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A B S T R A C T   

Rationale and objectives: We previously reported a novel manual method for measuring bone mineral density 
(BMD) in coronary artery calcium (CAC) scans and validated our method against Dual X-Ray Absorptiometry 
(DEXA). Furthermore, we have developed and validated an artificial intelligence (AI) based automated BMD 
(AutoBMD) measurement as an opportunistic add-on to CAC scans that recently received FDA approval. In this 
report, we present evidence of equivalency between AutoBMD measurements in cardiac vs lung CT scans. 
Materials and methods: AI models were trained using 132 cases with 7649 (3 mm) slices for CAC, and 37 cases 
with 21918 (0.5 mm) slices for lung scans. To validate AutoBMD against manual measurements, we used 6776 
cases of BMD measured manually on CAC scans in the Multi-Ethnic Study of Atherosclerosis (MESA). We then 
used 165 additional cases from Harbor UCLA Lundquist Institute to compare AutoBMD in patients who under-
went both cardiac and lung scans on the same day. 
Results: Mean±SD for age was 69 ± 9.4 years with 52.4% male. AutoBMD in lung and cardiac scans, and manual 
BMD in cardiac scans were 153.7 ± 43.9, 155.1 ± 44.4, and 163.6 ± 45.3 g/cm3, respectively (p = 0.09). Bland- 
Altman agreement analysis between AutoBMD lung and cardiac scans resulted in 1.37 g/cm3 mean differences. 
Pearson correlation coefficient between lung and cardiac AutoBMD was R2 = 0.95 (p < 0.0001). 
Conclusion: Opportunistic BMD measurement using AutoBMD in CAC and lung cancer screening scans is prom-
ising and yields similar results. No extra radiation plus the high prevalence of asymptomatic osteoporosis makes 
AutoBMD an ideal screening tool for osteopenia and osteoporosis in CT scans done for other reasons.   

1. Introduction 

Global deaths, and DALYs (disability-adjusted life-years) attributable 
to low bone mineral density (BMD) increased from 207,367 and 
8588,936 in 1990 to 437,884 and 16,647,466 in 2019, an increase of 
111.16% and 93.82%, respectively [1]. More than 10 million Americans 
over the age of 50 are currently affected by osteoporosis and another 44 
million have low BMD, also known as osteopenia [2]. Osteoporotic in-
dividuals are usually asymptomatic and unaware of their condition prior 

to experiencing a fracture, therefore screening for osteoporosis is rec-
ommended by US Preventive Services Task Force [3]. With appropriate 
treatment, about half of all osteoporosis-related repeat fractures can be 
prevented [4]. The only way to identify these individuals prior to the 
occurrence of a fracture and apply appropriate treatment to prevent 
further bone loss is through a BMD screening test [5]. 

Dual-energy x-ray absorptiometry (DEXA) is the current clinical 
imaging standard for assessing BMD [5]. However, only one out of five 
people who should get a DEXA scan actually get one [6]. Additionally, 
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DEXA is limited by its 2D planar technique [7] and therefore unable to 
distinguish cortical from trabecular bone so that it averages both cortical 
and trabecular bone tissues for BMD measurement. However, cortical 
bone tissues often have degenerative calcifications such as osteophytes, 
which erroneously exaggerate BMD scores in DEXA. As a result, 
numerous studies have shown that DEXA overestimates BMD in certain 
groups, particularly in the obese population, which is on the rise in the 
US [8–11]. DEXA is prone to under-detecting patients who are suffering 
from osteoporosis, which perpetuates the problem of this condition 
being both underdiagnosed and undertreated. This, in turn, leads to high 
morbidity and mortality rates associated with osteoporosis [12]. 

Quantitative Computed Tomography (QCT) using QCT-BMD Anal-
ysis Software (Image Analysis, Inc) on low dose cardiac and thoracic CT 
images was introduced over a decade ago [10–13]. Compared to DEXA, 
QCT is a more sensitive method for measuring BMD [12,14–16] and has 
three unique advantages: 1) the ability to clearly separate cortical and 
trabecular bone tissues; 2) the ability to offer real volumetric density in 
units of mg/cc; 3) high-resolution three-dimensional images of bone 
morphometry [13]. The ability to separate trabecular and cortical bone 
tissues with QCT allows for exclusively averaging trabecular bone tissue 
for BMD measurement and therefore avoiding underestimation of bone 
loss due to measurements made on cortical bone tissue. 

