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Abstract: Metabolomics has made significant progress in multiple fronts in the last 18 months.
This minireview aimed to give an overview of these advancements in the light of their contribution to
targeted and untargeted metabolomics. New computational approaches have emerged to overcome
the manual absolute quantitation step of metabolites in one-dimensional (1D) 1H nuclear magnetic
resonance (NMR) spectra. This provides more consistency between inter-laboratory comparisons.
Integration of two-dimensional (2D) NMR metabolomics databases under a unified web server
allowed for very accurate identification of the metabolites that have been catalogued in these
databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics
approaches have been developed by combining NMR and mass spectrometry (MS). These hybrid
MS/NMR approaches accelerated the identification of unknowns in untargeted studies, and now
they are allowing for profiling ever larger number of metabolites in application studies.

Keywords: targeted profiling; untargeted metabolomics; mass spectrometry; nuclear magnetic
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1. Introduction

Omics technologies have been rapidly growing and providing holistic molecular information
to comprehensively study biological systems. Through the advancements in DNA sequencing, the
complete determination of the genome sequence of an organism at single nucleotide resolution has
become achievable in very short time frames [1,2]. One key challenge in biology is to translate
this information to determine the phenotype of an organism by combining genome, transcriptome,
proteome, metabolome, structural, and physiological information. Organisms perform many of the
functions through the use of small molecules and metabolites; therefore, small biological molecules,
metabolites provide unique piece of information to help in shedding the light on phenotypic
characteristics of genome sequence [3–7].

Metabolites are direct read out of also non-sequence related influences on phenotypes, such as
environmental perturbations; drought, temperature, light, and atmospheric CO2 concentration [8–10].
The analysis of metabolite profiles of common biofluids, such as urine and serum, provides diagnostic
and prognostic information about diseases, dietary patterns, and drug toxicity [11–13]. Stable isotope
labeling of metabolites followed by the analysis of positional enrichments reveals activity of alternative
metabolic pathways contributing to certain biochemical reactions, such as in healthy versus cancer
cells [14–16].

Comprehensive analysis of metabolites are performed by metabolomics technologies, which
provide identities and quantities of dozens to hundreds of intracellular and extracellular metabolites
in biological samples by utilizing separation technologies, such as chromatography, capillary
electrophoresis and ion mobility; and, detection technologies, in particular, mass spectrometry (MS)
and nuclear magnetic resonance (NMR) spectroscopy [17,18]. Data acquisition of hundreds of samples
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has become achievable by high-throughput automated platforms, which also reduces the cost of
measurement per sample.

Metabolome profiling is typically performed either by targeted or untargeted methods, which
were explained briefly in the following sections. Regardless of the approach, every metabolomics
strategy includes identification and quantitation of metabolites [19,20]. This minireview aimed
to give an overview of the achievements in metabolomics over the past 18 months in order
to improve the quantitation and identification of metabolites by NMR and hybrid MS/NMR
methods [21,22]. The review covered the advancements in the light of their contribution to targeted
and untargeted metabolomics.

2. Targeted Metabolomics

2.1. Quantitation of Metabolites

Targeted and semi-targeted metabolomics studies focus on accurate identification and quantitation
of a defined set of metabolites in biological samples. Typically, this set of metabolites are predetermined
by the scientific question at hand or the size of the metabolite library that is available in the software
used for data analysis. The resulting data sets are feed into statistical data analysis tools to see
how well targeted metabolites contribute to the group separation between control and phenotype
of interest [23]. Correlations are further evaluated to understand underlying metabolism differences
between groups [24,25].

Metabolomics profiling by NMR has been often performed by one-dimensional (1D) 1H NMR
experiments [26]. The advantage of 1D 1H NMR is its short acquisition time, which is typically less
than an hour/sample and high sensitivity; it is able to detect metabolites down to single digit µM
concentration [27]. When this is coupled to a manual peak fitting or a manual spike-in approach,
1D 1H NMR is capable to provide absolute concentration of dozens to hundred of metabolites in
metabolomics samples [28]. Unfortunately, the manual analysis of 1D 1H NMR spectrum is labor
intensive and time-consuming, especially when it is repeated for multiple samples. Speeding up
this step by automation is an active research area in NMR-based metabolomics. BATMAN [29] and
BAYESIL [30] are two early approaches that have been developed for automated quantitation of 1D
1H NMR spectra by probabilistic models, followed more recently by ASICS [31], rDolphin [32], and
AQuA [33]. The workflow of the AQuA approach is demonstrated in Figure 1. All of these five
approaches have been primarily developed for the quantitative profiling of aqueous metabolites,
another new tool LipSpin [34] has been developed for the quantitative profiling of lipids by 1D 1H
NMR. While these automated 1D 1H NMR approaches greatly speed up metabolite profiling, they still
require up-front manual customization of the metabolite library to include only the metabolites that are
observed in the biospecimen of interest [35]. Successful implementation of the approaches also requires
careful adjustments of line-widths and peak shifts that could vary between metabolomics samples.

