

TCA 0.1776 0.3422 1.31 0.0226 0.2314 1.99 0.0017 0.0197 0.29 0.0090 0.1872 0.71

TCAS 0.0073 0.0499 2.07 0.0412 0.2804 2.78 0.4266 0.6907 0.57 0.0665 0.3768 0.37

TCDCA 0.4492 0.6109 1.47 0.0054 0.1230 2.05 0.0067 0.0382 0.36 0.0110 0.1873 0.47

GCDCA 0.1034 0.2510 1.44 0.0072 0.1230 1.75 0.0010 0.0197 0.43 0.0299 0.3385 0.56

GCDCS 0.9960 0.9960 0.99 0.4239 0.6766 1.08 0.0027 0.0228 0.43 0.1727 0.5337 0.68

Secondary conjugated TDCA 0.0069 0.0499 2.52 0.0546 0.3096 3.63 0.3551 0.6907 0.37 0.0829 0.4027 0.41

GDCA 0.0006 0.0196 2.81 0.0643 0.3122 2.94 0.3384 0.6907 0.46 0.1523 0.5337 0.55

TUDCA 0.7675 0.8417 0.89 0.2373 0.5379 1.11 0.0012 0.0197 0.41 0.0416 0.3540 0.67

GUDCA 0.6774 0.7942 1.02 0.0878 0.3318 1.35 0.0119 0.0578 0.38 0.2320 0.6066 0.58

GDCS 0.0278 0.1182 1.63 0.2101 0.5379 2.43 0.3898 0.6907 0.50 0.4489 0.8475 0.51

TLCA 0.1744 0.3422 1.22 0.1421 0.4391 2.00 0.1398 0.4754 0.49 0.2738 0.6206 0.68

TLCAS 0.0689 0.1952 1.39 0.2670 0.5673 2.11 0.3551 0.6907 0.67 0.2738 0.6206 0.43

GLCA 0.1909 0.3422 0.98 0.3967 0.6766 0.99 0.4854 0.7455 0.92 0.9062 0.9912 1.00

TDCS 0.7598 0.8417 1.47 0.228 0.5379 1.41 0.0496 0.2109 0.49 0.1623 0.5337 0.57

GLCAS 0.0244 0.1182 1.37 0.5115 0.7246 1.51 0.5269 0.7455 0.66 0.9329 0.9912 0.79

GUDCS 0.4083 0.6029 0.71 0.5748 0.7516 0.61 0.1581 0.4886 0.52 0.7747 0.9912 1.59

Bile acid synthesis:
primary/alternative pathway

CA/CDCA 0.0058 0.0499 1.76 0.5427 0.7381 1.26 0.4080 0.6907 1.07 0.7747 0.9912 1.11

Conversion from primary to s
econdary bile acid by the gut
microbiome

DCA/CA 0.6340 0.7942 1.01 0.6761 0.7802 0.95 0.4266 0.6907 0.74 0.8006 0.9912 0.96

GDCA/CA 0.5180 0.6773 2.16 0.5115 0.7246 4.39 0.6613 0.7495 0.37 0.7490 0.9912 0.35

TDCA/CA 0.6628 0.7942 2.03 0.4102 0.6766 5.28 0.6150 0.7480 0.39 0.5333 0.9067 0.27

UDCA/CDCA 0.0838 0.2192 0.65 0.3218 0.6436 0.77 0.3898 0.6907 0.58 0.8796 0.9912 0.78

LCA/CDCA 0.8529 0.9062 1.13 0.6246 0.7584 1.09 0.7827 0.8064 0.85 0.9329 0.9912 0.77

GLCA/CDCA 0.1503 0.3408 1.00 0.7114 0.7802 1.09 0.5701 0.7455 1.00 1.0000 1.0000 0.92

TLCA/CDCA 0.9481 0.9768 1.28 0.6246 0.7584 2.89 0.6380 0.7480 0.54 0.6254 0.9912 0.52

Glycine or taurine conjugation
of secondary bile acids by
liver enzymes

GDCA/DCA 0.0689 0.1952 1.20 0.1774 0.5026 2.12 0.7828 0.8064 1.39 0.2066 0.5853 0.54

TDCA/DCA 0.2013 0.3422 1.12 0.1179 0.4009 2.44 0.6380 0.7480 1.49 0.1174 0.4990 0.42

TUDCA/UDCA 0.4256 0.6029 1.49 0.7472 0.7939 2.32 0.7090 0.7776 0.48 0.5114 0.9067 0.50

GUDCA/UDCA 0.0674 0.1952 1.70 0.0793 0.3318 2.50 0.5269 0.7455 0.67 0.4094 0.8188 0.55

