5765 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.083$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[N,N,N',N'-Tetrakis(benzimidazol-2-ylmethyl)cyclohexane-1,2-trans-diamine]iron(II) bis(perchlorate) methanol solvate

Gui-Ling Wu, Chun-Ping Ou, Feng Wang, Jian-Ming Zhang and She-Min Lan*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: lanshemin@163.com

Received 19 March 2011; accepted 30 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.056; wR factor = 0.176; data-toparameter ratio = 12.0.

In the title compound, $[Fe(C_{38}H_{38}N_{10})](ClO_4)_2 \cdot CH_3OH$, the Fe^{II} atom has a distorted octahedral coordination environment with four benzimidazol N atoms and two amino N atoms from an N, N, N', N'-tetrakis(benzimidazol-2-ylmethyl)cyclohexane-1,2-trans-diamine ligand. The uncoordinated solvent methanol molecule is hydrogen bonded to an O atom of a perchlorate anion. One of the perchlorate anions is disordered over two sets of sites with occupancy factors of 0.539 (14) and 0.461 (14). $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, as well as $\pi - \pi$ stacking interactions between the imidazol rings and between the imidazol and benzene rings [centroid-centroid distances = 3.714(2) and 3.705(2) Å] give rise to a threedimensional network.

Related literature

For model systems containing pyrazole chelates and related groups, see: Main (1992). For iron complexes with N, N, N', N'tetrakis(2-benzimidazolylmethyl)cyclohexane-1,2-trans-diamine, see: Mei et al. (2010); Zhao et al. (2005). For the synthesis of the ligand, see: Hendriks et al. (1982).

Experimental

Crystal data

[Fe(C38H38N10)](ClO4)2·CH4O V = 4196.0 (3) Å³ $M_r = 921.58$ Z = 4Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation $\mu = 0.55 \text{ mm}^$ a = 14.3867 (6) Å b = 15.9145 (6) Å T = 298 Kc = 18.8218 (8) Å $0.30 \times 0.16 \times 0.10 \text{ mm}$ $\beta = 103.175 \ (1)^{\circ}$

Data collection

Bruker APEX CCD diffractometer 21311 measured reflections 7369 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.176$	independent and constrained
S = 1.07	refinement
7369 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
612 parameters	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4A\cdotsO1^{i}$	0.86	2.10	2.952 (6)	171
$N6-H6A\cdots O6'^{ii}$	0.86	2.02	2.852 (15)	162
$N6-H6A\cdots O6^{ii}$	0.86	2.13	2.955 (16)	162
$N8-H8A\cdotsO1S$	0.86	1.94	2.790 (5)	170
$N10-H10A\cdots O7'^{iii}$	0.86	2.04	2.896 (10)	176
$N10-H10A\cdotsO8^{iii}$	0.86	2.01	2.787 (12)	150
$O1S - H1S \cdot \cdot \cdot O3^{iv}$	0.96	1.88	2.813 (6)	166
$C7 - H7B \cdots O4^{i}$	0.94 (4)	2.34 (4)	3.202 (6)	152 (3)
$C23-H23A\cdots O2^{iv}$	0.97	2.40	3.318 (6)	158

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

We thank the Youth Chen-Guang Project of Wuhan (grant No. 200850731361) for financially support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2418).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hendriks, M. J., Birker, J. M. W. L., van Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607-3617.
- Main, F. (1992). Coord. Chem. Rev. 120, 325-359.
- Mei, F.-S., Ou, C.-P., Wu, G.-L., Cao, L., Han, F., Meng, X.-G., Li, J., Li, D.-F. & Liao, Z.-R. (2010). Dalton Trans. pp. 4267-4269.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhao, X.-Z., Meng, X.-G. & Liao, Z.-R. (2005). Chem. J. Chin. Univ. 26, 1194-1197.

Acta Cryst. (2011). E67, m531 [doi:10.1107/S1600536811011810]

[*N*,*N*,*N*',*N*'-Tetrakis(benzimidazol-2-ylmethyl)cyclohexane-1,2-*trans*-diamine]iron(II) bis(perchlorate) methanol solvate

G.-L. Wu, C.-P. Ou, F. Wang, J.-M. Zhang and S.-M. Lan

Comment

N,N,N,N'. Tetrakis(2-benzimidazolymethyl) cyclohexane-1,2-*trans*-diamine (ctb) is a benzimidazole-rich ligand, which has the advantage that the basicity of the coordinating group approximates that of histidine (histidine: pKb = 7.96; benzimidazole: pKb = 8.47; Main, 1992). The metal iron(III) and iron(II) can ligated by the ctb ligand, modeling the activities of lipoxygenase (Mei *et al.*, 2010; Zhao *et al.*, 2005). In a continuation of this work, herein we report the synthesis and structure of the title complex.

