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Abstract

Although insects dominate the terrestrial fauna, sampling constraints and the poor taxo-

nomic knowledge of many groups have limited assessments of their diversity. Passive sam-

pling techniques and DNA-based species assignments now make it possible to overcome

these barriers. For example, Malaise traps collect specimens with minimal intervention

while the Barcode Index Number (BIN) system automates taxonomic assignments. The

present study employs Malaise traps and DNA barcoding to extend understanding of insect

diversity in one of the least known zoogeographic regions, the Saharo-Arabian. Insects

were collected at four sites in three countries (Egypt, Pakistan, Saudi Arabia) by deploying

Malaise traps. The collected specimens were analyzed by sequencing 658 bp of cyto-

chrome oxidase I (DNA barcode) and assigning BINs on the Barcode of Life Data Systems.

The year-long deployment of a Malaise trap in Pakistan and briefer placements at two Egyp-

tian sites and at one in Saudi Arabia collected 53,092 specimens. They belonged to 17

insect orders with Diptera and Hymenoptera dominating the catch. Barcode sequences

were recovered from 44,432 (84%) of the specimens, revealing the occurrence of 3,682

BINs belonging to 254 families. Many of these taxa were uncommon as 25% of the families

and 50% of the BINs from Pakistan were only present in one sample. Family and BIN counts

varied significantly through the year, but diversity indices did not. Although more than

10,000 specimens were analyzed from each nation, just 2% of BINs were shared by Paki-

stan and Saudi Arabia, 4% by Egypt and Pakistan, and 7% by Egypt and Saudi Arabia. The

present study demonstrates how the BIN system can circumvent the barriers imposed by

limited access to taxonomic specialists and by the fact that many insect species in the

Saharo-Arabian region are undescribed.
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Introduction

Because insects are the major component of terrestrial metazoan biodiversity and important

indicators of environmental conditions [1,2], their biomonitoring can aid efforts to conserve

and restore biodiversity [3], to evaluate the impacts of climate change [4], and to protect eco-

logical services [5,6]. However, comprehensive assessments of their diversity have been impos-

sible because of the lack of taxonomic specialists, and because many insect species are

undescribed [7]. These barriers have contributed to the current uncertainty in the global spe-

cies count [8] which can only be resolved by new approaches as morphological studies could

require a millennium to inventory all species [9].

Recent advances in sequencing technology have stimulated the adoption of DNA-based

methods for documenting biodiversity [10,11]. The capacity of DNA barcoding to advance

understanding of biodiversity at local [12–14] and continental scales [15] is now well-estab-

lished. The Barcode Index Number (BIN) System [16] is a particularly important development

as BINs are a strong proxy for morphological species [17,18]. Consequently, the BIN system is

enabling both large-scale assessments of species diversity [19] and detailed studies of entire

taxonomic assemblages [20]. The capacity of BINs to delimit species is particularly valuable in

settings where prior taxonomic work has been constrained [21]. As a consequence, BINs are

being used to advance biodiversity inventories [22], to reveal unknown faunas [23], and to

explore biodiversity links among nations [24,25].

Among the 12 zoogeographic regions [26], data on insect diversity is least available for the

Saharo-Arabian (Fig 1). For example, nearly half of the 371 arthropod families recently col-

lected from the United Arab Emirates represented new records for that nation [27]. Egypt,

Pakistan, and Saudi Arabia jointly comprise a land area of four million square-kilometers in

the Saharo-Arabian region. Although each nation is thought to host more than 10,000 insect

species, documentation of this diversity is very incomplete [28,29]. For instance, only 5,000

insect species have been reported from Pakistan [30], 3,000 from Saudi Arabia [31], and less

than 2,500 from Egypt [32] in comparison with over 100,000 from Canada and the USA. The

limited availability of biodiversity data for the Saharo-Arabian region restricts the recognition

of invasive taxa and threatened species while also constraining deeper assessments of patterns

of community structure and faunal evolution.

