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Integrative analysis identifies 
lincRNAs up- and downstream of 
neuroblastoma driver genes
Dries Rombaut  1,2, Hua-Sheng Chiu3, Bieke Decaesteker  1,2, Celine everaert  1,2,  
Nurten Yigit1,2, Agathe peltier4,5, Isabelle Janoueix-Lerosey4,5, Christoph Bartenhagen7, 
Matthias Fischer6,7, Stephen Roberts8, Nicky D’Haene9, Katleen De preter1,2, 
Frank speleman1,2, Geertrui Denecker  1,2, Pavel sumazin3, Jo Vandesompele  1,2, 
steve Lefever  1,2 & pieter Mestdagh1,2

Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling 
pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as 
upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data 
of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various 
cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs 
up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver 
genes controls the expression of a particular subset of lincRNAs, several of which are associated with 
poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. 
By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we 
demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary 
tumor gene expression data revealed a strong association between stromal cell composition and driver 
gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that 
putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene 
activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong 
associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or 
expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, 
highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a 
solid basis for further functional validation of candidate neuroblastoma lincRNAs.

During the past decade, detailed analysis of the human transcriptome revealed thousands of RNA molecules 
with no obvious coding potential1–5. These so-called long non-coding RNAs (lncRNAs) are poorly conserved at 
the sequence level and have a lower but more cell-type specific expression profile compared to protein coding 
mRNAs1,6,7. Based on functional studies of selected lncRNAs, it has become clear that they can act as impor-
tant modulators of various processes in the cell, including chromatin conformation, transcription, splicing and 
post-transcriptional regulation8–10. Their capacity to interact with several bio-molecules in the cell (i.e. RNA, 
DNA and proteins) provides them with a plethora of mechanisms to exert their functions. Not surprisingly, 
deregulated expression of lncRNAs may cause human diseases including cancer8,11–14. At present, dozens of lncR-
NAs are known to function up- or downstream of cancer drivers or key signaling pathways. Notable examples are 
TP53 pathway tumor suppressor lncRNAs PANDAR and lincRNA-p2115,16 and oncogenic lncRNAs CCAT2 and 
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MINCR as respective activator or effector of MYC17. Systematic analysis of RNA-sequencing data across various 
adult tumor types further demonstrated that mutations in oncogenes and tumor suppressor genes can deregulate 
lncRNA expression18. Knockdown of lncRNAs driving oncogenic signaling can result in a therapeutic response 
in vitro and in vivo17,19,20.

Neuroblastoma (NB) is one of the most enigmatic tumors, with clinical behavior ranging from spontane-
ous regression to metastatic disease refractory to aggressive multimodal therapy21. Tumors arise from neu-
ral crest-derived progenitor cells through deregulation of signaling pathways governing sympathetic nervous 
system development and differentiation. Despite the identification of predisposing mutations (PHOX2B22), 
somatic mutations (ALK23,24, ATRX25), amplifications (MYCN26) and translocations (TERT27) affecting several 
protein-coding genes, little progress was made in improving overall survival in the last decade. Unravelling the 
lncRNA components involved in these signaling pathways could help us better understand how these networks 
are wired and may reveal novel regulatory mechanisms and, ultimately, therapeutic strategies. While only a hand-
ful of NB-associated lncRNAs have been identified today, for some, a putative therapeutic targeting potential 
has been demonstrated. NBAT1, a lncRNA on chromosome 6, possesses tumor suppressor functions, inhibiting 
NB proliferation and invasion and promoting differentiation28. Other examples of deregulated lncRNAs in NB 
are ncRAN, located on chromosome 17q and associated with poor prognosis, MYCN target gene linc00467 that 
represses DKK1 leading to increased NB cell survival and lncUSMycN, located on 2p and shown to regulate 
MYCN expression post-transcriptionally29–31.

In order to identify lncRNAs involved in key NB signaling pathways, we integrated RNA seq data from 497 
primary NB tumor samples32,33, human fetal neuroblasts and various model systems with perturbation of driver 
gene activity. We present a comprehensive view on the NB lincRNome and prioritize lncRNAs up- and down-
stream of well-established NB driver genes, such as MYCN, PHOX2B and ALK (Fig. 1).