In the title compound, the Fe^{II} atom has a distorted octahedral coordination environment with four benzimidazol (bzim) N atoms and two amino N atoms from a ctb ligand (Fig. 1). The two *trans*-tertiary amine N atoms are significantly farther away from the Fe^{II} atom than the four bzim N atoms [average Fe—N_{amine} = 2.325 (3), Fe—N_{bzim} = 2.128 (3) Å]. As shown in Fig. 2, The uncoordinated solvent methanol molecule is hydrogen bonded to an O atom of a perchlorate anion. N—H···O and C—H···O hydrogen bonds, as well as π - π stacking interactions between the imidazol rings and between the imidazol and benzene rings [centroid–centroid distances = 3.714 (2) and 3.705 (2) Å] give rise to a three-dimensional network.

Experimental

All reagents and solvents were used as obtained without further purification. The ctb ligand was prepared according to literature methods (Hendriks *et al.*, 1982). Equimolar amounts of ctb (63.4 mg, 0.10 mmol) and Fe(ClO₄)₂.6H₂O (36.3 mg, 0.10 mmol) were dissolved in 25 ml MeOH, and the solution was stirred for 10 min. After filtration, colorless crystals of the title compound (yield: 79 mg, 85%) were obtained by diffusion of diethyl ether into the filtrate after one week under Ar atmosphere.

Refinement

One of the perchlorate anions is disordered over two positions and the command '*DFIX*' was used in the refinements. The final most satisfactory occupancies for the major and minor components were 0.539 (14) and 0.461 (14), respectively.

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) Å and $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$. H atoms attached to C2 and C7 were refined isotropically. N- and O-bound H atoms were first found in difference Fourier maps and then placed at their ideal postions, with N—H = 0.86 and O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. Crystal packing of the title compound, showing the formation of the three-dimensional network by hydrogen bonds and π - π interactions. H atoms not involved in the motif have been omitted for clarity.

[N,N,N',N'-Tetrakis(benzimidazol-2-ylmethyl)cyclohexane- 1,2-*trans*-diamine]iron(II) bis(perchlorate) methanol solvate

Crystal data

[Fe(C ₃₈ H ₃₈ N ₁₀)](ClO ₄) ₂ ·CH ₄ O	F(000) = 1912
$M_r = 921.58$	$D_{\rm x} = 1.459 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8487 reflections
a = 14.3867 (6) Å	$\theta = 2.4 - 28.0^{\circ}$
b = 15.9145 (6) Å	$\mu = 0.55 \text{ mm}^{-1}$
c = 18.8218 (8) Å	T = 298 K
$\beta = 103.175 (1)^{\circ}$	Block, colorless
$V = 4196.0 (3) \text{ Å}^3$	$0.30\times0.16\times0.10~mm$
Z = 4	

Data collection

Bruker APEX CCD diffractometer	5765 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.083$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ϕ and ω scans	$h = -15 \rightarrow 17$
21311 measured reflections	$k = -17 \rightarrow 18$
7369 independent reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.176$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.1022P)^2 + 2.0578P]$ where $P = (F_o^2 + 2F_c^2)/3$
7369 reflections	$(\Delta/\sigma)_{max} < 0.001$
612 parameters	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
10 restraints	$\Delta \rho_{\rm min} = -0.53 \ e \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}^{*}/U_{\rm eq}$ Occ. (<1)
Fe1	0.49217 (3)	0.51266 (3)	0.25944 (3)	0.03221 (18)	
N1	0.40904 (18)	0.63557 (16)	0.22008 (16)	0.0340 (6)	
N2	0.59753 (19)	0.61865 (17)	0.31077 (17)	0.0367 (7)	
N3	0.5240 (2)	0.53017 (17)	0.15388 (17)	0.0387 (7)	
N4	0.5194 (2)	0.61519 (17)	0.06081 (16)	0.0378 (7)	
H4A	0.5027	0.6569	0.0317	0.045*	
N5	0.35367 (19)	0.46902 (17)	0.21018 (16)	0.0357 (6)	
N6	0.2082 (2)	0.50488 (18)	0.15204 (17)	0.0399 (7)	
H6A	0.1577	0.5350	0.1380	0.048*	
N7	0.62225 (19)	0.45068 (17)	0.29869 (16)	0.0370 (7)	
N8	0.7795 (2)	0.4561 (2)	0.33400 (18)	0.0455 (8)	
H8A	0.8364	0.4764	0.3434	0.055*	
N9	0.4597 (2)	0.52468 (17)	0.36472 (17)	0.0389 (7)	
N10	0.4732 (2)	0.60837 (17)	0.45995 (16)	0.0418 (7)	
H10A	0.4973	0.6451	0.4925	0.050*	
C1	0.4544 (2)	0.7063 (2)	0.2673 (2)	0.0377 (8)	
H1A	0.4429	0.6957	0.3159	0.045*	
C2	0.4124 (3)	0.7932 (2)	0.2440 (3)	0.0510 (10)	
H2A	0.348 (3)	0.795 (3)	0.251 (3)	0.066 (13)*	
H2B	0.407 (3)	0.800 (3)	0.196 (3)	0.061 (14)*	
C3	0.4708 (3)	0.8639 (2)	0.2853 (3)	0.0591 (11)	
H3A	0.4433	0.9174	0.2666	0.071*	
H3B	0.4694	0.8605	0.3365	0.071*	
C4	0.5723 (3)	0.8592 (2)	0.2776 (3)	0.0580 (11)	
H4B	0.6082	0.9065	0.3024	0.070*	
H4C	0.5739	0.8622	0.2264	0.070*	
C5	0.6177 (3)	0.7774 (2)	0.3101 (3)	0.0535 (10)	
H5A	0.6826	0.7746	0.3037	0.064*	
H5B	0.6203	0.7770	0.3620	0.064*	
C6	0.5629 (2)	0.7006 (2)	0.2751 (2)	0.0379 (8)	
H6B	0.5729	0.6976	0.2254	0.045*	
C7	0.4096 (3)	0.6477 (2)	0.1418 (2)	0.0396 (8)	
H7A	0.350 (2)	0.6305 (19)	0.1137 (19)	0.040 (10)*	
H7B	0.416 (2)	0.705 (2)	0.131 (2)	0.040 (10)*	
C8	0.4854 (2)	0.5975 (2)	0.11997 (19)	0.0349 (7)	