To calculate p values the Mann–Whitney U test was applied. A standard Benjamini-Hochberg method was applied to control the false discovery rate (FDR) for
multiple hypothesis testing. FC1: the ratio of DN-PD to HC in cohort 1; FC2: the ratio of DN-PD to HC in cohort 2; FC3: the ratio of DO-PD to DN-PD in cohort 2; FC4:
the ratio of CO-PD to DN-PD in cohort 2. CA/CDCA was used to evaluate a possible shift in bile acid biosynthesis form primary to the alternative pathway. DCA/
CA, GDCA/CA, TDCA/CA, UDCA/CDCA, LCA/CDCA, GLCA/CDCA and TLCA/CDCA were calculated to evaluate the enzymatic active of gut microbiome to covert
primary bile acids into secondary bile acids. GDCA/DCA, TDCA/DCA, TUDCA/UDCA and GUDCA/UDCA were used to evaluate the enzymatic activity related to
taurine and glycine conjugation of secondary bile acids [22]
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6 metabolites. The results demonstrated that there were
no significant differences between treated-epilepsy pa-
tients and HC (Table S9). Given that the levels of L-3-
methoxytyrosine and tyrosine were affected by antipar-
kinsonian medications, their changes may be induced by
antiparkinsonian drugs rather than by PD itself. Thus,
they were excluded when developing the discriminant
model.
ROC curves of classification models distinguishing PD

from HC using the other 4 metabolites (FFA 10:0, FFA 12:
0, indolelactic acid and phenylacetyl-glutamine, Fig. 5b-e)
were plotted. The AUC values for each metabolite were
0.702, 0.655, 0.667, and 0.700, respectively (Fig. 5f). The
discriminant power was improved by combining the 4 me-
tabolites using binary logistic regression analysis with the
AUC value reaching to 0.821. Considering the effects of

age on metabolite levels, we also included age as a covari-
ate for the development of diagnostic algorithm. The cor-
responding ROC curve yielded an AUC value of 0.832
when distinguishing DN-PD from HC (Fig. 5f). To validate
the effectiveness of the diagnostic model, we also evalu-
ated its discriminating ability in the other two cohorts. As
shown in Fig. 5g-h, the ROC curves produced AUC values
of 0.801 and 0.834 when distinguishing PD from HC in
cohort 2 and cohort 3, respectively. This metabolite panel
also showed satisfactory diagnostic performance for distin-
guishing PD from both HC and NDC with an AUC value
of 0.767 (Fig. 5i). Notably, using the same regression equa-
tion developed in cohort 1, the metabolic panel also
showed a good discriminability across different cohorts
(Figure S5). Detailed parameters of the models are given
in Table S10-S13.

