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Abstract 

Background:  Structural variants and tandem repeats are relevant sources of genomic variation that are not routinely 
analyzed in genome wide association studies mainly due to challenging identification and genotyping. Here, we pro‑
filed these variants via state-of-the-art strategies in the founder animals of four F2 pig crosses using whole-genome 
sequence data (20x coverage). The variants were compared at a founder level with the commonly screened SNPs and 
small indels. At the F2 level, we carried out an association study using imputed structural variants and tandem repeats 
with four growth and carcass traits followed by a comparison with a previously conducted SNPs and small indels 
based association study.

Results:  A total of 13,201 high confidence structural variants and 103,730 polymorphic tandem repeats (with a 
repeat length of 2-20 bp) were profiled in the founders. We observed a moderate to high (r from 0.48 to 0.57) level of 
co-localization between SNPs or small indels and structural variants or tandem repeats. In the association step 56.56% 
of the significant variants were not in high LD with significantly associated SNPs and small indels identified for the 
same traits in the earlier study and thus presumably not tagged in case of a standard association study. For the four 
growth and carcass traits investigated, many of the already proposed candidate genes in our previous studies were 
confirmed and additional ones were identified. Interestingly, a common pattern on how structural variants or tandem 
repeats regulate the phenotypic traits emerged. Many of the significant variants were embedded or nearby long 
non-coding RNAs drawing attention to their functional importance. Through which specific mechanisms the identi‑
fied long non-coding RNAs and their associated structural variants or tandem repeats contribute to quantitative trait 
variation will need further investigation.

Conclusions:  The current study provides insights into the characteristics of structural variants and tandem repeats 
and their role in association studies. A systematic incorporation of these variants into genome wide association stud‑
ies is advised. While not of immediate interest for genomic prediction purposes, this will be particularly beneficial for 
elucidating biological mechanisms driving the complex trait variation.
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Background
Genome wide association studies (GWAS) aim to iden-
tify associations between genotypes and phenotypes. 
The term “genotype” commonly refers to SNPs, as most 
GWAS are performed using data from SNP arrays, pri-
marily due to cost efficiency, high-throughput, and 
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stability of the SNPs. With a steady increase in the vol-
ume of whole-genome sequence (WGS) data, within the 
variant discovery step, alongside SNPs, small insertions 
and deletions (indels; < 50 bp) can be similarly called and 
incorporated in the GWAS. Although further variation 
classes exist, such as structural variants (SVs) and tandem 
repeats (TRs), they are not considered in current asso-
ciation studies because they are not routinely screened. 
However, in the light of high-depth WGS data, it is now 
feasible to profile a wider spectrum of variation provided 
that appropriate algorithmic approaches exist [9, 11, 34, 
54, 62]. Thus, these can be employed to capture a wide 
range of variant sizes and subclasses of SVs and TRs.

Structural variants are large genomic alterations, 
extremely diverse in type and size that can be typically 
classified as deletions, insertions, duplications, inver-
sions, and translocations and can generally be character-
ized by various combinations of DNA gains, losses, or 
rearrangements [31]. To date, a limited number of stud-
ies cover SVs related investigations in pigs, for example in 
relation to selection signature identification in Meishan 
[18] or to associating Copy Number Variation regions 
(CNV; a particular subtype of SV) with growth and fat-
ness traits in Duroc [57]. Besides SVs, tandem repeats 
are an additional type of sequence variation. TRs can be 
divided into short tandem repeats (STRs or microsatel-
lites) with a core motif of 2 to 6 bp and variable number 
tandem repeats (VNTRs) with core motifs larger than 7 
bp [30]. The primary driver for TR expansion or contrac-
tion is the polymerase slippage during DNA replication 
that also leads to an extremely high mutation rate [21]. 
Given their high degree of genetic variability, TRs often 
display high levels of heterozygosity and a multi-allelic 
nature. This aspect was initially viewed as an advantage 
making the TRs (namely the microsatellite) the stand-
ard genetic marker. However, subsequently it was seen 
as a disadvantage, because compared with the emerg-
ing SNPs, TRs were rather unstable and challenging for 
high-throughput screening. Regardless of their faith over 
time, the TRs are large contributors to the overall genetic 
variation. There is a growing body of evidence suggest-
ing that TRs play a critical role in the regulation of gene 
expression [29] and splicing [33], as well as via DNA 
methylation [58]. Specifically for the pig, there have been 
efforts made to characterize TRs using WGS data with a 
focus on STRs [45, 72].

In this study, to investigate the genome-wide struc-
tural variants and tandem repeats landscape in pigs, we 
first profiled such variation across the founder generation 
of four F2 pig crosses originating from various breeds 
(i.e. Piétrain, Landrace, Large White, Meishan and Wild 
boar). We employed state-of-the-art detection strategies 
to screen SVs and TRs relying on high coverage WGS 

data. Further, we examined this variation in contrast 
with the commonly addressed polymorphisms (SNPs 
and small indels) in terms of density and genome local-
ization but also functional impact. We imputed the 
SVs and the TRs information to the F2 generation and 
together with phenotypic data on average daily gain 
(ADG), backfat thickness (BFT), meat to fat ratio (MFR), 
and carcass length (CRCL) we conducted a SVs and TRs 
based GWAS. Therefore, in a second step, we evaluated 
the implications that SVs and TRs have for GWAS and 
devised how this particular type of variation aids to gain 
deeper insights into the genetic basis of complex traits.