C9	0.5883 (2)	0.5004 (2)	0.1148 (2)	0.0389 (8)
C10	0.6475 (3)	0.4303 (2)	0.1245 (2)	0.0509 (10)
H10B	0.6492	0.3930	0.1628	0.061*
C11	0.7036 (3)	0.4184 (3)	0.0751 (2)	0.0577 (11)
H11A	0.7429	0.3714	0.0797	0.069*
C12	0.7031 (3)	0.4747 (3)	0.0187 (2)	0.0533 (10)
H12A	0.7443	0.4656	-0.0121	0.064*
C13	0.6443 (3)	0.5431 (2)	0.0068 (2)	0.0466 (9)
H13A	0.6437	0.5801	-0.0316	0.056*
C14	0.5858 (2)	0.5544 (2)	0.0551 (2)	0.0366 (8)
C15	0.3110 (2)	0.6161 (2)	0.2272 (2)	0.0386 (8)
H15A	0.2659	0.6559	0.1994	0.046*
H15B	0.3071	0.6187	0.2779	0.046*
C16	0.2893 (2)	0.5288 (2)	0.1979 (2)	0.0369 (8)
C17	0.3114 (2)	0.4004 (2)	0.1689 (2)	0.0385 (8)
C18	0.3487 (3)	0.3210 (2)	0.1593 (2)	0.0522 (10)
H18A	0.4093	0.3049	0.1848	0.063*
C19	0.2916 (3)	0.2680 (3)	0.1104 (3)	0.0653 (12)
H19A	0.3138	0.2146	0.1028	0.078*
C20	0.2023 (3)	0.2922 (3)	0.0723 (3)	0.0657 (13)
H20A	0.1666	0.2550	0.0388	0.079*
C21	0.1638 (3)	0.3692 (3)	0.0818 (2)	0.0561 (11)
H21A	0.1030	0.3845	0.0562	0.067*
C22	0.2201 (2)	0.4226 (2)	0.1312 (2)	0.0427 (9)
C23	0.6903 (2)	0.5920 (2)	0.2965 (2)	0.0427 (8)
H23A	0.7424	0.6207	0.3293	0.051*
H23B	0.6928	0.6053	0.2467	0.051*
C24	0.6979 (2)	0.4993 (2)	0.3088 (2)	0.0398 (8)
C25	0.6562 (3)	0.3702 (2)	0.3196 (2)	0.0391 (8)
C26	0.6065 (3)	0.2960 (2)	0.3245 (2)	0.0521 (10)
H26A	0.5403	0.2936	0.3102	0.063*
C27	0.6593 (3)	0.2266 (3)	0.3514 (3)	0.0649 (12)
H27A	0.6284	0.1760	0.3549	0.078*
C28	0.7582 (4)	0.2303 (3)	0.3735 (3)	0.0711 (14)
H28A	0.7916	0.1822	0.3923	0.085*
C29	0.8079 (3)	0.3027 (3)	0.3685 (3)	0.0607 (12)
H29A	0.8741	0.3045	0.3824	0.073*
C30	0.7551 (3)	0.3730 (2)	0.3420 (2)	0.0438 (9)
C31	0.6018 (2)	0.6166 (2)	0.3898 (2)	0.0409 (8)
H31A	0.6125	0.6730	0.4096	0.049*
H31B	0.6549	0.5817	0.4140	0.049*
C32	0.5113 (2)	0.5826 (2)	0.4044 (2)	0.0379 (8)
C33	0.3809 (3)	0.5110 (2)	0.3957 (2)	0.0398 (8)
C34	0.3042 (3)	0.4574 (3)	0.3759 (2)	0.0539 (10)
H34A	0.2993	0.4199	0.3374	0.065*
C35	0.2348 (3)	0.4618 (3)	0.4160 (3)	0.0653 (12)
H35A	0.1823	0.4261	0.4043	0.078*
C36	0.2417 (3)	0.5179 (3)	0.4731 (3)	0.0636 (12)
H36A	0.1923	0.5203	0.4975	0.076*