Coronary Artery Disease (CAD) is a leading cause of mortality 
worldwide. Early detection of asymptomatic CAD is crucial because in 
over half of CAD victims the first symptom is sudden cardiac death [17]. 
The addition of Coronary Artery Calcium (CAC) score to the latest 
guidelines issued jointly by the American College of Cardiology and 
American Heart Association has sparked growing interest in the use of 
cardiac CT scans for obtaining CAC scores to predict and prevent adverse 
CAD events [18]. 

Lung cancer is the second most common cancer in the United States, 
and accounts for the greatest number of cancer deaths in both men and 
women worldwide [19]. Early detection of lung cancer has been chal-
lenging and it was not until 2011 with the release of data from the 
National Lung Cancer Screening Trial (NLST) that a screening test for 
lung cancer was demonstrated to reduce lung-cancer specific mortality 
[20]. This trial demonstrated that using low dose computed tomography 
(LDCT) for lung cancer screening resulted in a significant reduction in 
lung cancer mortality [21]. LDCT has become the standard of care for 
lung cancer screening ever since. 

1.1. AI-enabled opportunistic add-on BMD measurements 

Cardiac and lung CT scans are obtained each year in large quantities 
for CAD prediction and lung cancer screening. Using the images from 
these scans for opportunistic BMD reporting presents a great opportu-
nity for early detection of osteopenia and osteoporosis. 

Medical imaging is among the most promising clinical applications of 
artificial intelligence (AI), and mounting attention is being directed to-
wards establishing and fine-tuning its performance to facilitate the 
detection and quantification of various pathologies [22]. Numerous FDA 
approvals are obtained each year for various clinical indications using AI 
as a decision support tool. 

Training AI to rapidly detect various abnormalities in a single lung 
and cardiac CT scan makes logical sense since these scans encompass 
multiple organs. In the case of BMD, this added value is even more 
significant considering that manual measurements of BMD using QCT 
technique is time consuming and has potential for human error. 

Leveraging a CT-based assessment of vertebral trabecular bone 
density for BMD measurement presents a great opportunity which our 
group has taken from the idea stage to FDA approval. The purpose of this 
study is to show that AutoBMD is capable of measuring BMD from both 
lung and cardiac CT scans with an accuracy level comparable to manual 
measurements. Additionally, this study aims to demonstrate that for the 
same patient, there are comparable results obtained from cardiac and 
lung CT scans. 

2. Methods 

2.1. Study population 

We used 165 cases from Harbor UCLA Lundquist Institute who un-
derwent both cardiac and lung CT scans on the same day, and 6776 CAC 
scans from MESA to validate this against manual measurements. MESA 
is considered the largest multi-ethnic study of atherosclerotic cardio-
vascular disease in the world and was chosen because it has the largest 
number of manual measurements of BMD using quantitative CT. Budoff 
et al. first reported manual BMD measurements in various MESA studies 
10–12, 23–28. Both cardiac and lung CT scanning techniques were 
conducted according to MESA protocol. The reconstruction thicknesses 
were 2.5 mm and 0.5 mm for cardiac and lung scans, respectively. 
Detailed operating manual of CT scan methods and protocols are pub-
licly available at MESA website [29]. 

2.2. Manual BMD measurements 

The ground truth BMD values for the MESA dataset were obtained 
from manual BMD measurements done by trained operators using QCT- 
BMD Analysis Software (Image Analysis, Inc). Measurements were ob-
tained from three consecutive thoracic vertebrae starting at the level 
that contained the left main coronary artery caudally [10,11]. The re-
gion of interest was centered in the trabecular portion of the vertebral 
bodies, 2–3 mm in from the cortical surface. The segmentations were 
used to calculate the mean Hounsfield units, a standardized CT coeffi-
cient, and subsequently the BMD value. The mean BMD for the three 
consecutive vertebral bodies was calculated in all subjects [10,11]. 