Fig. 5 Differential metabolites in PD compared with HC and NDC. a OPLS-DA score plot of PD, HC and NDC in cohort 3. R2X = 0.389, R2Y = 0.543,
Q2 = 0.347. CV-ANOVA data: p = 0, F factor = 17.7056. b ~ e Box plots of FFA 10:0, FFA 12:0, indolelactic acid and phenylacetyl-L-glutamine in three
groups. Data were expressed as means ± SE. *: p < 0.05, **: p < 0.01, ***: p < 0.001. The ROC curves of the metabolite panel to discriminate PD
from control groups. f DN-PD vs. HC in cohort 1. The ranges of AUC values at the 95% confidence interval (CI) for FFA 10:0, FFA 12:0, indolelactic
acid, phenylacetyl-L-glutamine and metabolite panel were 0.584 ~ 0.820, 0.534 ~ 0.776, 0.547 ~ 0.787, 0.585 ~ 0.816 and 0.742 ~ 0.922, respectively.
g PD vs. HC in cohort 2. The AUC value ranges from 0.704 to 0.898 at 95% CI. h PD vs. HC in cohort 3. The AUC value ranges from 0.778 to 0.889
at 95% CI. i. PD vs. (HC + NDC) in cohort 3. The AUC value ranges from 0.711 to 0.822 at 95% CI
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Discussion
This study presented a comprehensive metabolomic
evaluation for PD in 3 independent populations. We in-
vestigated the associations of metabolites with gender,
age, and stratified PD according to different variables
(duration, staging and medication) to better understand
the influence of these variables on the biochemical im-
pairment itself. It has been reported that PD patients
showed differences between males and females in epi-
demiological and clinical characteristics, sensitivity to
risk factors, and response to treatments [33]. In this
study, we found that 24 metabolites including acetylcho-
line, creatinine, amino acids, PCs and SMs were different
between genders in HC but not in DN-PD, which im-
plied that the reported gender-related differences in PD
might be associated with different metabolic reprogram-
ing in males and females among PD patients. Besides,
we developed a discriminant model consisting of FFA
10:0, FFA 12:0, indolelactic acid and phenylacetyl-
glutamine to assist to diagnose PD. Although previous
studies have reported a few discriminant models derived
from urine, CSF, and plasma [18, 19, 34–37], the advan-
tage of this study is that the discriminating power of the
developed discriminant model was validated by 3 inde-
pendent cohorts and the same regression equation,
which may have great potential for clinical applications
in the future. Our study also highlighted that metabolic
disturbances in FFA-related metabolism, biosynthesis of
BA and steroid hormone, and amino acid metabolism
might be involved in PD pathogenesis.
Until recently, alteration of FFA metabolism has been

increasingly recognized in PD [5, 38–40]. We found that
metabolism of unsaturated FFAs, especially linoleic acid,
linolenic acid, and arachidonic acid metabolism, were re-
markably perturbed in PD (Fig. 6a). Generally, FFAs are
considered to be required for membrane formation, sig-
naling molecule generation and energy supply through
beta-oxidation [41]. Recent reports suggested that FFAs,
particularly long-chain polyunsaturated FFAs (PUFAs),
can bind to monomeric α-synuclein and accelerate the
formation of α-synuclein assemblies [42, 43]. It has been
reported that fatty acid-binding protein 3 (FABP3) was
elevated in the cerebrospinal fluid (CSF) and serum of
PD patients and highly expressed in the dopaminergic
neurons [44, 45], and was able to promote α-synuclein
oligomerization in cultured dopaminergic neurons [42].
Considering this, targeting FABP3 may represent an
attractive therapeutic strategy for PD. Prevous study
has demonstrated that the developed FABP3 ligands
can inhibit arachidonic acid-induced α-synuclein
oligomerization in neuro-2A cells [46]. Epoxy fatty
acids (EpFAs), the oxidized metabolites of PUFAs,
has been found to have potent anti-inflammatory
properties [47]. EpFAs can be further metabolized

into corresponding diols by soluble epoxide hydro-
lase (sEH) [48]. It has been reported that overexpression
of sEH in the striatum significantly enhanced MPTP-
induced neurotoxicity [49]. Diminished PUFAs in PD may
be due to the enhancement of their downstream meta-
bolic flux. Therefore, targeting EpFA metabolism may
provide novel insight into PD etiology.
To date, a few studies have implicated BAs in PD