C37	0.3185 (3)	0.5701 (3)	0.4948 (2)	0.0542 (10)	
H37A	0.3234	0.6067	0.5340	0.065*	
C38	0.3891 (3)	0.5654 (2)	0.4551 (2)	0.0407 (8)	
Cl1	0.55488 (10)	0.17228 (8)	0.01931 (8)	0.0758 (4)	
O1	0.5176 (5)	0.2430 (3)	0.0429 (3)	0.141 (2)	
O2	0.6396 (4)	0.1476 (4)	0.0605 (3)	0.153 (2)	
O3	0.4884 (4)	0.1073 (3)	0.0204 (3)	0.155 (2)	
O4	0.5571 (4)	0.1862 (3)	-0.0548 (3)	0.1265 (18)	
Cl2	0.4081 (5)	0.1971 (4)	0.4315 (5)	0.064 (2)	0.461 (14)
O5	0.3219 (10)	0.1788 (13)	0.4499 (11)	0.124 (7)	0.461 (14)
O6	0.4447 (13)	0.1189 (8)	0.4236 (10)	0.113 (7)	0.461 (14)
07	0.3795 (11)	0.2458 (9)	0.3656 (7)	0.164 (7)	0.461 (14)
08	0.4841 (6)	0.2349 (7)	0.4747 (8)	0.107 (6)	0.461 (14)
Cl2'	0.4056 (7)	0.1978 (6)	0.4416 (6)	0.088 (3)	0.539 (14)
O5'	0.3123 (10)	0.2126 (13)	0.4188 (11)	0.132 (6)	0.539 (14)
O6'	0.4301 (11)	0.1350 (10)	0.3880 (10)	0.111 (6)	0.539 (14)
07'	0.4525 (10)	0.2711 (7)	0.4260 (7)	0.119 (5)	0.539 (14)
O8'	0.4341 (9)	0.1893 (8)	0.5185 (5)	0.132 (5)	0.539 (14)
O1S	0.9648 (3)	0.5167 (3)	0.3479 (3)	0.0902 (12)	
H1S	0.9747	0.5408	0.3956	0.135*	
C1S	0.9867 (6)	0.5786 (5)	0.3004 (5)	0.137 (3)	
H1SA	1.0452	0.5637	0.2872	0.205*	
H1SB	0.9942	0.6323	0.3242	0.205*	
H1SC	0.9367	0.5828	0.2570	0.205*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0279 (3)	0.0359 (3)	0.0307 (3)	0.00317 (18)	0.0022 (2)	0.00087 (19)
N1	0.0307 (14)	0.0382 (14)	0.0321 (16)	0.0003 (11)	0.0053 (12)	-0.0031 (12)
N2	0.0301 (14)	0.0376 (14)	0.0403 (18)	0.0020 (11)	0.0034 (13)	0.0022 (13)
N3	0.0371 (15)	0.0428 (15)	0.0354 (18)	0.0078 (13)	0.0064 (13)	0.0030 (13)
N4	0.0402 (16)	0.0375 (15)	0.0351 (18)	-0.0002 (12)	0.0074 (14)	0.0041 (12)
N5	0.0322 (14)	0.0384 (14)	0.0338 (17)	0.0007 (12)	0.0023 (13)	-0.0014 (12)
N6	0.0278 (14)	0.0522 (17)	0.0384 (19)	0.0019 (12)	0.0045 (13)	0.0007 (14)
N7	0.0332 (15)	0.0420 (15)	0.0336 (17)	0.0058 (12)	0.0029 (13)	0.0011 (13)
N8	0.0302 (15)	0.0588 (18)	0.046 (2)	0.0082 (14)	0.0065 (14)	0.0031 (15)
N9	0.0390 (16)	0.0411 (15)	0.0359 (18)	-0.0031 (13)	0.0072 (14)	-0.0012 (13)
N10	0.0536 (18)	0.0399 (15)	0.0297 (18)	-0.0009 (14)	0.0050 (15)	-0.0032 (13)
C1	0.0372 (18)	0.0363 (17)	0.040 (2)	0.0013 (14)	0.0088 (16)	0.0012 (15)
C2	0.052 (2)	0.040 (2)	0.061 (3)	0.0091 (17)	0.013 (2)	0.0029 (19)
C3	0.068 (3)	0.0371 (19)	0.077 (3)	0.0017 (18)	0.025 (2)	-0.001 (2)
C4	0.064 (3)	0.040 (2)	0.074 (3)	-0.0087 (18)	0.024 (2)	-0.001 (2)
C5	0.050 (2)	0.043 (2)	0.066 (3)	-0.0102 (17)	0.009 (2)	-0.0019 (19)
C6	0.0385 (18)	0.0369 (17)	0.037 (2)	0.0002 (14)	0.0065 (16)	0.0009 (15)
C7	0.041 (2)	0.044 (2)	0.031 (2)	0.0080 (16)	0.0022 (17)	0.0026 (16)
C8	0.0329 (17)	0.0390 (17)	0.0307 (19)	0.0000 (14)	0.0029 (15)	-0.0016 (14)
C9	0.0328 (18)	0.0439 (18)	0.039 (2)	0.0017 (14)	0.0059 (16)	-0.0040 (16)