Results
Discovery phase
The first part of this study focused on providing a 
sequence-based systematic characterization of the dif-
ferent types of variation (i.e. SNPs, small Indels, SVs, and 
TRs) existing in the founder individuals (n=24, Table 
SM1) of four F2 experimental crosses. The number of 
the various variants was proportional to the length of the 
chromosomes. An overview of the chromosome-wise 
distribution of all the variation identified is displayed in 
Table 1.

The SNPs and small indels were profiled in our previ-
ous imputed-sequence based GWAS study [22] and they 
amounted to 22,404,681 SNPs and 5,153,582 small indels 
(< 50 bp). To obtain a thorough characterization of the 
variation in the founders, we considered further types 
of variants, i.e. SVs and TRs. A reliable detection of SVs, 
where each call was supported by three different call-
ers (smoove, DELLY, and manta), led to a total of 60,669 
SVs. After stringent filtering, the final call set contained 
13,201 SVs from which 11,954, 1,080, 164, and 3 were 
deletions, duplications, translocations, and inversions, 
respectively. The cumulated length of the structural vari-
ants amounted to approximately 68 Mb representing 
3% of the autosomal genome. The size of the structural 
variants ranged from 51 bp to 991,370 bp with 83.85% 
of them being shorter than 1000 bp (Table SM2). When 
looking at the length distribution of deletions as the most 
abundant type of SV, we observed a peak in the elements 
with a size of 250 bp up to 450 bp (Figure SM1). These 
SVs originate from retrotransposition and, due to their 
size, they can be identified as short interspersed nuclear 
elements (SINEs) which are known to occupy up to 10% 
of mammalian genomes [13]. Concerning the individ-
ual animal SV genome-wide zygosity levels, the highest 
number of reference homozygous variants belonged to 
the Wild boar (European) individual, whereas the high-
est number of heterozygous variants was found in the 
Meishan (Asian breed) (Figure SM2), directly reflecting 
its genetic distance from the reference genome (Duroc, 
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a European breed). Worth mentioning is the fact that the 
high genotyping rate (threshold 0.8) set up for the SVs 
favored the common SVs existing in the European breeds. 
However, attaining such a stringency was required for the 
second part of the study (i.e. GWAS).

The TRs reference panel consisted of 1,462,304 vari-
ants with a motif length from 2 bp to 20 bp of which 
83.49% belonged to the short tandem repeats group (2-6 
bp). The tetranucleotide repeats were the most abundant 
(27.93%), followed by the dinucleotide repeats (16.39%) 
(Figure SM3). Given the cumulated length of 35.35 Mb, 
the library of TRs covered 1.56% of the autosomal refer-
ence genome, which was in line with previous reports 
[45, 72]. In the founder data set, after genotype and 
sample-specific filters, we retained 844,558 high-quality 
TRs calls of which 103,730 loci had non-reference alleles, 
further denoted as pTR (polymorphic TR). Among the 
pTRs, the number of variants profiled decreased with 
the period length, except for the tetranucleotide class. 
The allelic configuration of the repeats comprised loci 
with a number of two alleles and up to eleven alleles. We 
observed that an increase in the period length led to a 
decrease in the number of alleles (Table SM3) indicating 
that higher allelic variability is less common in repeats 
with longer motifs. However, the profiling of longer motif 
variants could be hindered by factors such as current TRs 
detection methods, sequencing depth, and sequence read 
length. From the pTRs genotyped 67,538 variants were 

polymorphic in more than 2 breeds, while 13,074, 10,783, 
10,237, and 2,125 were TRs limited to the Piétrain group, 
to the Large White x Landrace and Large White group, to 
the Meishan individual and to the Wild boar individual, 
respectively.

Density and co‑localization of features
The distribution of the genomic features was assessed 
in 500 kb windows and can be visualized in the SM for 
SNPs, small indels, SVs, TRs, and pTRs (Figure SM4). 
Addressed in a pair-wise manner, we measured the 
strength of the correlations between the feature occur-
rences in 500 kb non-overlapping windows (Table  2). 
The highest degree of positive correlation (r = 0.87) was 
found when comparing the density of the SNPs with the 

Table 1  Number of variants per chromosome

SSC SNPs Small indels Structural variants Tandem repeats Polymorphic 
tandem repeats

1 2,100,792 492,397 1,268 104,628 10,893

2 1,447,573 343,180 908 56,192 6,574

3 1,386,966 291,597 716 49,565 5,897

4 1,342,424 290,615 765 49,228 5,929

5 1,157,084 267,350 714 37,884 4,988

6 1,631,542 370,136 896 64,079 7,295

7 1,255,167 284,413 769 44,794 5,424

8 1,422,204 338,937 798 52,268 6,549

9 1,423,977 328,226 926 50,282 6,340

10 1,002,412 222,468 537 23,164 5,613

11 955,612 214,708 603 28,679 4,183

12 771,362 170,298 462 21,773 3,062

13 1,617,902 410,438 956 81,922 8,385

14 1,374,393 321,456 812 51,769 6,160

15 1,210,587 298,692 757 55,135 5,892

16 912,732 210,198 571 29,850 4,852

17 788,319 174,886 484 22,770 3,139

18 603,633 123,587 259 20,574 2,555

Total 22,404,681 5,153,582 13,201 844,556 103,730

Table 2  Co-localization of different types of variation. Pearson 
correlation coefficient r-values based on 500 kb windows in 
autosomes are shown in the upper triangle; p-values are shown 
in the lower triangle

SNPs Small indels SVs TRs pTRs

SNPs 0.87 0.48 -0.43 0.57

Small indels p < 2.2e-16 0.49 -0.43 0.55

SVs p < 2.2e-16 p < 2.2e-16 -0.23 0.36

TRs p < 2.2e-16 p < 2.2e-16 p < 2.2e-16 0.01

pTRs p < 2.2e-16 p < 2.2e-16 p < 2.2e-16 p < 0.37
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one of the small indels, both types of variation being 
called via the same pipeline. Moreover, a mild positive 
correlation between SVs and SNPs (r = 0.48) or small 
indels (r = 0.49) was detected. When assessing the co-
localization of the genotyped TRs with either SNPs, 
small indels, and SVs we observe a low to moderate nega-
tive correlation suggesting that the TRs occupy genomic 
regions in which other types of features are less promi-
nent. However, when looking specifically at the pTRs, a 
contrasting scenario reveals a higher level of co-localiza-
tion with the SNPs and small indels.