Aside from a lack of taxonomic resources, inaccessible terrain and political instability have

contributed to the poor documentation of Saharo-Arabian biodiversity. This knowledge gap

can be addressed by coupling efficient sampling methods, such as Malaise trap [33] with subse-

quent DNA barcode analysis to speed determinations of alpha and beta diversity and overlap

[19]. By using this approach to examine patterns of insect diversity in Egypt, Pakistan, and

Saudi Arabia, the present study provides a model for biodiversity surveillance in regions with

limited previous biodiversity research.

Materials and methods

Ethics statement

No specific permissions were required for this study. The study did not involve endangered or

protected species.

Insect collection

No single collection method allows a comprehensive assessment of insect diversity [34,35]. As

a result, diverse sampling methods are employed. These methods include, but are not limited

to, light traps, Malaise traps, pitfall traps, pyrethrum knockdown, and Tullgren extractors.
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Although Malaise traps are not an all-purpose collection method [36], they are generally

accepted as the most cost- and time-effective [37], leading to their frequent use in biodiversity

assessments [38]. Reflecting this fact, the Global Malaise Trap Program (http://globalmalaise.

org/) has adopted this sampling method, and coupled it with DNA barcoding to advance

understanding of insect diversity. As one element of this program, the present study deployed

Malaise traps at four locations in three countries. One trap was installed at the Pakistan

Museum of Natural History, Islamabad (33.686˚ N, 73.076˚ E) in the Shakarparian forest.

Insects were collected from 7 February–13 December 2012 excepting 10 days in August/Sep-

tember and one week in July when samples were lost due to storm damage producing 39 col-

lection events (weeks). A second trap was installed at Hada AL-Sham, a green valley, near

Makkah, Saudi Arabia (21.795˚ N, 39.711˚ E) from 9 April–3 July 2014 (13 weeks) and from

November 2014–February 2015 (5 weeks). The other traps were installed at Mostafa Kamel

Village (30.92˚ N, 29.76˚ E) and Antoniodes Gardens (31.204˚ N, 29.95˚ E), Egypt. Both the

sampling sites are situated on the delta of river Nile. Weekly samples were collected at site 1

from 27 May–7 October 2013 (20 weeks) and at site 2 from 29 May–18 September 2013 (17

weeks). Insects were collected into 95% ethanol, and samples were stored at -20˚C until ship-

ment to the Centre for Biodiversity Genomics at Guelph for DNA barcode analysis.

(B) 

(A) 

Fig 1. Map of the terrestrial zoogeographic regions (A; adopted from Holt et al. Science 2013; 339: 74–78) and biodiversity

documentation by DNA barcoding (B; taken from the Barcode of Life Data Systems, www.boldsystems.org).

https://doi.org/10.1371/journal.pone.0199965.g001
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Molecular analysis

Specimens were sorted to order, arrayed, labeled, databased, and tissue sampled following

standard workflows. Small specimens were transferred directly to 96-well microplates, and

vouchers were recovered after DNA extraction for imaging and curation [39]. DNA extraction,

PCR amplification, and sequencing were performed at the Canadian Centre for DNA Barcod-

ing following standard protocols (http://ccdb.ca/resources). Except for hemipterans, PCR

amplification of COI-50 was performed with primers C_LepFolF and C_LepFolR (http://ccdb.

ca/site/wp-content/uploads/2016/09/CCDB_PrimerSets.pdf) following PCR conditions; 94˚C

(1 min), 5 cycles at 94˚C (40 s), 45˚C (40 s), 72˚C (1 min); 35 cycles at 94˚C (40 s), 51˚C (40 s),

72˚C (1 min) and a final extension at 72˚C (5 min). These primers are mixtures of LepF1 [40]

/LCO1490 [41] and LepR1 [40] /HCO2198 [41], respectively. PCR amplification of hemipter-

ans was conducted with LepF2_t1 [42] and LepR1 using the same thermocycling regime as

above. All amplification reactions included 10.5 μL (or 5.25 μL) of standard PCR ingredients