2.3. Auto-BMD AI model 

Automation of BMD measurements requires the identification of in-
dividual vertebrae, the location of the intervertebral discs, and the 
subsequent removal of the cortical bone layer. Two Deep Learning 
models were developed for cardiac and full chest CT scan images 
comprising of 7649 and 21,918 slices, respectively. The models were 
trained to identify trabecular bone and disks with a training data set of 
132 cardiac and 37 lung CT images. Table 1. 

Ground Truth labeling for the vertebral bones was performed by 
three trained technicians and overseen by a radiologist. Software seg-
mentation validation criteria for vertebral bones was set as a Dice co-
efficient of 0.95 for cardiac and 0.97 for lung CT scans. Further training 
of the software was ceased upon reaching the predefined Dice Score. 
Fig. 1. 

To validate AutoBMD across both cardiac and lung scans against 
manual measurements as the Ground Truth, we used only one set of 
reference comprising 991 cases of BMD measured manually on CAC 
scans in MESA. Each deep learning model has two steps to automatically 
detect individual vertebrae and disks. In the first step, the model was 
trained to focus on the whole spine area. Transfer learning was then used 
to train for disk locations using the pretrained model. The architecture of 
the model consists of an encoder and a decoder. The encoder is a UNet 
with 12 layers of 2D convolutions, skip connections, Leaky ReLu acti-
vations and batch normalization. The decoder is a 3-layer convolution 
2D with Leaky ReLu activations and a sigmoid at the end. Signal pro-
cessing was used to erode the borders to segment the entire vertebral 
bone. Fig. 2. 

2.4. AutoBMD in lung and cardiac CT scans 

The AI models were used on lung and cardiac CT scans from the 165 
cases who underwent these scans on the same day. Manual BMD mea-
surements in MESA cardiac scans were compared to AutoBMD mea-
surements from both cardiac and lung CT scans. 

An example of manual BMD vs AutoBMD measurements for both 
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cardiac and lung CT scans is shown below. 
All tests of significance were two tailed, and significance was defined 

at the P < 0.05 level. Separate ANOVA tests for the decline in BMD 
averages from T1 to T12 in lung scans and T6 to T11 in cardiac scans 
were also performed. 

3. Results 

All values are reported as means ± SD. Mean±SD for age was 69 
± 9.4 years with 52.4% male. AutoBMD in lung and cardiac scans, and 
manual BMD in cardiac scans were 153.7 ± 43.9 g/cm3, 155.1 

Table 1 
Training and Validation data.  

Image protocol Training images (70%) Training slices Training Vertebrae Validation images (30%) Validation slices Validation vertebrae 

Thick slice 2.5 mm (cardiac)  132  7649  895  56  3241  380 
Thin slice 0.5 mm (full chest/ Lung)  37  21,918  444  16  9393  192  

Fig. 1. Deep learning system of the Auto-BMD Software, including spine localization, disk segmentation, trabecular bone identification and BMD measurement. 
Software developed for cardiac CT scans is shown by the top flowchart and software developed for lung CT scans by the bottom flowchart. 

Fig. 2. a. Manual BMD measurement on cardiac CT scan is 
outlined by 10 mm circle on axial image (left) and indi-
cated by horizontal lines on sagittal image (right). 10 mm 
rods are inserted in the middle of the trabecular vertebral 
bones, depicted as red cylinders in the right image. Mea-
surement started at level of the section containing left main 
coronary artery caudally. b. AutoBMD measurement on 
CAC CT scan. The left image shows segmentations for the 
full vertebral body and the right image shows segmenta-
tions of the trabecular component of the vertebral body. 
BMD is measured in the trabecular bone in the center of 
each vertebra. Circled vertebrae are correlated to the 
circled vertebrae on Fig. 2c. c. AutoBMD measurement on 
lung CT scan. The left image shows segmentations for the 
full vertebral body and the right image shows segmenta-
tions of the trabecular component of the vertebral body. 
BMD is measured in the trabecular bone in the center of 
each vertebra. Circled vertebrae are correlated to the 
circled vertebrae on Fig. 2b.   
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± 44.4 g/cm3, and 166.3 ± 47.9 g/cm3, respectively (p = 0.09) (Fig. 3). 
Average BMD declined from T1 to T12 in lung CT scans and T6 to 