One-dimensional 1H NMR suffers from low spectral resolution along the 1H dimension, which
limits the metabolome coverage as well as the accuracy of metabolite analysis. The recent progress
focused on solving these challenges by reducing spectral overlap problems by advanced NMR methods.
Spectral overlap problem can be resolved by measuring the samples at higher magnetic field strengths,
which also increases the sensitivity. However, this is costly, as it requires new equipment. Alternatively,
the overlap problem can be resolved by decoupling homonuclear 1H–1H scalar couplings in 1D 1H
NMR spectra by using pure shift methods [36,37], which generate narrow peaks without multiplet
splitting. However, these approaches generally cause sensitivity losses; therefore, they only allow for
the profiling of high abundant metabolites. Significant improvement on resolution can be obtained by
acquiring two-dimensional (2D) NMR experiments. During 2D NMR experiments, spin magnetization
is transferred between neighboring nuclear spins, which are then detected in the form of cross-peaks
in the final 2D spectra with much less peak overlap. Two commonly used 2D NMR experiments in
metabolomics are the 2D 13C–1H heteronuclear single quantum coherence (HSQC), revealing direct
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one-bond correlation between the 1H spins with their directly attached 13C spins and 2D 1H–1H
total correlation spectroscopy (TOCSY) experiment revealing chemical shifts of all 1H spins within a
molecule or a spin system. The HSQC experiment is a very high resolution 2D NMR experiment due
to the large spectral dispersion along 13C dimension and the TOCSY experiment provides connectivity
information that can be reliably combined with HSQC for deconvolution of metabolites [38].
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Figure 1. Demonstration of the Automated Quantification Algorithm (AQuA) on a hypothetical
mixture of three metabolites. AQuA first applies a data reduction step to predetermine a specific
signal for the quantitation of each metabolite in the mixture. Then by using a calibration spectrum
for each metabolite from a library, it establishes the signal height vs. concentration relations for the
selected target peaks. Finally, by using this information in the application study, AQuA determined the
concentration of 67 metabolites in more than a thousand human plasma samples in less than a second,
which is much faster than the previously developed quantitation approaches that were relying on all of
the data points for the curve-fitting based quantitation. Adapted with permission from reference [33].
Copyright 2018 American Chemical Society. ppm: parts per million.

Quantitation of metabolites by 2D NMR is also an active research area in NMR-based
metabolomics [39]. There are multiple approaches that have been developed primarily by using 2D
13C-1H HSQC, these methods were reviewed recently [40]. The main drawback of 2D NMR experiments
is the longer acquisition time; they can easily take half a day per sample. Faster experiments are promising
to speed up the data acquisition by using new pulse sequences, non-uniform sampling (NUS), and
parameter optimization [40]. Sensitivity is another major problem of heteronuclear 2D NMR experiments,
and progress has been achieved by combining NMR with dynamic nuclear polarization (DNP) [41,42].