[40] and 2 μL (or 1 μL) of DNA template. PCR products were analyzed using the E-gel 96 sys-

tem (Invitrogen Inc.) and amplicons were sequenced using BigDye v3.1 (Applied Biosystems)

on an ABI 3730XL. Sequences were assembled, aligned, and edited using CodonCode Aligner

(CodonCode Corporation, USA) and submitted to Barcode of Life Data Systems (BOLD)

(www.boldsystems.org) [43]. All sequences generated in this study are accessible on BOLD

under the dataset DS-MAREG (dx.doi.org/10.5883/DS-MAREG).

Data analysis

Sequences meeting quality criteria (>507 bp,<1% Ns, no stop codon or contamination flag)

were assigned to a BIN by the Refined Single Linkage (RESL) algorithm on BOLD [16] which

runs monthly on all eligible sequences. Shorter sequences (<507 bp), meeting all the other cri-

teria, were assigned to the matching pre-existing BINs containing longer sequences. Results of

this analysis are accessible through individual BIN pages. With few exceptions, each specimen

was assigned to a family by sequence matches or by morphological analysis to existing records

on BOLD (http://www.boldsystems.org/index.php/IDS_OpenIdEngine). The family level

assignment of specimens was based on 90% or higher match of the unknown sequence with

the known sequence. Sequences and their associated taxonomic data were subsequently down-

loaded from BOLD for analysis. Diversity indices, BIN/family incidences over time, and

weather-diversity relationships were only examined for Pakistan since this was the sole loca-

tion with collections for>75% of the year. Monthly mean temperature and relative humidity

(RH) values for this site were obtained from the Pakistan Meteorological Department, Islama-

bad. Diversity indices, Simpson’s D [44] and Shannon’s H [45] were calculated for each collec-

tion event. The significance of diversity variation among the collection events was determined

with a χ2 test. BIN overlap among sites was calculated in Excel while BIN accumulation curves

were generated on BOLD.

Results

The four Malaise traps collected 53,092 insects including 22,624 from Pakistan, 18,391 from

Egypt (6,854 at site 1, 11,537 at site 2), and 12,077 from Saudi Arabia. Although these speci-

mens were assigned to 17 orders, most were Diptera (42%), Hymenoptera (29%), Hemiptera

(13%), Lepidoptera (7%) or Coleoptera (4%). A χ2 test showed that the proportion of each

order varied among the collection sites (P<0.05) (Table 1). Although 84% (44,432) of the

specimens generated barcodes, sequence recovery varied among sites with the lowest recovery

from Saudi Arabia (79%). Because temperatures in Makkah often exceeded 40˚C during the

collection period, preservation was likely compromised [46]. Variation in barcode recovery
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was observed among the major orders at each site, although these differences varied among

sites (χ2 = 54.98, P<0.05) (Table 1). Considering all sites, success in barcode recovery was

higher for Lepidoptera (97%) and Diptera (92%) than for Coleoptera (70%) and Hemiptera/

Hymenoptera (75%/76%).

By considering sequence matches to records on BOLD, the specimens with barcodes were

assigned to 254 families. Most of these families (216/254) belonged to five orders: Diptera (61),

Table 1. Insect diversity analysis by Malaise trap collections at four sites in three countries.

Egypt Pakistan Saudi Arabia Total

Site 1 Site 2 Egypt

total

Collection period 27 May– 7 Oct,

2013

29 May– 18 Sep,

2013

15 Feb– 6 Dec

2012

9 Apr– 3 July, 2014 + one week each in Nov,

2014 –Feb, 2015

Total catch (specimens) 6854 11537 18391 22624 12077 53092

DNA barcodes recovered (%) 5611 (82) 10169 (88) 15780

(86)

19068 (84) 9584 (79) 44432

(84)