C10	0.054 (2)	0.059 (2)	0.038 (2)	0.0169 (19)	0.0064 (19)	0.0040 (18)
C11	0.053 (2)	0.072 (3)	0.047 (3)	0.023 (2)	0.009 (2)	-0.007 (2)
C12	0.044 (2)	0.076 (3)	0.042 (2)	0.004 (2)	0.0161 (19)	-0.013 (2)
C13	0.046 (2)	0.057 (2)	0.037 (2)	-0.0071 (18)	0.0110 (18)	-0.0047 (18)
C14	0.0327 (17)	0.0410 (18)	0.034 (2)	-0.0061 (14)	0.0032 (15)	-0.0052 (15)
C15	0.0314 (17)	0.0427 (18)	0.041 (2)	0.0066 (14)	0.0066 (16)	-0.0005 (15)
C16	0.0310 (17)	0.0441 (18)	0.035 (2)	-0.0021 (14)	0.0064 (16)	0.0010 (15)
C17	0.0389 (18)	0.0442 (18)	0.032 (2)	-0.0054 (15)	0.0076 (16)	-0.0009 (15)
C18	0.050 (2)	0.046 (2)	0.056 (3)	0.0009 (18)	0.004 (2)	-0.0037 (19)
C19	0.074 (3)	0.049 (2)	0.072 (3)	-0.006 (2)	0.012 (3)	-0.015 (2)
C20	0.061 (3)	0.065 (3)	0.067 (3)	-0.018 (2)	0.008 (2)	-0.023 (2)
C21	0.040 (2)	0.068 (3)	0.057 (3)	-0.0132 (19)	0.003 (2)	-0.009 (2)
C22	0.0330 (18)	0.049 (2)	0.045 (2)	-0.0049 (15)	0.0084 (17)	0.0006 (17)
C23	0.0318 (17)	0.050 (2)	0.045 (2)	-0.0024 (15)	0.0053 (16)	0.0020 (17)
C24	0.0324 (18)	0.050(2)	0.036 (2)	0.0072 (15)	0.0068 (16)	0.0013 (16)
C25	0.0437 (19)	0.0438 (18)	0.030 (2)	0.0102 (15)	0.0083 (16)	0.0006 (15)
C26	0.052 (2)	0.051 (2)	0.050 (3)	0.0073 (18)	0.006 (2)	0.0052 (19)
C27	0.076 (3)	0.049 (2)	0.067 (3)	0.009 (2)	0.013 (3)	0.014 (2)
C28	0.072 (3)	0.061 (3)	0.080 (4)	0.031 (2)	0.017 (3)	0.023 (2)
C29	0.047 (2)	0.078 (3)	0.055 (3)	0.025 (2)	0.009 (2)	0.014 (2)
C30	0.042 (2)	0.056 (2)	0.034 (2)	0.0174 (17)	0.0107 (17)	0.0063 (17)
C31	0.0411 (19)	0.0462 (19)	0.031 (2)	-0.0019 (15)	-0.0010 (16)	-0.0008 (15)
C32	0.0377 (18)	0.0348 (17)	0.037 (2)	0.0020 (14)	0.0002 (16)	0.0012 (15)
C33	0.043 (2)	0.0390 (17)	0.038 (2)	0.0014 (15)	0.0102 (17)	0.0038 (15)
C34	0.058 (2)	0.062 (2)	0.043 (2)	-0.014 (2)	0.016 (2)	-0.003 (2)
C35	0.061 (3)	0.080 (3)	0.058 (3)	-0.020 (2)	0.020 (2)	0.002 (2)
C36	0.060 (3)	0.080 (3)	0.057 (3)	0.000 (2)	0.029 (2)	0.012 (2)
C37	0.073 (3)	0.058 (2)	0.036 (2)	0.009 (2)	0.021 (2)	0.0058 (18)
C38	0.051 (2)	0.0412 (18)	0.030 (2)	0.0043 (16)	0.0090 (17)	0.0067 (15)
Cl1	0.0785 (8)	0.0682 (7)	0.0822 (10)	0.0197 (6)	0.0213 (7)	0.0329 (6)
01	0.202 (6)	0.101 (3)	0.129 (4)	0.045 (4)	0.054 (4)	0.023 (3)
O2	0.094 (3)	0.226 (6)	0.129 (5)	0.047 (4)	0.005 (3)	0.070 (4)
O3	0.178 (5)	0.140 (4)	0.133 (5)	-0.067 (4)	0.004 (4)	0.063 (4)
O4	0.127 (4)	0.156 (4)	0.107 (4)	0.032 (3)	0.049 (3)	0.068 (3)
Cl2	0.032 (3)	0.045 (3)	0.104 (6)	-0.0110 (19)	-0.007 (3)	-0.011 (3)
05	0.092 (12)	0.167 (17)	0.130 (16)	-0.052 (10)	0.058 (11)	-0.013 (10)
O6	0.088 (8)	0.090 (8)	0.142 (18)	0.001 (6)	-0.012 (10)	-0.056 (10)
07	0.157 (13)	0.176 (14)	0.145 (14)	-0.023 (11)	0.002 (11)	0.020 (11)
08	0.077 (6)	0.082 (7)	0.130 (13)	-0.008 (5)	-0.044 (7)	-0.048 (8)
C12'	0.073 (4)	0.110 (5)	0.081 (3)	-0.029 (3)	0.021 (3)	-0.032 (3)
05'	0.071 (7)	0.172 (16)	0.143 (16)	0.004 (8)	0.006 (8)	-0.025 (11)
O6'	0.083 (8)	0.127 (10)	0.128 (14)	-0.045 (7)	0.032 (8)	-0.065 (8)
07'	0.148 (12)	0.114 (8)	0.105 (9)	-0.065 (8)	0.048 (9)	-0.040 (6)
O8'	0.141 (10)	0.160 (10)	0.084 (7)	0.031 (8)	0.005 (6)	0.006 (6)
01S	0.074 (2)	0.099 (3)	0.098 (3)	-0.019 (2)	0.023 (2)	-0.040 (2)
C1S	0.177 (8)	0.099 (5)	0.146 (8)	-0.022 (5)	0.062 (7)	-0.028 (5)
			× /	× /	× /	× /