2.2. Identification of Known Metabolites with the Use of a Database for Matching

Targeted metabolite identification is typically performed by comparing 1D 1H NMR spectrum of a
metabolite mixture with a 1D 1H NMR spectral database, followed by validation of these identifications
on a subset of samples by 2D NMR methods, primarily 2D HSQC and TOCSY [43–45]. So far, the
common way of validating metabolites by these experiments have been separate and independent
querying of experimental HSQC and TOCSY data against HSQC and TOCSY metabolomics databases,
respectively, without taking the complementary nature of these experiments into account. To resolve
this disconnectivity issue, recently, an integrated metabolite identification and validation approach,
COLMARm has been introduced.
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COLMARm allows for the simultaneous analysis of 2D 13C–1H HSQC, 2D 1H–1H TOCSY, and
2D 13C–1H HSQC–TOCSY spectra of a metabolomics sample on a publicly available web server
(http://spin.ccic.ohio-state.edu/index.php/colmarm/index). When the user uploads an HSQC and
TOCSY-type spectra to the web server, the metabolite identification occurs at two steps. At first,
the COLMARm web server queries the HSQC spectrum against COLMAR HSQC metabolomics
database [46] and returns a list of candidate metabolite hits. Next, for each returned hit, the
corresponding TOCSY and/or HSQC–TOCSY spectrum is generated from the COLMAR 1H-(13C)
TOCCATA database [47,48] and is overlaid on the experimental TOCSY spectra [49]. Finally, depending
on how well the TOCSY cross-peaks superimpose with the corresponding experimental peaks, the
candidate metabolite is either manually confirmed or rejected (Figure 2). By using this strategy, the
authors confidently identified 62 metabolites in human serum, 14 of these were identified in human
serum for the first time by NMR, which would not be possible with high accuracy by using 1D 1H
NMR or any other 2D NMR spectrum alone [49].
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Figure 2. Demonstration of COLMARm web server with the identification of isoleucine in human
serum by the coanalysis of (A) heteronuclear single quantum coherence (HSQC), (B) total correlation
spectroscopy (TOCSY), and (C) HSQC–TOCSY. Green and red circles show experimental and database
cross-peaks of isoleucine, respectively. Magenta circles indicate the expected isoleucine peaks from
the TOCCATA database. The close agreement between green and red circles returned isoleucine as a
strong candidate. This was validated by the close match between magenta peaks with the experimental
TOCSY cross-peaks observed in the TOCSY and HSQC–TOCSY spectra. Adapted with permission
from reference [49]. Copyright 2016 American Chemical Society.
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Although the NMR approaches are capable of identifying the majority of detectable metabolites
in a given sample, they can fail in the discrimination of metabolites with very similar structures and
chemical shifts, such as creatine versus creatine phosphate, or uridine diphosphate versus uridine
triphosphate. Since often these types of metabolites possess different mass-to-charge (m/z) ratios, it
should be possible to distinguish them by combining NMR and MS information. To accomplish this
task, the NMR/MS Translator approach has been introduced [50]. The fully automated NMR/MS
Translator approach first generates the metabolite candidates by querying experimental 1D or 2D
NMR spectra of a sample against NMR metabolomics database. Then, for the returned candidates,
it calculates the masses (m/z) of all their possible ions and adducts, together with their characteristic
isotope distributions. Finally, it compares the expected m/z ratios with the experimental high
resolution MS1 spectrum of the same sample for direct validation of the candidate metabolites that are
identified by both NMR and MS [50]. The NMR/MS Translator approach has been applied to human
urine, tomato extract, and Arabidopsis thaliana metabolome [51], by increasing the confidence of the
identifications over the use of NMR or MS method alone.

3. Untargeted Metabolomics

Untargeted studies focus on measuring and comparing as many signals as possible across a
sample set, followed by the assignment of these signal to metabolite ID’s by using metabolomics
databases. Although excellent progress has been made in expanding metabolomics databases with
new metabolites, a significant portion of signals detected in untargeted studies still cannot be identified
through this approach due to the absence of their spectra in the databases. Untargeted studies are
highly interested in the identification of unknown metabolites, especially when they are the biomarkers
of a study.

Identification of unknowns is generally accepted as the bottleneck of untargeted metabolomics.
Traditionally, their identification have been performed by extensive isolation of the molecule from
extracts in sufficient amount for detailed analysis by MS, NMR, X-ray, circular dichroism, and other
analytical techniques [52–54]. While this approach has been proven to be useful, complete fractionation
is time-consuming. Moreover, a low yield of purification may not allow for the downstream structure
elucidation process for low-abundance metabolites. Alternatively, structure elucidation can be
performed in the mixture environment, such as in crude extract or the partially fractionated sample.

There are three main approaches that are proposed for unknown identification in mixtures; the
first approach uses only mass spectrometry techniques. This approach compares the experimental
fragmentation spectra of unknown metabolite with the predicted fragmentation of all the possible
candidate isomeric structures to find the best match [55–58]. The second strategy, on the other hand,
only relies on NMR, in which the experimental chemical shifts of unknown metabolites are sequentially
assigned and deconvoluted by multidimensional NMR [59,60]. These assignments are further verified
through comparison against their quantum NMR chemical shift predictions [61]. While these MS-
and NMR-based approaches greatly facilitate the structural characterization, they have limited power,
since they only rely on a single technique. Recently, several hybrid MS/NMR metabolite identification
strategies have been proposed [62–64]. They were recently reviewed in detail [65].