Feature annotation and gene enrichment analysis
The number of functional annotations was 48,685,675, 
13,725,269, 37,278, 492,658 and 324,331 for SNPs, small 
indels, SVs, TRs and pTRs, respectively. The percentage 
breakdown of the effects by region and by impact for 
each feature type is summarized in Fig. 1. The distribu-
tion of the variants across different genomic regions was 
similar for SNPs, small indels, TRs, and pTRs. However, 
the SVs displayed either smaller percentages in case of 
intronic (47.85%) and intergenic (19.03%) or higher per-
centages for downstream (8.98%), exon (3.99%), gene 
(3.30%), transcript (5.62%) and upstream (8.90%) as com-
pared with the other feature groups. This aspect was 
also reflected when assessing the number of effects clas-
sified by impact type. The impact rating informs about 
the severity of a predicted consequence for a variant on 

a transcript or on a protein. The modifier effect was, as 
expected, predominant and displayed in more than 99% 
of the annotated SNPs, small indels, TRs, and pTRs. Nev-
ertheless, in the case of the SVs, modifier effects only 
represented 85.88% of the total, whereas a share of 7.47% 
were high impact variants (i.e. the variant is assumed to 
have a disruptive impact on the protein, for example a 
stop gained or a frameshift type of variant).

We further prioritized on high, moderate, and low 
impact variants and, based on the overlapping genes, we 
defined gene sets for each feature to identify over-repre-
sented GO Biological Processes terms. Among the feature 
gene sets, we found 25 genes in common (Table SM4). 
In the case of the gene sets based on SNPs (n=19,483) 
and small indels (n=8,512), the GO enrichment analysis 
revealed that more than 500 GO terms passed the FDR 
threshold (0.05) and, in both cases, the most significantly 
enriched term was Localization (GO: 0051179) (Figure 
SM5). The rather large gene sets for the above-mentioned 
features are a direct consequence of the higher density 
of these elements along the genome and this is further 
reflected in the top enriched terms which are pinpointing 
to fundamental or basic biological processes (e.g. devel-
opment and metabolism related terms).

The gene enrichment analysis for the SVs gene set 
(n=1,448) revealed ten significantly overrepresented 
GO terms (Fig.  2A) related to transposition (GO: 
0032197 and GO: 0032196), homophilic cell adhesion 

Fig. 1  Variant annotation and impact classification. Percentage breakdown for the SNPs, small indels, SVs, TRs, and pTRs. A Percentage of effects 
classified by region for each type of variation. B Percentage of effects classified by impact for each type of variation
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(GO: 0007156), and sensory perception of smell (e.g. 
GO: 0007608 and GO: 0050911). The enrichment in the 
transposition term was an effect of the high numbers of 
SINEs within the deletions group. Furthermore, the SVs 
appeared to be overlapping with a high number of olfac-
tory receptors that led to having 7 out of 10 GO related 
terms enriched. This particular gene family is known to 
have a significant expansion throughout time as, based 
on the previous reference genome, it includes 1,113 func-
tional genes and 188 pseudogenes [55]. The TRs gene set 
(n=1,229) yielded 146 enriched GO terms with the top 
30 being depicted in Fig. 2B. Frequent GO terms belong 
to biological processes involved in various types of regu-
lation (e.g. of transcription, metabolic or biosynthetic 

processes) indicating either the presence of TRs in reg-
ulatory regions and/or the influential role of the TRs in 
regulating gene expression. Finally, for the pTR gene set 
(n=445) no significant enrichment was found.

GWAS results
From the genome wide association study, the follow-
ing cumulated number of SVs and TRs exceeded the 
genome-wide significance threshold: 17, 156, 105, and 
339 for ADG, BFT, MFR, and CRCL, respectively. For 
this step, 54,704 imputed SVs and TRs were tested for 
association. Manhattan plots for the four phenotypic 
traits are shown in Fig. 3.
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The quantile-quantile plots were generated for all p-val-
ues from each GWAS and are reported in Figure SM6 
together with the genomic inflation factor. The moderate 
degree of p-values inflation is attributed to the fact the 
“leave one chromosome out” analysis was used. As com-
pared to our previous GWAS study [22] that relied on 
SNPs and small indels, the current study detected addi-
tional significant variants on SSC1 and SSC16 for ADG, 
on SSC16 for BFT, on SSC14 and SSC15 for MFR, and 
on SSC4, SSC8, SSC9, SSC14 and SSC16 for CRCL. On 
chromosomes with significant variants in both studies, 
SVs and TRs were subsequently selected based on LD. 
Therefore, in this post-GWAS analysis, we discarded all 
significant SVs and TRs that were in high LD (r2 > 0.8) 
with the previously found significant SNPs and small 
indels. The number of SVs and TRs that were not tagged 
by a significant SNP or small indel were 12 (out of 17), 
112 (out of 156), 89 (out of 105), and 237 (out of 339) for 
ADG, BFT, MFR, and CRCL, respectively. From these 

variants, the top variants per chromosome were retained. 
The top five genes incorporating or lying in the proxim-
ity of these highly significant associations are presented 
in Table  3. Further, by including the top significant TR 
((TTTG)3/(TTTG)5, SSC7:29,488,854) as a fixed effect 
in the LOCO mixed linear model, the significant signal 
dropped greatly for all traits, even below the designated 
threshold for ADG and MFR (Figure SM7, QQ plots in 
Figure SM8). To evaluate all possible relations among the 
gene lists overlapping or in the vicinity of the subsetted 
significant SVs and TRs for each trait, a Venn diagram 
was used (Fig. 4).