Geometric parameters (Å, °)

Fe1—N7	2.095 (3)	C13—C14	1.384 (5)
Fe1—N5	2.114 (3)	С13—Н13А	0.9300
Fe1—N9	2.145 (3)	C15—C16	1.500 (5)
Fe1—N3	2.156 (3)	C15—H15A	0.9700
Fe1—N1	2.324 (3)	C15—H15B	0.9700
Fe1—N2	2.326 (3)	C17—C22	1.388 (5)
N1—C15	1.479 (4)	C17—C18	1.401 (5)
N1—C7	1.488 (4)	C18—C19	1.374 (6)
N1—C1	1.489 (4)	C18—H18A	0.9300
N2—C31	1.475 (5)	C19—C20	1.376 (6)
N2—C23	1.482 (4)	С19—Н19А	0.9300
N2—C6	1.499 (4)	C20—C21	1.372 (6)
N3—C8	1.305 (4)	C20—H20A	0.9300
N3—C9	1.390 (4)	C21—C22	1.379 (5)
N4—C8	1.344 (4)	C21—H21A	0.9300
N4	1.382 (4)	C23—C24	1.495 (5)
N4—H4A	0.8600	С23—Н23А	0.9700
N5—C16	1.312 (4)	С23—Н23В	0.9700
N5—C17	1.397 (4)	C25—C30	1.389 (5)
N6—C16	1.339 (4)	C25—C26	1.394 (5)
N6—C22	1.389 (4)	C26—C27	1.369 (6)
N6—H6A	0.8600	C26—H26A	0.9300
N7—C24	1.314 (5)	C27—C28	1.389 (7)
N7—C25	1.396 (4)	С27—Н27А	0.9300
N8—C24	1.350 (4)	C28—C29	1.371 (6)
N8—C30	1.385 (5)	C28—H28A	0.9300
N8—H8A	0.8600	C29—C30	1.380 (5)
N9—C32	1.305 (4)	С29—Н29А	0.9300
N9—C33	1.405 (4)	C31—C32	1.493 (5)
N10—C32	1.350 (5)	C31—H31A	0.9700
N10-C38	1.375 (5)	C31—H31B	0.9700
N10—H10A	0.8600	C33—C34	1.376 (5)
C1—C2	1.532 (5)	C33—C38	1.398 (5)
C1—C6	1.537 (5)	C34—C35	1.383 (6)
C1—H1A	0.9800	C34—H34A	0.9300
C2—C3	1.510 (6)	C35—C36	1.383 (7)
C2—H2A	0.97 (5)	С35—Н35А	0.9300
C2—H2B	0.90 (5)	C36—C37	1.369 (6)
C3—C4	1.503 (6)	С36—Н36А	0.9300
С3—НЗА	0.9700	C37—C38	1.394 (5)
С3—Н3В	0.9700	С37—Н37А	0.9300
C4—C5	1.521 (6)	Cl1—O2	1.346 (5)
C4—H4B	0.9700	Cl1—O1	1.364 (5)
C4—H4C	0.9700	Cl1—O3	1.413 (5)
C5—C6	1.521 (5)	Cl1—O4	1.421 (5)
C5—H5A	0.9700	Cl2—O8	1.347 (8)