T11 in cardiac CT scans. Average BMD measured in lung CT scans were 
as following: T1: 202.6 ± 53.0 g/cm3, T2: 191.6 ± 49.8 g/cm3, T3: 
180.5 ± 49.4 g/cm3, T4: 171.6 ± 48.5 g/cm3, T5: 165.0 ± 46.5 g/cm3, 
T6: 160.7 ± 48.4 g/cm3, T7: 156.3 ± 44.6 g/cm3, T8: 152.8 ± 45.8 g/ 
cm3, T9: 152.2 ± 44.9 g/cm3, T10: 153.3 ± 43.4 g/cm3, T11: 146.0 
± 44.0 g/cm3 and T12: 130.8 ± 40.1 g/cm3 (Fig. 4a). Average BMD 
measured in cardiac CT scans were as follows: T6: 162.1 ± 47.9 g/cm3, 
T7: 152.1 ± 47.2 g/cm3, T8: 154.0 ± 44.1 g/cm3, T9: 154.5 ± 46.3 g/ 
cm3, T10: 152.7 ± 54.0 g/cm3 and T11: 143.5 ± 65.6 g/cm3 (Fig. 4b). 
+ . 

AutoBMD on average detected 4.4 vertebral bodies in cardiac CT 
scans and 12.3 in lung CT scans. AutoBMD detected the first vertebral 
body in lung scans as T1. Generally vertebral bodies 2–4 in cardiac scans 
corresponded to T7 to T9 in lung scans. Therefore, AutoBMD used T7 to 
T9 in lung scans and vertebrae 2–4 in cardiac scans. As a result, for 
consistency and standardizing the measurements, we chose to compare 
vertebra 2–4 on cardiac scans with T7 to T9 in lung scans. Average 
AutoBMD obtained for T7 to T9 was 153.7 ± 43.9 g/cm3 in lung scans 
and 155.1 ± 44.4 g/cm3 in cardiac scans. A strong correlation (R2 

=0.95) was found between the AutoBMD obtained for these corre-
sponding vertebral bodies between cardiac and lung scans (Fig. 5) and 
Bland-Altman agreement analysis for these corresponding vertebral 
bodies resulted in 1.37 g/cm3 mean differences (Fig. 6). 

4. Discussion 

We have previously reported manual and AI-enabled automated 
opportunistic BMD measurements in cardiac CT scans obtained for CAC 
score [10–12,23–37]. In this study we have demonstrated the equiva-
lency of automated BMD measurements in cardiac CT scans obtained for 
CAC scoring vs chest CT scans for lung cancer screening. Furthermore, 
our study presents a compelling opportunity to leverage CAC and lung 
cancer screening CT scans for early detection and treatment of osteo-
penia and osteoporosis without subjecting patients to additional radia-
tion, additional DEXA scans, or excessive costs. 

Approximately 20 million cardiac and lung CT scans are performed 
every year on the United States and many more worldwide [30]. The 
economic value of AI-enabled opportunistic use of these scans for BMD 
screening is enormous. Although manual measurement of BMD is 
feasible as we have reported in the past [10–13, 24, 26], it relies on 

skilled worker time, attention to details, and consistency, all of which 
can be obviated with AI [31]. Furthermore, it is not feasible to avoid 
hypercalcified pixels (HU>400) when carrying out manual measure-
ments, which may result in overestimation of BMD. 