BINs 571 636 991 2248 728 3682

Singleton BINs 256 239 367 1052 323 1566

Orders 14 12 14 17 12 17

Families 129 137 164 214 132 254

Most common orders: n (% of total

catch):

i) Coleoptera 324 (5) 153 (1) 477 (3) 1083 (5) 702 (6) 2262 (4)

ii) Diptera 4717 (69) 3280 (28) 7997 (43) 11799 (52) 2559 (21) 22355

(42)

iii) Hemiptera 197 (3) 1145 (10) 1342 (7) 1592 (7) 4097 (34) 7031 (13)

iv) Hymenoptera 981 (14) 5008 (43) 5989 (33) 6684 (30) 2847 (24) 15520

(29)

v) Lepidoptera 389 (6) 1583 (14) 1972 (11) 1028 (5) 622 (5) 3622 (7)

Chi-square = 124.8; P<0.05

DNA barcodes recovered: n (%)

i) Coleoptera 254 (78) 137 (90) 391 (82) 877 (81) 326 (46) 1594 (70)

ii) Diptera 3898 (83) 3161 (96) 7059 (89) 11126 (94) 2318 (91) 20503

(92)

iii) Hemiptera 125 (63) 833 (73) 958 (71) 1026 (64) 3298 (80) 5282 (75)

iv) Hymenoptera 780 (80) 4138 (83) 4918 (82) 4728 (71) 2139 (75) 11785

(76)

v) Lepidoptera 366 (94) 1568 (99) 1934 (98) 970 (94) 609 (98) 3513 (97)

Chi-square = 54.98; P<0.05

Order diversity: BINs (BIN:

specimen ratio)

i) Coleoptera 58 (0.23) 37 (0.27) 81 (0.21) 207 (0.24) 76 (0.23) 348

(0.22)

ii) Diptera 230 (0.06) 261 (0.08) 381 (0.05) 818 (0.07) 214 (0.09) 1285

(0.06)

iii) Hemiptera 30 (0.24) 52 (0.06) 71 (0.07) 161 (0.16) 81 (0.02) 277

(0.05)

iv) Hymenoptera 191 (0.24) 195 (0.05) 327 (0.07) 829 (0.18) 244 (0.11) 1328

(0.11)

v) Lepidoptera 41 (0.11) 56 (0.04) 83 (0.04) 155 (0.16) 65 (0.11) 281

(0.08)

Chi-square = 0.35; P>0.05

https://doi.org/10.1371/journal.pone.0199965.t001
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Hymenoptera (44), Coleoptera (42), Lepidoptera (38), and Hemiptera (31). The samples from

Pakistan included 214 families while 132 were collected in Saudi Arabia and 164 in Egypt (129

at site 1 and 137 at site 2).

The 42,510 qualifying sequences were assigned to 3,682 BINs with 2,248 (61%) derived

from Pakistan, 728 (20%) from Saudi Arabia, and 991 (27%) from Egypt (571 = 16% at site 1;

636 = 17% at site 2). 1,601 sequences missed the BIN assignment due to short reads (<507 b)

while 101 due to high number of ambiguous bases (>1%). Another 220 sequences could not

be assigned to a BIN, though they met the quality criteria. Moreover, more than half (1192/

1,922) of the sequences that failed a BIN assignment could be associated with a known BIN

through NJ clustering. Nearly half (43%) of all BINs (1,566/3,682) were represented by a single

specimen.

The BIN/specimen ratio (0.06 vs 0.23) was lower for the most frequent order, Diptera

(n = 22,355) than for the least frequent, Coleoptera (n = 2,262) (Table 1). This pattern was also

evident at a family level as the three commonest families had lower BIN/specimen ratios than

many of the infrequently collected families. For example, the Formicidae (n = 3,997,

ratio = 0.02), Chironomidae (n = 2,593, ratio = 0.03) and Cicadellidae (n = 2,488, ratio = 0.04)
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had much lower ratios than the uncommon Crabronidae (n = 249, ratio = 0.36), Eulophidae

(n = 373, ratio = 0.27) and Bethylidae (n = 316, ratio = 0.25) (Fig 2).