One of the latest hybrid techniques, ISEL NMR/MS2 (Integrated Structure ELucidation by
NMR/MS2) is a novel approach that combines in silico MS/MS and NMR predictions into a single
analysis platform to improve the accuracy of automated unknown metabolite identification. In this
approach, the unknown metabolites are first identified by determining their chemical formula from
high resolution mass spectrometry coupled with liquid chromatography (LC–MS1). Next, all of the
feasible candidate structures that are consisted with the chemical formula are generated by using
a structure generator. MS/MS and NMR spectra of each candidate structures are predicted and
compared with the experimental MS/MS and NMR spectra of the same sample, and finally ranked
according to the level of agreement to determine the best matching candidate [66]. The authors first
compared the performances of MS/MS and NMR predictions on a mixture of ten commonly known
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metabolites. Based on these comparisons, the NMR predictions turned out to be a more effective
filter than MS/MS predictions. However, MS/MS predictions provided an orthogonal method that
allowed for distinguishing between molecules that yield similar NMR chemical shifts. Thus, combining
NMR and MS/MS predictions further improved the accuracy of unknown metabolite identification.
As a real-world example, the authors applied the ISEL NMR/MS2 approach on the identification of an
uncatalogued secondary metabolite in Arabidopsis thaliana extract, which allowed for the successful
identification of glucoraphanin, a type of glucosinolate in Arabidopsis (Figure 3).
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Figure 3. Illustration of the workflow of the Integrated Structure Elucidation (ISEL) NMR/MS2

approach on identification of glucoraphanin in Arabidopsis extract. Chemical formula of the unknown
metabolite was first determined from high resolution LC-MS1 spectrum. Next, all of the feasible
candidate structures consisted with the chemical formula were generated. MS/MS and NMR spectra
of each candidate structures were predicted and compared with the experimental MS/MS and NMR
spectra of the same sample and ranked according to the level of agreement to determine the best
matching candidate. Adapted from reference [66].
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In the glucoraphanin example in Figure 3, which considered one unknown metabolite at a time,
the NMR spectrum was paired with a single LC–MS feature by an off-line LC fractionation procedure.
However, it is common in metabolomics to analyze complex mixtures that are consisting of multiple
metabolites within unfractionated samples. In these cases, multiple LC–MS features and multiple
deconvoluted NMR spectra are generated, without knowing which pairs correspond to the same
metabolite. This increases the challenge of high-throughput metabolite identification in mixtures.

Fortunately, in cohort studies, MS and NMR features can be paired by statistical correlation.
This has been recently shown in a systematic study of 26 metabolites over 200 samples. The authors
showed that in a majority of cases, the highest correlated NMR and MS signals belong to the same
metabolite [67]. Therefore, this approach can be utilized to inter-relate NMR and MS signals of
unknowns in complex mixtures without the need for LC-fractionation.

Unfortunately for the analysis of a single sample, statistical correlation is not an option; in this
case, the ISEL NMR/MS2 approach can still be applied. When multiple unknowns are present, the
workflow is modified to consider all pairwise combinations; NMR predictions are generated for all of
the structural isomers of each LC-MS feature (chemical formula), and they are all compared to every
deconvoluted experimental NMR spectra of the mixture. Proof-of-principle was demonstrated on a
ten-compound model mixture [66]. In 8 out of 10 cases, the rank orders of metabolite identifications did
not increase from being the only metabolite in the NMR spectrum to being one of the ten metabolites
in the mixture, which is a promising result for the identification of the real unknowns in mixtures.

While hybrid MS/NMR approaches are powerful, one of their limitation is the large sensitivity
difference between NMR and MS instruments [68]. Dynamic nuclear polarization and small-volume
NMR technologies are expected to continue to improve and close the sensitivity gap between NMR
and MS for mass limited samples [69].

4. Conclusions

The metabolomics field is rapidly progressing, with strong applications in parallel with
methodological advancements. Most of the recent advances in NMR and MS/NMR methods have been
covered in this minireview with a specific emphasis on their contribution to targeted and untargeted
metabolomics. Technologies for rapid, accurate, and automated identification, and quantitation have
been improving in the last 18 months. We expect that this trend to continue. For targeted metabolomics,
to further increase the automation, speed, and accuracy of absolute metabolite quantitation is critical.
On the identification side, there are currently about a thousand metabolites that are present in the
metabolite libraries of NMR software and web servers. This number is much smaller than the estimated
several hundred thousand metabolites that are present in nature. Therefore, these libraries need to
continue to expand by adding more metabolites, such as by purchasing and recording more authentic
standards, by extracting data from literature, and by structure elucidation of novel metabolites, for
which hybrid MS/NMR methods are clearly going to be powerful. Overall, these efforts will contribute
to quantitative profiling of an ever-growing number of metabolites in application studies.
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