and mainly focused on the neuroprotection of UDCA
and its derivatives [50, 51]. It has been reported that
UDCA or TUDCA treatment could improve motor
performance, ameliorate mitochondrial dysfunction
and neuroinflammation and prevent the decline of
striatal dopamine content in various PD models [50–
52]. However, knowledge of the potential efficacy of
other BAs in PD are still limited. Our study presented
a comprehensive analysis of BA profiles in PD pa-
tients and identified a range of conjugated and un-
conjugated BAs, which were significantly disturbed in
PD (Fig. 6b). A shift in initial cholesterol metabolism
from alternative pathway to primary pathway sug-
gested that altered enzymatic activities lead to excess
production of BAs, many of which might be cytotoxic
[53]. A previous study has reported reductions of
neuroprotective BAs in a prodromal PD mouse model
[32]. Together with our findings, it seems that distur-
bances in BA metabolism might play important roles
in the development of PD, even in prodromal stages.
Alterations of secondary BAs and BA ratios indicated
possible alterations in enzymatic activities of gut
microbiota. Notably, the elevations of BAs and BA ra-
tios tend to be alleviated after L-dopa treatment. In-
creased Firmicutes has been found in PD patients
[54]. It has been reported that several species of Fir-
micutes in gut can dehydroxylate CA to form DCA,
which might be toxic to cells [55]. Determining the
specific role and its precise molecular mechanism of
each BA in PD might provide novel cues for future
therapeutic strategies.
Recently, enteric dysbacteriosis has been recognized

as a consistent feature of PD [56]. Abnormalities in
the composition and distribution of intestinal bacteria
have been suggested in PD patients [57]. It has been
postulated that α-synuclein pathology may spread
from gut to the brain and contribute to PD etiology,
however, the exact mechanism remains unclear [13].
The microbiota-derived metabolites provide a func-
tional readout of the microbiome and can indicate
the metabolic interplay among the host, diet, and in-
testinal bacteria [58]. Apart from BAs, we found a list
of microbiota-derived metabolites including proteo-
lytic metabolism products and tryptophan catabolites,
which showed significant alterations in PD (Fig. 6c-d).
Elevated p-cresol sulfate has been detected in the CSF
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of PD [39, 59]. Recently, Mihai and colleagues dem-
onstrated that p-cresol sulfate and phenylacetyl-L-
glutamine were increased in the serum of PD and the
elevation of these deleterious metabolites was posi-
tively correlated with firmer stool and constipation se-
verity among patients [56]. Our study further
confirms the increased production of p-cresol sulfate
and phenylacetyl-L-glutamine in the plasma of PD.
Moreover, we identified a novel p-cresol metabolite,
p-cresol glucuronide, a byproduct of protein degrad-
ation by gut bacteria, showing significantly increased
level in PD. It was revealed that p-cresol could inhibit
the oxidative respiration and proliferation of colonos-
copy cells [56, 60]. Using radio-opaque markers, a
study investigated the relationship between colonic
transit time and human colonic metabolism and con-
cluded that delayed transit time is accompanied by a
shift in colonic metabolism from carbohydrate fer-
mentation to protein catabolism [61]. Therefore, this
metabolic alteration may be mechanistically relevant
to gastrointestinal disorders in PD patients [62, 63]. A
few studies have indicated that the imbalance of kynure-
nine (Kyn) metabolism, the main catabolic rote of trypto-
phan, played important roles in PD pathogenesis [19, 64].
Lower levels of KA and KA/Kyn ratio and higher levels of
QA and QA/KA ratio were reported in the plasma of PD,
indicating a biased Kyn pathway toward producing oxida-
tive stress and excitotoxicity [19]. Apart from Kyn