Among the 254 insect families, Formicidae was the most abundant (n = 3997) while the

Crabronidae was the most diverse (BIN: specimen ratio = 0.36). While Formicidae dominated

both (n = 1896) Egyptian sites, Chironomidae (n = 2422) was most common in Pakistan, and

Cicadellidae (n = 2146) in Saudi Arabia. Eulophidae had the highest BIN: specimen ratio

(0.27) in Egypt, while Cecidomyiidae had the highest (0.35) in Pakistan, and Platygastridae

(0.27) in Saudi Arabia.

Diversity analysis at the Pakistan site

The 19,068 specimens from Pakistan with barcodes included representatives of 15 orders, 214

families, and 2,248 BINs. Specimens of Diptera (11,126), Hymenoptera (4,728), Hemiptera

(1,026), Lepidoptera (970), and Coleoptera (877) dominated the collections with only two

other orders contributing more than 100 records (Orthoptera and Psocodea were each repre-

sented by six families and by 29/16 BINs respectively). More specimens (16,031 versus 6,593)

and BINs (1,592 versus 1,155) were collected from February–June than from July–December,

a difference associated with the higher temperatures and lower humidity in the first half of the

year (Fig 3).

Most families (54) and BINs (1,090) were encountered only once in the 39 collection events,

but two families (Agromyzidae, Formicidae) and one BIN (ACF1938 –Formicidae) were

detected in most weeks (38 and 28, respectively) (Fig 4A and 4B). Just 27 BINs were repre-

sented by >100 records and only 26 occurred in more than a third of the collection events

(S1A and S1B Fig). The number of families and BINs varied significantly (P<0.01) among col-

lection events (Table 2). Diversity indices for family and BIN richness in each collection event

were determined by Simpson’s D and Shannon’s H and compared among collection events

(Table 2). Simpson’s D for families ranged from 0.20–0.97 and for BINs from 0.50–0.99, while
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Shannon’s H for families ranged from 0.63–3.70 and for BINs from 1.50–5.10. A contingency

χ2 test indicated there was no significant variation in family/BIN diversity among collection

events.

BIN overlap among collection sites

BIN assignments allowed quantification of the overlap in species assemblages among the four

sites. Among the 2,248 BINs collected in Pakistan and the 728 in Saudi Arabia, just 2% were

shared (Fig 5). The overlap between Egypt (991 BINs from the two trap sites) and Saudi Arabia

was 7% while that between Egypt and Pakistan was only 4%. The BIN overlap between the two

Egyptian sites was higher (19%), but the sites were just 45 km apart. The BIN accumulation

curves showed no sign of reaching an asymptote at any of the sites (Fig 6).
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Fig 4. Incidence of BINs (A) and families (B) in the 39 collections from Islamabad, from February to December 2012.

https://doi.org/10.1371/journal.pone.0199965.g004

DNA barcoding reveals insect diversity in the Saharo-Arabian region

PLOS ONE | https://doi.org/10.1371/journal.pone.0199965 July 9, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0199965.g004
https://doi.org/10.1371/journal.pone.0199965


Discussion

Comprehensive assessments of the insect species present at even a single locale have, until

now, been impossible. For example, the analysis of 129,494 insects from a single 0.5 hectare

site in Panama required contributions from 102 taxonomists over an 8-year interval to place

Table 2. Number of insect specimens, barcodes, families and BINs recovered from weekly Malaise trap collections.