Discussion
In the current study, we investigated structural vari-
ants and tandem repeats as a considerably less exploited 
resource of genomic variants with a special focus on their 
meaning in the context of genome wide association stud-
ies. To address this, we relied on data from four F2  pig 
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populations and from a previous SNPs and small indels 
based GWAS [22]. In the F0 generation (WGS data, 20x), 
we had access to SNPs, small indels, SVs, and TRs. These 
variation classes varied in terms of their genomic prop-
erties including size, distribution across the genome, 
abundance as well as functional impact on the nucleotide 
sequence.

SVs occurred at a much lower frequency than any 
other type of variation, yet, concerning their functional 
annotation, they could potentially have a pronounced 
phenotypic impact by disrupting gene function (Fig. 1). 
These types of phenotypic consequences of the SVs 
have been observed in livestock species often in rela-
tion to pigmentation and coat color (cattle [19]; pig 
[63]), fertility (cattle [37]; pig [44]) or late feathering 
in chicken [20]. Initially, the effects of SVs (similarly to 
TRs) have been assumed particularly negative, partly 

due to the identification of many SVs (and TRs) asso-
ciated with human disease [25, 70]. Despite this, many 
SVs are of a neutral or adaptive nature [3], position-
ing them as important evolutionary drivers. Our SVs 
panel was mainly formed by deletions (90.55%) identi-
fied by three callers (i.e. smoove, DELLY, and manta) 
suggesting that this particular type of SV was easier to 
detect by different algorithms [46]. In terms of mecha-
nisms leading to deletion formation, transposable ele-
ment insertions involving mostly short interspersed 
elements (SINEs) were greatly responsible [13] which 
we observed as an increase of deletions sized 250-
450 bp (Figure SM1). Furthermore, the detected close 
link between the expansion of olfactory receptor gene 
family and SVs (Fig.  2A) can be explained by mecha-
nisms such as non-allelic homologous recombination 
or fork stalling and template switching, that can lead 

Table 3  Top five associated genes per chromosome for each trait: average daily gain (ADG), backfat thickness (BFT), meat to fat ratio 
(MFR), and carcass length (CRCL). Gene type in brackets. The variants overlapping or in the proximity of these genes were selected not 
to be in high LD (r2 < 0.8) with the previously associated SNPs and small indels

SSC Top five genes

ADG 1 ZFAND5 (protein coding), TMC1 (protein coding)

2 AP2A2 (protein coding), ENSSSCG00000012835 (pseudogene)

4 UBE2V2 (protein coding)

7 U6 (snRNA), ENSSSCG00000044971 (lncRNA), HMGCLL1 (protein coding), PRIM2 (protein coding), COL21A1 (protein coding)

16 ENSSSCG00000050375 (protein coding), CDH10 (protein coding)

BFT 1 ENSSSCG00000048964 (lncRNA), ENSSSCG00000043016 (lncRNA), ENSSSCG00000051116 (lncRNA), TXNL1 (protein coding), ENS-
SSCG00000043998 (protein coding)

2 SHANK2 (protein coding), STX3 (protein coding), TNNT3 (protein coding), CBLIF (protein coding), MRPL16 (protein coding)

4 PREX2 (protein coding), CHD7 (protein coding)

7 COL21A1 (protein coding), DST (protein coding), ENSSSCG00000001612 (protein coding), PRIM2 (protein coding), ENSSSCG00000041331 
(processed pseudogene)

16 ENSSSCG00000050819 (lncRNA), ISL1 (protein coding)

MFR 1 PLPP7 (protein coding), PRRC2B (protein coding), RALGPS1 (protein coding), RABGAP1 (protein coding), ASTN2 (protein coding)

2 STX3 (protein coding), CBLIF (protein coding), MRPL16 (protein coding), SHANK2 (protein coding), TNNT3 (protein coding)

4 ENSSSCG00000051273 (lncRNA), LRP12 (protein coding), CHD7 (protein coding), RAB2A (protein coding), RGS20 (protein coding)

5 VDR (protein coding), RPAP3 (protein coding)

7 COL21A1 (protein coding), ENSSSCG00000002296 (protein coding), VTI1B (protein coding), KIF6 (protein coding), ENSSSCG00000031184 
(protein coding)

14 BTRC​ (protein coding), XKR6 (protein coding), ENSSSCG00000045361 (lncRNA), ENSSSCG00000051786 (lncRNA), ENSSSCG00000051722 
(protein coding)

15 IGFBP5 (protein coding), TNP1 (protein coding)

18 HERPUD2 (protein coding), ENSSSCG00000042613 (lncRNA), AOAH (protein coding), KIAA0895 (protein coding), SND1 (protein coding)

CRCL 4 UBE2V2 (protein coding)