C5 H5R	0.9700	C12 06	1 373 (0)
Сб—Н6В	0.9700	Cl2—05	1.373(9) 1.302(9)
	1.483 (5)	C1207	1.372(7) 1.441(0)
С7—H7A	0.94(3)	$C_{12} = 07$	1.441(0) 1.333(15)
С7—Н7В	0.94(3)	$C_{12} = 0.5$	1.333(13) 1.411(12)
C_{μ}	1.390(5)	$C_{12} = 07$	1.411(12) 1.418(14)
$C_{2}^{$	1.390 (3)	Cl2'	1.410(14) 1.517(15)
	1.407 (5)	015-015	1.317(13) 1.414(8)
C10—H10B	0.9300	015-H1S	0.9556
C_{11} C_{12}	1 389 (6)	C1S—H1SA	0.9550
C11_H11A	0.9300	C1S—H1SR	0.9000
C12-C13	1 365 (6)	CIS_HISC	0.9600
C12—C13	0.0300	ers—mse	0.9000
CI2—III2A	0.9300		101.0
N/—Fel—N5	132.58 (11)	C14—C13—H13A	121.8
N7—Fel—N9	94.65 (11)	N4—C14—C13	132.6 (3)
N5—Fel—N9	93.02 (11)	N4—C14—C9	104.9 (3)
N7—Fe1—N3	91.46 (11)	C13-C14-C9	122.4 (3)
N5—Fe1—N3	90.87 (11)	N1—C15—C16	106.5 (3)
N9—Fe1—N3	167.46 (11)	N1—C15—H15A	110.4
N7—Fe1—N1	149.54 (10)	C16—C15—H15A	110.4
N5—Fe1—N1	76.80 (10)	N1—C15—H15B	110.4
N9—Fe1—N1	90.85 (10)	C16—C15—H15B	110.4
N3—Fe1—N1	78.43 (10)	H15A—C15—H15B	108.6
N7—Fe1—N2	75.51 (10)	N5—C16—N6	112.6 (3)
N5—Fe1—N2	151.68 (10)	N5—C16—C15	121.8 (3)
N9—Fe1—N2	79.05 (11)	N6—C16—C15	125.3 (3)
N3—Fe1—N2	91.94 (11)	C22—C17—N5	109.1 (3)
N1—Fe1—N2	76.19 (10)	C22—C17—C18	120.7 (3)
C15—N1—C7	109.7 (3)	N5—C17—C18	130.2 (3)
C15—N1—C1	113.7 (3)	C19—C18—C17	116.8 (4)
C7—N1—C1	113.1 (3)	C19—C18—H18A	121.6
C15—N1—Fe1	103.09 (19)	C17—C18—H18A	121.6
C7—N1—Fe1	107.84 (19)	C18—C19—C20	121.4 (4)
C1—N1—Fe1	108.79 (19)	C18—C19—H19A	119.3
C31—N2—C23	110.2 (3)	С20—С19—Н19А	119.3
C31—N2—C6	113.8 (3)	C21—C20—C19	122.6 (4)
C23—N2—C6	112.9 (3)	C21—C20—H20A	118.7
C31—N2—Fe1	106.03 (19)	C19—C20—H20A	118.7
C23—N2—Fe1	104.2 (2)	C20—C21—C22	116.4 (4)
C6—N2—Fe1	109.06 (19)	C20—C21—H21A	121.8
C8—N3—C9	106.4 (3)	C22—C21—H21A	121.8
C8—N3—Fe1	113.6 (2)	C21—C22—C17	122.0 (4)
C9—N3—Fe1	138.6 (2)	C21—C22—N6	132.9 (4)
C8—N4—C14	107.9 (3)	C17—C22—N6	105.0 (3)
C8—N4—H4A	126.1	N2—C23—C24	107.0 (3)
C14—N4—H4A	126.1	N2—C23—H23A	110.3
C16—N5—C17	105.6 (3)	C24—C23—H23A	110.3
C16—N5—Fe1	113.3 (2)	N2—C23—H23B	110.3
C17—N5—Fe1	138.4 (2)	С24—С23—Н23В	110.3

C16—N6—C22	107.7 (3)	H23A—C23—H23B	108.6
C16—N6—H6A	126.1	N7—C24—N8	112.2 (3)
C22—N6—H6A	126.1	N7—C24—C23	122.0 (3)
C24—N7—C25	105.9 (3)	N8—C24—C23	125.8 (3)
C24—N7—Fe1	114.7 (2)	C30—C25—C26	120.8 (3)
C25—N7—Fe1	139.3 (2)	C30-C25-N7	108.9 (3)
C24—N8—C30	107.6 (3)	C26—C25—N7	130.1 (3)
C24—N8—H8A	126.2	C27—C26—C25	117.2 (4)
C30—N8—H8A	126.2	С27—С26—Н26А	121.4
C32—N9—C33	106.2 (3)	С25—С26—Н26А	121.4
C32—N9—Fe1	112.1 (2)	C26—C27—C28	121.4 (4)
C33—N9—Fe1	137.3 (3)	С26—С27—Н27А	119.3
C32—N10—C38	107.7 (3)	С28—С27—Н27А	119.3
C32—N10—H10A	126.2	C29—C28—C27	121.9 (4)
C38—N10—H10A	126.2	C29—C28—H28A	119.1
N1—C1—C2	114.9 (3)	C27—C28—H28A	119.1
N1—C1—C6	108.1 (3)	C28—C29—C30	117.0 (4)
C2—C1—C6	113.9 (3)	С28—С29—Н29А	121.5
N1—C1—H1A	106.5	С30—С29—Н29А	121.5
C2—C1—H1A	106.5	C29—C30—N8	132.9 (4)
C6—C1—H1A	106.5	C29—C30—C25	121.7 (4)
C3—C2—C1	112.9 (4)	N8—C30—C25	105.4 (3)
C3—C2—H2A	110 (3)	N2—C31—C32	110.9 (3)
C1—C2—H2A	108 (3)	N2—C31—H31A	109.5
C3—C2—H2B	110 (3)	C32—C31—H31A	109.5
C1—C2—H2B	110 (3)	N2—C31—H31B	109.5
H2A—C2—H2B	105 (4)	С32—С31—Н31В	109.5
C4—C3—C2	110.6 (3)	H31A—C31—H31B	108.0
С4—С3—НЗА	109.5	N9—C32—N10	112.4 (3)
С2—С3—НЗА	109.5	N9—C32—C31	123.8 (3)
С4—С3—Н3В	109.5	N10-C32-C31	123.9 (3)
С2—С3—Н3В	109.5	C34—C33—C38	121.1 (3)
НЗА—СЗ—НЗВ	108.1	C34—C33—N9	131.1 (3)
C3—C4—C5	109.9 (3)	C38—C33—N9	107.8 (3)
C3—C4—H4B	109.7	C33—C34—C35	117.1 (4)
C5—C4—H4B	109.7	C33—C34—H34A	121.4
C3—C4—H4C	109.7	C35—C34—H34A	121.4
C5—C4—H4C	109.7	C36—C35—C34	121.5 (4)
H4B—C4—H4C	108.2	С36—С35—Н35А	119.2
C6—C5—C4	112.4 (3)	С34—С35—Н35А	119.2
С6—С5—Н5А	109.1	C37—C36—C35	122.3 (4)
C4—C5—H5A	109.1	С37—С36—Н36А	118.9
C6—C5—H5B	109.1	С35—С36—Н36А	118.9
C4—C5—H5B	109.1	C36—C37—C38	116.4 (4)
H5A—C5—H5B	107.8	С36—С37—Н37А	121.8
N2	114.8 (3)	С38—С37—Н37А	121.8
N2—C6—C1	108.7 (3)	N10—C38—C37	132.5 (4)
C5—C6—C1	114.2 (3)	N10—C38—C33	105.9 (3)
N2—C6—H6B	106.2	C37—C38—C33	121.5 (4)