Month Week Specimens Barcodes Number of Families (D / H) Number of BINs (D / H)

February 1 1495 1454 35 (0.2 / 0.63) 91 (0.51 / 1.48)

2 1045 1027 35 (0.44 / 1.2) 105 (0.72 / 2.23)

3 248 228 41 (0.89 / 2.89) 86 (0.94 / 3.69)

March 4 534 508 34 (0.86 / 2.4) 105 (0.94 / 3.47)

5 851 819 34 (0.72 / 1.87) 113 (0.84 / 2.74)

6 1441 1363 70 (0.91 / 2.97) 280 (0.94 / 4.13)

7 914 843 71 (0.94 / 3.24) 237(0.97 / 4.48)

April 8 757 698 61 (0.93 / 3.18) 206 (0.97 / 4.38)

9 1541 1323 87 (0.94 / 3.34) 306 (0.97 / 4.5)

10 1035 863 87 (0.95 / 3.47) 258 (0.98 / 4.72)

11 598 546 61 (0.92 / 3.05) 184 (0.97 / 4.35)

May 12 681 615 66 (0.92 / 3.0) 193 (0.96 / 4.18)

13 718 549 78 (0.95 / 3.5) 232 (0.99 / 4.91)

14 488 401 54 (0.88 / 2.87) 136 (0.91 / 3.71)

15 372 322 62 (0.95 / 3.44) 161 (0.99 / 4.67)

June 16 1027 799 80 (0.93 / 3.44) 285 (0.91 / 4.95)

17 267 200 50 (0.96 / 3.50) 116 (0.99 / 4.46)

18 627 501 71 (0.95 / 3.54) 224 (0.99 / 5.0)

19 1392 981 94 (0.95 / 3.53) 356 (0.99 / 5.11)

July 20 505 324 58 (0.95 / 3.46) 168 (0.99 / 4.71)

21 2063 1543 105 (0.89 / 3.2) 409 (0.96 / 4.8)

22 454 349 59 (0.93 / 3.28) 158 (0.98 / 4.53)

August 23 415 200 57 (0.97 / 3.66) 112 (0.99 / 4.41)

24 138 61 23 (0.83 / 2.41) 37 (0.96 / 3.24)

25 153 93 25 (0.73 / 1.91) 39(0.93 / 3.03)

September 26 128 103 24 (0.78 / 2.22) 41 (0.9 / 2.95)

27 281 178 57 (0.93 / 3.43) 117 (0.99 / 4.47)

28 190 163 51 (0.96 / 3.49) 94 (0.97 / 4.11)

29 199 154 48 (0.97 / 3.56) 112 (0.99 / 4.51)

October 30 192 166 47 (0.97 / 3.06) 91 (0.99 / 4.29)

31 62 57 30 (0.94 / 3.05) 45 (0.99 / 3.72)

32 52 44 21 (0.95 / 2.85) 36 (0.99 / 3.5)

33 153 135 41 (0.96 / 3.35) 110 (0.99 / 4.38)

November 34 83 78 30 (0.91 / 2.95) 53 (0.98 / 3.75)

35 471 422 60 (0.95 / 3.42) 203 (0.99 / 4.79)

36 14 13 9 (0.86 / 1.84) 9 (0.94 / 2.09)

37 208 184 42 (0.96 / 3.35) 115 (0.99 / 4.46)

December 38 431 395 54 (0.95 / 3.32) 194 (0.99 / 4.79)

39 401 366 59 (0.96 / 3.43) 190 (0.99 / 4.79)

Chi-square P< 0.01 P< 0.01 P < 0.01 (P>1 / P > 1) P< 0.01 (P>1 / P> 1)

D = Simpson’s diversity index (Simpson 1949); H = Shannon’s diversity index (Shannon and Weaver 1948).

https://doi.org/10.1371/journal.pone.0199965.t002
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them to 6,144 putative species [47]. Despite this massive effort, just 23% of the specimens

gained a formal species assignment, and nearly half of all specimens had to be excluded from

the identification effort because they belonged to groups lacking taxonomic specialists. Viewed

from this perspective, the capacity of a single Malaise trap to gather 30,000–50,000 specimens

per year represents an overwhelming challenge for any identification effort employing mor-

phological approaches. The present study overcame this barrier by using DNA barcoding and

the BIN system to assign each specimen to a putative species. Although prior studies have

demonstrated the power of this approach for work on well-known faunas [19,48,49], the pres-

ent study breaks new ground by employing this method to explore insect diversity in a region

with limited biodiversity knowledge.