metabolites, we also observed a significantly decreased
level of indolelactic acid, another tryptophan catabolite, in
PD. Indolelactic acid can be produced by several Clostrid-
ium species such as Clostridium sporogenes and Clostrid-
ium saccharolyticum [65, 66]. Decreased Clostridium
saccharolyticum has been reported in fecal samples of PD
patients [54]. Besides, alterations of several other Clostrid-
ium species and Bacteroides species that involved in tryp-
tophan catabolism were also observed in PD [54, 67]. A
recent study demonstrated that gut microbiota-derived
tryptophan catabolites could modulate inflammatory re-
sponse by attenuating the release of pro-inflammatory
cytokines and the cytokine-mediated upregulation of lipo-
genesis in macrophages and hepatocytes [68]. Previous re-
port also showed anti-neuroinflammatory activities of
indole alkaloids in lipopolysaccharide-stimulated BV2
microglial cells [69]. The decreased level of indolelac-
tic acid may contribute to promoting the inflamma-
tion in PD.
Both epidemiological and clinical studies have consist-

ently reported that caffeine consumption could reduce
the risk of PD [16, 70]. We found significant reduction
of its downstream metabolite (trigonelline) in the plasma
of PD despite an equivalent caffeine intake to controls.
Although there is no statistical significance, we also ob-
served a decreased level of caffeine in PD. Previous stud-
ies also reported reduced levels of caffeine and its
metabolites in PD and indicated that the reductions have

Fig. 6 Metabolic disturbances in PD. a Alterations in PUFA metabolism. b. Alterations in bile acid synthesis pathway. The red frame indicates cytotoxic
bile acid, the green frame indicates neuroprotective bile acid. c The proteolytic metabolism products were increased in PD. d Alterations in
tryptophan metabolism
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no associations with daily caffeine consumption [3, 71].
A recent work reported that the decrease of these me-
tabolites was also observed in patients with glial cyto-
plasmic inclusions and neuronal tau accumulation [72].
A common mechanism such as malabsorption from
small intestine or abnormal clearance of caffeine may
underlie these parkinsonian disorders [72].
Additionally, we documented increased production

of cortisol and corticosterone and decreased aldoster-
one in PD. In the literature, it has been revealed an
elevation of cortisol in the plasma and saliva of PD
patients [73, 74]. High levels of cortisol can damage
substantia nigra striatum system and temporarily ag-
gravate the motor and neuropsychiatric symptoms of
PD patients [75, 76]. Corticosterone, the other im-
portant glucocorticoid, has been found to impair
learning and memory function and cause calcium-
induced neurotoxicity in several PD models [77–79].
A recent study indicated that genes related to aldos-
terone synthesis and secretion were altered in PD
[80]. The renin-angiotensin-aldosterone system (RAS)
is crucial in the development of hypertension and
organ damage, and the activation of brain RAS has
been revealed to aggravate the cognitive decline and
dopaminergic neuron loss by promoting oxidative
stress and inflammation processes [81, 82].
This study provides a comprehensive analysis of meta-

bolic reprogramming in PD. However, it has several lim-
itations. Firstly, PD was diagnosed based on clinical
criteria without laboratory confirmation. Further studies
to link peripheral metabolic changes to pathophysiology
markers, genetic findings and neuroimaging profiles are
recommended. Secondly, we only investigated the effects
of several commonly used antiparkinsonian treatments,
the impacts of other medications cannot be clarified.
There are quite few factors such as genetic background,
disease history, lifestyle, and diet, etc. which might influ-
ence the profiles of the metabolites in PD and controls.
To address this issue, future study is necessary to cali-
brate the levels of metabolites with these factors in a lar-
ger cohort investigation.

Conclusions
In summary, we highlighted that metabolic disturbances
in PUFA metabolism, BA and steroid hormone biosyn-
thesis, caffeine metabolism and amino acid metabolism
are crucial metabolic events underlying PD. The accu-
mulated microbiota-derived deleterious metabolites in-
cluding p-cresol sulfate, p-cresol glucuronide and
phenylacetyl-L-glutamine implied an important role of
intestinal homeostasis in downstream neurodegenerative
processes. These evaluations could improve our under-
standing of PD etiopathogenesis and facilitate target
screening for therapeutic intervention.
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