7 COL21A1 (protein coding), HMGCLL1 (protein coding), DAAM2 (protein coding), ZNF451 (protein coding), ENSSSCG00000044971 (lncRNA)

8 NOCT (protein coding), ENSSSCG00000049816 (lncRNA)

9 PON2 (protein coding), ASB4 (protein coding), ENSSSCG00000049806 (lncRNA), NECTIN1 (protein coding), ENSSSCG00000044947 (lncRNA)

14 ANKRD13A (protein coding), SPPL3 (protein coding), WSCD2 (protein coding), SGSM1 (protein coding)

16 ENSSSCG00000050819 (lncRNA), ISL1 (protein coding)

17 ENSSSCG00000044805 (lncRNA), PLCB4 (protein coding), ENSSSCG00000043546 (protein coding), ENSSSCG00000047884 (lncRNA), PLCB1 
(protein coding)
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to expanding or contracting gene families and SVs 
formation [6].

The number of TRs profiled was 844,556, from which 
103,730 were categorized as polymorphic (pTR). Par-
ticular to this study was the augmentation of the usually 
targeted TRs, the STRs (2-6 bp) [45, 72], by also includ-
ing VNTRs (7-20 bp). From the total pTRs, the latter 
accounted for 7.02% and widened the pig TRs spec-
trum. Despite lower numbers as compared to the SNPs 
or small indels, what makes the TRs a relevant reser-
voir of genetic variation is their highly polymorphic 
nature (Table SM3). In terms of variant annotation, 
the TRs displayed similar characteristics to the SNPs 
and small indels and were predominately located in 
intronic, intergenic, upstream, and downstream regions 
(Fig.  1). Although TRs can regulate gene expression 
through a variety of mechanisms [25], the TRs posi-
tioned specifically in non-transcribed genomic regions 
could modulate gene expression via various means, 
such as epigenetic modification, chromatin remodeling, 
transcription factor binding, or alternative splicing 
[73]. In support of the regulatory effect of TRs on gene 
expression, our TRs panel based on 24 individuals was 
overlapping genes that are involved in biological pro-
cesses (Fig. 2) related to the Regulation of transcription 
by RNA polymerase II (GO:0006357). Moreover, given 

the diverse genetic background comprising breeds such 
as Piétrain, Landrace, Large White, Wild boar, and 
Meishan, we also observed TRs in or in the proxim-
ity of genes related to Skeletal system morphogenesis 
(GO:0048705). TRs are found to be enriched in genes 
modulating body morphology [25] and thus here we 
emphasize on their key role in pig and breed evolution.

The landscape of genomic features and their co-local-
ization within the founder individuals can provide use-
ful guidelines towards the selection of genetic markers 
for conducting phenotype-genotype associations. From 
a 500 kb window-based genome wide comparison, we 
observe that pTRs are more co-localized with SNPs and 
small indels as compared to SVs (Table 2), suggesting that 
SNPs would be able, to a certain extent, to capture the 
effects of pTRs. Nonetheless, even though they are physi-
cally co-localized, the nature of TRs (i.e. multi-allelic, 
high mutation, and heterozygosity rate) would only allow 
them to be partially tagged by nearby bi-allelic SNPs as 
the LD pattern is constantly and rapidly changing. For 
that reason, if TRs are involved in quantitative trait vari-
ation, a standard SNPs based GWAS could fail to entirely 
capture the TRs effects. Interestingly, genomic regions 
with lower density rates for SNPs, small indels, SVs, and 
pTRs were most pronounced on SSC8 (Figure SM4) and, 
therefore, these regions were characterized by high levels 
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of homozygosity. This was in agreement with findings 
from Gorssen et al. [27]. To mitigate this, the high den-
sity of TRs in this SSC8 region could reduce the levels 
of homozygosity if TRs driven variation can be built at a 
faster rate over generations.

In the second part of the study, we performed a GWAS 
to investigate the associations of SVs and TRs with four 
growth and carcass traits. Prior to the GWAS, we ran the 
imputation step following the same strategy as in our past 
study [22]. To accommodate the multi-allelic nature of 
the TRs, Beagle [10] allowed the imputation of such vari-
ants without the necessity to decompose them into bi-
allelic variants. Even though this aspect can be handled 
by algorithmic approaches, there are no means to address 
the stability of TRs, but also SVs, over two generations 
(i.e. from F0 to F2). Therefore, variant stability over gen-
erations could be a limiting factor in imputing SVs and 
TRs in general, regardless of the species. Further investi-
gations and validations to assess the behavior of SVs and 
TRs in imputation procedures need to be undertaken. For 
elucidating biological mechanisms, it can be beneficial 
to incorporate SVs and TRs in association studies. With 
a wider genomic marker spectrum, causative mutations 
are even more accessible and put into the right context, 
the cascade of molecular events leading to the varia-
tion in complex traits can be reconstructed. Apart from 
association studies, Chen et al. [12] showed that by add-
ing imputed SVs to genomic prediction in dairy cattle an 
increase in the prediction accuracy could not be attained. 
However, in the same study, the authors reported that the 
genetic variance explained by SVs was up to 4.57% for 
milk yield in bulls and 3.53% for protein yield in cows. 
This demonstrates the existence of a small, yet potentially 
relevant, contribution of the SVs to the phenotypic vari-
ance. To the best of our knowledge, no study included 
genome-wide high density TRs in genomic prediction 
studies nor in association studies in livestock.