This study examined 53,000 specimens derived from single traps deployed for 17–39 weeks

at sites in Egypt, Pakistan, and Saudi Arabia. As these deployments totaled 93 weeks, trap

catches averaged 570 specimens a week. As reported in prior studies [19,48,50], Diptera and

Hymenoptera dominated the catch. BIN compliant sequences were recovered from 84% of the

specimens, a value similar to those reported for specimens from Malaise traps deployed in

Canada [19] and Europe [48]. Recovery did vary among insect orders, being higher for Diptera

and Lepidoptera than for Coleoptera, Hemiptera and Hymenoptera, a pattern documented in

prior studies that likely reflects primer mismatches [19]. Targeting shorter sequence fragments

or employing HTS approaches [51] may alleviate the issues related to primer mismatches.

The abundance and diversity of collected insects varied over the collection period. The pat-

tern of bigger and diverse catches in earlier than the later months of the year coincided with a

rise in temperature from March to June and a fall from September to December. Weather is

known to influence both spatial and temporal patterns of insect communities [52]. It is also

Pakistan 
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[728] 
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Fig 5. BIN overlap among the three countries–Egypt, Pakistan, Saudi Arabia.
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known that insect emergence is driven by temperature that also affects their development, sur-

vival and abundance [53].

Analysis indicated that the 44,000 specimens which generated sequences belonged to 3,682

BINs with representatives of 254 families and 17 insect orders. These samples could not have

been processed morphologically because such a large fraction of the Saharo-Arabian insect

fauna is undescribed. For example, 20% of the species encountered in a recent survey of the

United Arab Emirates were new, even though the groups analyzed were among those with the

best taxonomy [27]. Because of this taxonomic barrier, the species present in Malaise trap sam-

ples from the Saharo-Arabian region have never been comprehensively assessed. Despite this

lack of directly comparable data, the present study has shown that the barcode analysis of spec-

imens from brief sampling of a few sites recovered half as many insect species as reported from

all prior studies in these nations. The present results further indicated that more sampling is

required to ascertain the number of species in each nation and the extent of overlap in their

faunas. Certainly, the BIN overlap values (2–7%) reported in this study are underestimates of

actual faunal overlap because of under-sampling. Because measures of endemism [54] play

such an important role in conservation planning [55,56], further surveys of insect diversity in

the Saharo-Arabian region are needed. These surveys can potentially employ several other

methods of passive collection such as emergence traps, light traps, pitfall traps and coloured

pan traps. The lower level of sequence recovery observed in samples from one of the study

locations could be related to poor preservation or storage condition of specimens [46]. The

issue of deteriorating DNA quality in preserved samples may be resolved by using better pre-

servatives, such as 95% ethanol [57]. While the sampling effort required to properly estimate

overall diversity and overlap values cannot be determined without further sampling, the analy-

sis of a Malaise trap catch from each ecoregion within these nations would represent an impor-

tant first step.

This present study has demonstrated how the BIN system can circumvent the barriers

imposed by limited access to taxonomic specialists and by the fact that many insect species in

the Saharo-Arabian region are undescribed. As such, it demonstrates how biodiversity analysis

can be accelerated in regions that have seen little exploration [58]. Because it remains critical

to extend the DNA barcode reference library through specimen-based analysis [59], it is

important that new sequencing platforms are leading to substantial reductions in analytical

costs [51]. Moreover, once libraries are well parameterized, metabarcoding studies [50,60] will

permit detailed tracking of biodiversity trajectories at scales that would otherwise be

impossible.

Supporting information

S1 Fig. Spatial (A) and temporal (B) abundance of BINs. (A) shows BINs with at least 100

specimens in the total collection while (B) shows BINs detected in at least 14 of 39 collection

events.

(PDF)
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