С5—С6—Н6В	106.2	O2-Cl1-O1	115.1 (4)
C1—C6—H6B	106.2	O2—Cl1—O3	107.8 (4)
C8—C7—N1	112.0 (3)	O1—C11—O3	106.4 (4)
С8—С7—Н7А	109 (2)	O2—Cl1—O4	113.0 (3)
N1—C7—H7A	108 (2)	O1—Cl1—O4	106.9 (3)
С8—С7—Н7В	110 (2)	O3—Cl1—O4	107.2 (3)
N1—C7—H7B	111 (2)	O8—Cl2—O6	101.0 (9)
H7A—C7—H7B	107 (3)	O8—Cl2—O5	126.2 (13)
N3—C8—N4	112.5 (3)	O6—Cl2—O5	102.8 (11)
N3—C8—C7	124.4 (3)	O8—Cl2—O7	108.3 (8)
N4—C8—C7	123.1 (3)	O6—Cl2—O7	115.9 (11)
C10-C9-N3	131.8 (4)	O5-Cl2-O7	103.3 (8)
C10—C9—C14	119.8 (3)	O5'—Cl2'—O7'	106.4 (14)
N3—C9—C14	108.4 (3)	O5'—Cl2'—O8'	112.4 (12)
C11—C10—C9	117.3 (4)	O7'—Cl2'—O8'	104.5 (11)
C11-C10-H10B	121.3	O5'—Cl2'—O6'	105.8 (12)
С9—С10—Н10В	121.3	O7'—Cl2'—O6'	102.2 (10)
C10-C11-C12	121.7 (4)	O8'—Cl2'—O6'	123.9 (11)
C10-C11-H11A	119.1	C1S—O1S—H1S	107.9
C12—C11—H11A	119.1	O1S—C1S—H1SA	109.1
C13—C12—C11	122.3 (4)	O1S—C1S—H1SB	110.0
C13—C12—H12A	118.8	H1SA—C1S—H1SB	109.2
C11-C12-H12A	118.8	O1S—C1S—H1SC	110.7
C12—C13—C14	116.3 (4)	H1SA—C1S—H1SC	109.2
С12—С13—Н13А	121.8	H1SB—C1S—H1SC	108.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.86	2.10	2.952 (6)	171
0.86	2.02	2.852 (15)	162
0.86	2.13	2.955 (16)	162
0.86	1.94	2.790 (5)	170
0.86	2.04	2.896 (10)	176
0.86	2.01	2.787 (12)	150
0.96	1.88	2.813 (6)	166
0.94 (4)	2.34 (4)	3.202 (6)	152 (3)
0.97	2.40	3.318 (6)	158
	D—H 0.86 0.86 0.86 0.86 0.86 0.86 0.96 0.94 (4) 0.97	D—H H···A 0.86 2.10 0.86 2.02 0.86 2.13 0.86 1.94 0.86 2.04 0.86 2.01 0.96 1.88 0.94 (4) 2.34 (4) 0.97 2.40	D—HH···AD···A0.862.102.952 (6)0.862.022.852 (15)0.862.132.955 (16)0.861.942.790 (5)0.862.042.896 (10)0.862.012.787 (12)0.961.882.813 (6)0.94 (4)2.34 (4)3.202 (6)0.972.403.318 (6)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+3/2, y+1/2, -z+1/2.