Here, the SVs and TRs based GWAS identified additional 
significant variants as compared to our previous SNPs and 
small indels based GWAS. In the current GWAS, cumu-
lated across all traits, 56.56% of the highly significant SVs 
and TRs were not tagged (r2<0.8) by an earlier associated 
SNP or small indel. Among the top five genes overlap-
ping or in the proximity of highly significant SVs and TRs 
(Table 3), we have identified 15 lncRNAs (long non-coding 
RNAs) and 1 snRNA (small nuclear RNA) gene. LncR-
NAs are known to be involved in different mechanisms of 
gene regulation and can control the expression of nearby 
genes by influencing their transcription [67]. In the case 
of the CRCL peak (SSC17, Fig.  3D), BMP2 (bone mor-
phogenetic protein 2) was suggested as a strong candidate 
in previous studies conducted on these crosses [7, 22] 
but also in other pig populations (Duroc × (Landrace × 

Yorkshire), [42]). In the latter study, the authors indicated 
that a SNP (rs320706814) was the main cause of the effect 
on carcass length. However, we could not confirm the 
SNP effect in our population, as this SNP was not signifi-
cantly associated nor in LD with the significant SNPs, small 
indels, SVs, or TRs we have identified. Li et  al. [42] did 
not exclude the option that the causative mutation could 
be in fact a non-SNP or non-small indel variant. There-
fore, coupled with our findings, it could be hypothesized 
that the nearby TR-enriched lncRNAs (upstream: ENS-
SSCG00000043546, ENSSSCG00000047884; downstream: 
ENSSSCG00000044805) could drive the molecular mecha-
nisms involving the BMP2 in carcass length variation in the 
current F2 crosses. Similarly, the GWAS signal on SSC16 
for CRCL was led by a lncRNA (ENSSSCG00000050819) 
together with ISL1 (ISL LIM homeobox  1) and has not 
been previously reported in the AnimalQTLdb [32]. ISL1 
is known to regulate pancreatic development and insu-
lin secretion [75] and to be paired with intergenic lncR-
NAs [51]. The same GWAS signal was identified for BFT, 
supporting the existence of additional pleiotropic loci 
besides the one we have previously identified for BFT 
and CRCL on SSC7 [7]. We also found a lncRNA (ENS-
SSCG00000044971) and a snRNA (U6) leading the asso-
ciation peak on SSC7 for ADG. Both are located between 
BMP5 (bone morphogenetic protein 5) and HMGCLL1 
(3-Hydroxymethyl-3- Methylglutaryl-CoA Lyase Like 1), 
genes that are related to lipid metabolism [1, 79] and could 
be regulated via the above-mentioned non-coding RNAs. 
The same significant genes (i.e. ENSSSCG00000044971 and 
U6) were identified for BFT and CRCL (Fig. 4).

For ADG, we have detected a QTL on SSC16 that was 
not found in the previous GWAS study, yet it has been 
reported in a microsatellite based linkage analysis using 
three out of our four crosses [56]. This aspect further 
supports the fact that by using SNPs or small indels one 
is unable to capture the full range of effects affecting phe-
notypes. The leading GWAS signal for BFT on SSC2 was 
overlapping the  SHANK2 (SH3 And Multiple Ankyrin 
Repeat Domains 2) gene due to several highly signifi-
cant TRs and to one deletion (SSC2:2,753,494; -556 bp). 
A similar significant signal, involving the same variants, 
was identified for MFR and ADG (Fig.  4). SHANK2, a 
highly polymorphic gene containing SNPs, small indels, 
SVs, and TRs (Table SM4) can be proposed as a relevant 
gene candidate as mutations in this gene have been asso-
ciated with the autism spectrum disorder in humans [47]. 
Accordingly, the differences in ADG, BFT, and MFR phe-
notypes can be a consequence of pig behavioral changes 
related to feed intake. Likewise, for CRCL we have iden-
tified an associated gene (i.e. ASB4, Ankyrin repeat and 
SOCS box containing 4) on SSC9 that plays a key role in 
the control of feeding behavior and metabolic rate [43]. 
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Further biological roles selected from already published 
data about the top five genes in presented in Table 3 can 
be found in Table 4.

The VRTN  (vertnin) has been shown to affect ver-
tebrae numbers and thus carcass length in pigs due to 
two likely causative variants: SSC7:97,614,602A>C and 
SSC7:97,615,879-97,615,880ins [23]. The latter is an 
insertion that was predominantly found in European 
commercial populations at high frequency (0.59, 0.65 and 
0.82 in Duroc, Large White and Landrace, respectively; 
[76]). Although, this insertion was not present among 
our significant SVs, we were able to locate the variant in 
three founders in a homozygous state ins/ins, specifically 
in two Landrace x Large White (sample 693 and 750) 
and in one Large White (sample 728). The drawback was 
that the identification of this variant was done by one of 
the SV callers (i.e. manta) whereas for the imputation 
step only variants supported by three callers qualified. 
Furthermore, also on SSC7, the gene COL21A1 (Colla-
gen Type XXI Alpha 1 Chain) harbored the top GWAS 
signal, driven by an intronic TR ((TTTG)3/(TTTG)5, 
SSC7:29,488,854) for BFT, MFR and CRCL with a -log10 
(p-value) of 45.40, 12.88 and 44.28, respectively (Fig. 3). 