This study shows that an AI-based tool can provide opportunistic 
BMD measurements both in lung and cardiac CT scans. A similar 
approach could be taken for measuring BMD using existing CT scans 
within each hospital’s PACS (picture archiving and communication 
system). In the United States, payers may cover measurements done on 
CT scans done within 12 months of the BMD measurement. Although the 
variability of scanners and related coefficient of calibration must be 
addressed, this opportunistic approach to osteoporosis screening is 
promising and can lead to early detection and treatment of at-risk in-
dividuals. Some of these patients may undergo subsequent DEXA scans 
for prospective monitoring. Alerting individuals that have a below 
average BMD for their age can raise awareness of bone health. It can also 
be used to encourage patients to adopt lifestyle modifications or take 
appropriate medications to prevent a future fracture. One advantage of 
the opportunistic AutoBMD approach is no extra radiation to patients. 
Even though DEXA scans impose significantly less radiation than CT 
scans, AutoBMD imposes zero radiation by nature. 

Beyond imaging, the use of AI for population bone health has been 
reported by Chiu et al. [32] who developed an artificial neural network 
attuned to 7 predictive demographic and lifestyle variable. 

for the prediction of osteoporosis, with a sensitivity of 78.3% and 
specificity of 73.3%. Their findings contribute to the work of several 
others, all of which help to demonstrate the efficacy of AI in predicting 
osteoporotic disease [33,34]. Cohen et al. reported opportunistic BMD 
measurements using PET-CT in Hodgkin lymphoma patients undergoing 
chemotherapies [35]. They have demonstrated a significant decline in 
BMD after vs before chemotherapy. Opportunistic use of PET-CT scan 
has the potential to detect Hodgkin lymphoma patients at high risk for 
developing osteoporosis and to guide clinicians regarding monitoring 
and intervention [35]. 

Limitations of this study include previously obtained manual BMD 
measurements from CT scans in MESA some 10–20 years ago which may 
not represent CT scans of today and the next 10–20 years. We would 
need to calculate calibration coefficient for new CT scanners. However, 
this is a rather insignificant problem and can be recalibrated within 
30 min for each scanner. 

The decline in BMD from T1 to T12 seen in our study corroborates 
earlier reports [36,37] and necessitates the use of specific vertebral 
bodies (e.g., T7-T9) for measuring and monitoring changes in BMD. 

Fig. 3. Average BMD obtained from both manual and AutoBMD for 165 Cardiac CT cases and average BMD obtained from AutoBMD for corresponding 165 lung CT 
cases (p = 0.09). 
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Therefore, a potential limitation of AutoBMD is that the number of 
vertebrae captured by AutoBMD in cardiac and lung CT scans depends 
on the field of view, which varies between patients. If any of these 
vertebrae are fractured or hindered by artifacts the AutoBMD mea-
surements could be affected. This limitation is remedied by flagging 
such cases and bringing them to the attention of reporting radiologists. 
An important consideration must be given to monitoring BMD changes 
in cases with multiple CT scans overtime. To our knowledge a thorough 
investigation on this topic is missing and our group is currently con-
ducting relevant studies to demonstrate the value of opportunistic 
AutoBMD monitoring over time. 

5. Conclusion 

Opportunistic screening for subclinical low-BMD in CT scans done 
for cardiac and lung cancer screening is feasible and comparable. Given 
that such an approach saves patients extra radiation and cost, it warrants 
further investigations. If corroborated in other studies, healthcare pro-
viders must consider the potential of AutoBMD to improve patient care 
in a cost-effective manner. 

Ethical 

None/Not applicable. 

Fig. 4. a. AutoBMD results obtained for the 
average BMD per vertebra (T1 to T12) in 165 
lung CT scans. n = 165 for T1 to T10, n = 160 
for T11 and n = 138 for T12. b. AutoBMD re-
sults obtained for the average BMD per vertebra 
in 165 cardiac scans. n = 165 for T6 to T8, 
n = 140 for T9, n = 60 for T10 and n = 8 for 
T11. Highlighted columns represent vertebrae 
that showed a strong correlation with vertebrae 
represented by highlighted columns on Fig. 4a. 
c. AutoBMD results obtained for the average 
BMD for vertebrae T7 to T9 in 165 corre-
sponding lung and cardiac CT scans. For all 
vertebrae, n = 165, with the exception of T9 for 
cardiac for which n = 150.   
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