The same TR is also associated with ADG (-log10 
(p-value) =7.24) (Table  3, Fig.  4). After a conditional 
GWAS (Figure SM7), remaining significant peaks were 
observed at a lower significance only for BFT and CRCL 
suggesting that for ADG and MFR there was only one 
quantitative trait locus responsible for these traits in this 
region. The top genes behind the BFT signals were DST 
(dystonin), ENSSSCG00000044091 (lncRNA), LRFN2 
(leucine rich repeat and fibronectin type III domain 
containing 2) whereas for CRCL we have identified only 
one peak in the proximity of the intronic TR region cor-
responding to LRFN2. As DST was already discussed as 
a strong candidate in our previous GWAS, we want to 
draw attention on LRFN2 that could be under the influ-
ence of the nearby lncRNA (ENSSSCG00000044091). 
LRFN2  knockout mice exhibited autism-like behav-
ioural abnormalities [52] and, similar to  SHANK2 and 
ASB4, could be relevant in terms of pig feeding related 
behaviors. Nevertheless, due to the biological roles of 
COL21A1 (Table  4) and the results of the conditional 
GWAS, the intronic TR (SSC7:29,488,854) is recom-
mended as a straightforward variant for further func-
tional validation.

Table 4  Summary of published data on functional biological roles of the top five gene selection

Gene name Trait Published data related to top five genes selection

ZFAND5 ADG Large loss of muscle mass [41]

AP2A2 ADG Regulation of lipolysis in adipose tissue [50]

HMGCLL1 ADG, CRCL Ketogenesis [1]

PRIM2 ADG, BFT Obesity in humans [38]

COL21A1 ADG, BFT, MFR, and CRCL Body length in fish [26], directional cell migration in development in C. ele-
gans [40]

SHANK2 ADG, BFT, MFR Autism spectrum disorders [47]

TNNT3 BFT, MFR Regulate muscle contraction, required for growth and postnatal survival [36]

STX, MRPL16 and CBLIF BFT, MFR Residual Feed Intake in beef cattle [65]

ISL1 BFT, CRCL Regulating pancreatic development and insulin secretion [75]

PLPP7 MFR Muscle function, muscle growth [60]

PRRC2B MFR Growth in fish [78]

RALGPS1 and XKR6 MFR Body fat ratio [61]

ASTN2 MFR Plasma triglyceride concentration [35]

VDR MFR Body fat [48]

VTI1B MFR Body weight [2]

BTRC​ MFR Fatty acid composition in intramuscular fat [16]

IGFBP5 MFR Lipid metabolism and insulin sensitivity [74]

AOAH MFR Fat deposition in chicken [15]

DAAM2 CRCL Decreased body length [53]

NOCT CRCL Susceptibility to Diet-Induced Obesity [28]

PON2 CRCL Susceptibility to Diet-Induced Obesity [66]

ASB4 CRCL Feeding behavior and metabolic rate [43]

SPPL3 CRCL Decreased body weight [68]

PLCB1 and PLCB4 CRCL Decreased body size [39], Growth and body size [4]
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Conclusion
Even though the integration of SVs and TRs in associa-
tion studies is still in its infancy, this paper demonstrates 
the benefits of adding additional dimensions to the panel 
of commonly used genomic markers (SNPs and small 
indels). To achieve this, we deployed an efficient strat-
egy to utilize well phenotyped and well investigated pig 
experimental design established in the past. Briefly, we 
have identified that, despite physical co-localization, 
SNPs or small indels do not always capture the effects of 
SVs and TRs on complex traits. Furthermore, we empha-
size on highly significant SVs and TRs embedded or 
nearby lncRNAs as relevant drivers of phenotypic vari-
ation. Overall, this paper can be regarded as a valuable 
resource for future studies examining SVs or TRs in the 
context of GWAS and how these types of variation regu-
late gene expression and ultimately contribute to com-
plex trait variation.

Methods
Data sources
SNPs and small Indels
Whole-genome sequence data was available for 24 
founder individuals from four F2 pig resource popula-
tions. The founder data set was comprised of 14 Pié-
train (samples: 10345, 17118, 17123, 17161, 17165, P102, 
P107, P108, P113, P115, P119, P128, P130 and P244), 7 
crossbred Landrace x Large White (samples: 662, 690, 
693, 735, 750, 756 and 771), 1 Large White (sample 728), 
1 Wild boar (sample P181) and 1 Meishan individual 
(sample M199). The F2 designs under investigation were 
described in detail by Rückert and Bennewitz [64] and 
Borchers et  al. [8]. In our previous study, Falker-Gieske 
et al. [22] provided information on the read mapping and 
the variant calling for short variants (i.e. SNPs and small 
indels < 50 bp) carried out based on the genome assem-
bly Sscrofa 11.1 (GCA_000003025.6 provided by Swine 
Genome Sequencing Consortium on NCBI).

Structural variants and tandem repeats profiling
SVs were called with three independent variant callers: 
smoove, DELLY, and manta. smoove v0.2.6 [9] was used 
with the settings "-p 4 --genotype". DELLY v0.7.7 [62] was 
employed with the default settings for germline variant 
calling. Further, manta v1.6.0 [11] was used with default 
settings. A high confidence call set was generated with 
SURVIVOR v1.0.7 [34]. We ran the tool with a maximum 
distance between breakpoints of 1000 bp, a minimum 
number of supporting callers of 3, SV type and strands 
were taken into account, and the minimum SV size was set 
to 50 bp (SURVIVOR settings: merge input_files.txt 1000 3 
1 1 0 50). These variants were filtered by a genotyping rate 
of 0.8 and variants with QUAL < 6000 were removed.

To screen for all tandem repeats with a motif length 
of 2-20 bp (comprising both STRs and short VNTRs) 
we employed GangSTR [54]. A pre-requisite for this 
tool was to set up a library of known TRs based on the 
reference genome. Thus for establishing this panel of 
repetitive regions, the repeat annotation on the refer-
ence genome was conducted using the Tandem Repeats 
Finder [5] with the options 2 5 17 80 10 24 1000. The 
initial library was filtered according to several criteria: 
i) size of the repeat unit 2-20 bp, ii) all overlapping TRs 
removed, iii) TRs located within less 50 bp of another 
TR removed, iv) repeat units of 2 to have minimum of 
five copies, v) repeat units of 3 bp to have minimum 
four copies and vi) repeat units > 3 bp to have at least 
three copies. The TRs were called in a multi-sample 
manner using GangSTR with the default parameters 
together with the bam files of our samples and the 
trimmed TR reference panel. The discovered TRs were 
then subjected to a call-level quality control filtering in 
which genotypes with a minimum sequence depth (DP) 
of 10 and with a quality score (Q) higher than 0.8 were 
kept. Finally, only TRs with a call rate higher than 0.8 
were included in the final TRs dataset.

Feature landscape
Each autosome was binned into successive 500 kb win-
dows dividing the genome into 4,538 windows. The 
density of the features (SNPs, small indels, SVs, TRs 
and pTRs) was simply counted window-wise based on 
the starting position of the feature (e.g. the POS field 
in the vcf file). To investigate the co-localization of the 
various types of variation, we performed pairwise cor-
relation using the Pearson’s product-moment correla-
tion (function cor.test() under R environment, [59]). 
Consequently, for each pair of features a Pearson cor-
relation coefficient  r and the p-value of the test were 
available.

Variant annotation, functional effect prediction, and gene 
enrichment analysis
To annotate variants and predict the coding effects of 
genetic variation (i.e. SNPs and small indels, SVs, TRs 
and pTR) on genes, transcripts, protein sequence, and 
regulatory elements, we used the SnpEff tool [14]. The 
database containing the genomic annotations for Sscrofa 
11.1 (ENSEMBL release 99) was built and further utilized 
for annotation and effect prediction purposes. Based on 
the severity of the variant consequence, we prioritized 
on variation that has a high, moderate, and low impact. 
The gene sets enclosing these types of variants were 
used for over-representation analysis using the ShinyGO 
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Gene Ontology Enrichment Analysis tool [24], targeting 
biological processes (BP). The aim was to determine if a 
set of genes shares more or fewer genes with predefined 
gene sets (associated with BP) than one would expect by 
chance. For all the gene set analyses, we used a false dis-
covery rate (FDR) cutoff of 0.05.

Haplotype construction and imputation
For haplotype estimation, SNPs and small indels from our 
previous study [22] were merged with the SVs and pTRs. 
Filtering procedures of SNPs and small indels have been 
described in detail in [22] whereas filtering of SVs and 
pTRs that were used in the F0  reference genotype panel 
is described in the section “Structural variants and tan-
dem repeats profiling”. The average depth of coverage of 
SNPs/small indels was 21.08 and the average sequencing 
depth of pTRs was 27.11. Average sequencing depth for 
SVs could not be calculated due to the nature of the pipe-
line, in which SURVIVOR creates a high confidence call 
set from the output of three variant callers. The resulting 
VCF file was phased with Beagle 5.2 [10] and low cover-
age sequenced F1 individuals from the above-mentioned 
study were imputed with Beagle 4.0 and pedigree infor-
mation. The resulting VCF was phased with Beagle 5.2 
and used a reference panel for imputation of medium 
density (60k) chip genotyped F2  individuals [22]. All 
phasing and imputation procedures with Beagle were run 
with default settings. The only deviation from the impu-
tation strategy that we employed in our previous study 
was the usage of Beagle 5.2 instead of Beagle 5.0 for hap-
lotype phasing. SNPs and small indels were removed with 
GATK v4.1.8.1 SelectVariants [49] to produce the final 
SVs and TRs imputed dataset for downstream analyses.

Genome wide association studies
GCTA v1.93.2 beta was used for single trait associa-
tion analyses [77] for previously investigated phenotypes 
(based on SNPs and small indels) in these crosses: average 
daily gain, backfat thickness, meat to fat ratio, and carcass 
length. The phenotypes were pre-corrected for various 
fixed effects (e.g. stable, slaughter month) as described 
in [22]. Prior to the GWAS step, the multi-allelic variants 
were split into multiple rows (i.e. bi-allelic) using bcftools 
norm [17]. A mixed linear model “leave one chromosome 
out” (LOCO) analysis was used based on the following 
model y* = a + xb + g- + e, where y* is the adjusted phe-
notype, a is the mean term, b is the additive effect size 
(fixed effect) of the candidate SV or TR to be tested for 
association, x is the SV or TR indicator variable (coded 
0/1/2), g- is the polygenic effect (random effect) and in 
case of the LOCO analysis is the accumulated effect of all 
SNPs except those on the chromosome where the candi-
date SV or TR is located. Multiple genomic relationship 

matrices (GRMs) were created from the F2 60k SNP chip 
data by excluding each chromosome once. The imputed 
SVs and TRs with a minor allele frequency (MAF) cut-
off of 1 % were used in the model together with an addi-
tional cross covariate (4 classes representing each of the 
4 crosses). The choice of p-value significance level of 
marker effects was set up by the corresponding Bonfer-
roni correction of the p-value of 0.05/Number of tests, 
where the number of tests here was the total number 
of SVs and TRs (54,076), therefore the -log10(p-value) 
threshold in this analysis was 6.03. Furthermore, a con-
ditional association study was carried out. For this, top 
highly associated variants were included as a fixed effect 
in the mixed linear model framework. Manhattan plots 
and other figures were created in R using the package 
qqman [69] and ggplot2 [71].
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