Results
The neuroblastoma lincRNome. To establish the NB lincRNome, we reanalyzed RNA seq data from 497 
primary tumors, established by Zhang and colleagues as part of the SEQC study (further referred to as the SEQC 
dataset)32,33. Because the RNA sequencing data was unstranded (i.e. does not contain strand orientation infor-
mation), we focused our analysis on lncRNAs classified as intergenic (lincRNAs) in Ensembl. This highly curated 
catalogue contains 7821 lincRNAs, of which 3295 were robustly expressed in NB tumors and hence define the 
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Figure 1. Included data sets and analyses in the study. The SEQC, CCLE and TARGET data sets were used to 
determine the NB lincRNome. The abundance of the robustly expressed lincRNAs in the lincRNome was used 
to compare expression between neuroblast and NB samples, primary tumor samples containing CNVs and 
samples without gains or deletions and NB tumors with and without mutations, amplifications or associations 
with NB driver genes. The regulation of lincRNAs correlated with NB driver genes was assessed in cellular 
perturbation models. To determine the involvement of lincRNAs in modulating the effect or regulation of these 
driver genes, we made use of a state-of-the-art algorithm called LongHorn. Combined, these analyses allow us 
to arrive at a core set of predicted NB associated lincRNAs.
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NB lincRNome (Fig. 2A). The NB lincRNome was further validated in an independent RNA seq dataset of 148 
primary tumors, generated by the TARGET consortium34, confirming expression for 3290 of the 3295 lincRNAs 
(Fig. 2A). To asses independent transcription of the lncRNAs, we’ve integrated publicly available CAGE seq (Cap 
Analysis Gene Expression) data from NB cell lines. Through CAGE seq, the 5′ end of a capped RNA molecule 
is sequenced, revealing the transcription start site of the transcript. By integrating this CAGE seq data using the 
Zipper plot35, we uncovered an enrichment of CAGE peaks at lincRNA transcription start sites (TSS), with 255 
lincRNAs having a CAGE peak within +/−5 kb of their TSS (Fig. 2B). CAGE TSS enrichment is less pronounced 
compared to protein coding mRNAs, likely due to the fact that lincRNAs are less abundant than mRNAs (Fig. 2B) 
and public CAGE seq data is filtered based on a minimal expression cutoff36. Distribution of histone marks is 
more similar between lincRNAs and mRNAs, with 2933 and 2918 lincRNAs displaying a H3K4me3 or H3K27ac 
mark within +/−5 kb of their TSS, respectively. Although the majority of lincRNAs is weakly expressed, several 
are highly abundant. Up to 20% of all lincRNA reads are consumed by only 5 highly abundant lincRNAs in 
each of the investigated datasets (Fig. 2C). In contrast to adult cancers, where lincRNAs like MALAT1, NEAT1 
and XIST were most abundant18, we identified MEG3 and MIAT as the most abundant lincRNAs in NB. While 
MIAT (also known as GOMAFU) has a dominant neuronal expression pattern37,38, it promotes growth and pro-
liferation of multiple cancer types39–41. Interestingly, several other uncharacterized lincRNAs were found among 
the most abundant in NB tumors, including lnc-MEP1B-2 and lnc-INAFM2-2. Moreover, we found MEG3 and 
MIAT to be quite specific for NB cells (Supplemental Fig. 1). In fact, lincRNA expression patterns are known to 
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Figure 2. Establishing the NB lincRNome. (a) Based on Ensembl annotation, a set of 3295 lincRNAs was 
robustly expressed in the SEQC dataset, whereas 3912 lincRNAs were found in the TARGET dataset. A 
total of 3290 lincRNAs were expressed in both groups. (b) Density distribution plots showing distances of 
chromatin marks and CAGE peaks to the TSS and expression levels, for protein coding genes and lincRNAs. (c) 
Percentages of the lincRNA derived read counts for the top 5 expressed lincRNAs for the SEQC and TARGET 
datasets. (d) Bar plot showing the number of specific lincRNAs per cancer type. (e) Expression pattern of a 
randomly selected neuroblastoma specific lincRNA lnc-FBX08-5 across the different cancer types. (f) Overlap 
of expressed lincRNAs between NB cell lines and SEQC. (g) Fischer exact-test p-values (non-adjusted) for 
lincRNAs that are only expressed in the SEQC dataset and are associated with stromal cell types according to 
FANTOM5. (Cancer type abbreviations: AML: Acute monocytic leukemia; BALL: B-cell Acute Lymphoblastic 
Leukemia; BLCA: Bladder Carcinoma; BRCA: Breast Carcinoma; CML: Chronic Myelogenous Leukemia; 
CRCA: Colon Adenocarcinoma; ESCC: Esophageal Squamous Cell Carcinoma; GBM: Glioblastoma; GCA: 
Gastric Carcinoma; HCC: Hepatocellular Carcinoma; HL: Hodgkin Lymphoma; HSNCC: Head and Neck 
Squamous Cell Carcinoma; LGG: Brain Lower Grade Glioma; MBM: Medulloblastoma; MEL: Melanoma; 
MESO: Mesothelioma; MM: Plasma cell myeloma; NB: Neuroblastoma; NHL: Non-Hodgkin Lymphoma; 
PACA: Pancreatic Adenocarcinoma; PRCA: Prostate carcinoma; RCC: Renal Cell Carcinoma; SCLC: Small Cell 
Lung Carcinoma; TALL: T-cell Acute Lymphoblastic Leukemia; THCA: Thyroid gland carcinoma.)
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exhibit remarkable cell-type specificity1,6,7. By comparing lincRNA expression in 917 cell lines representing 29 
tumor types, we found NB among the tumor types with the highest number of specifically expressed lincRNAs 
(Fig. 2D,E). As several tumor-type specific lincRNAs have been shown to play important roles in tumor biol-
ogy42–45, this information may thus help prioritize lincRNAs relevant for NB.

As tumor tissue biopsies to a variable degree are composed of stromal cells, we integrated the NB lincRNome 
with RNA seq data from NB cell lines to evaluate which lincRNAs are more likely to be derived from tumor or 
stromal cells. We found 2984 of 3295 lincRNAs from the NB lincRNome expressed in NB cell lines and 311 that 
were only detected in tumor biopsies (Fig. 2F). To evaluate whether the latter fraction is indeed more likely to be 
stromal cell derived, we used lincRNA tissue specificity data from the FANTOM consortium to look for cell or tis-
sue ontology enrichments3. Various stromal cell types, including CD8+ alpha/beta T-cells were enriched among 
lincRNAs with expression restricted to tumor biopsies (Fig. 2G). These data suggest that a fraction of lincRNAs 
expressed in tumor tissue biopsies are indeed likely derived from stromal cells in these biopsies.

lincRNAs are differentially expressed between NB tumors and neuroblasts. NB predominantly 
exhibit a noradrenergic gene regulatory network including high expression levels of sympatho-adrenal line-
age specific bHLH transcription factors such as PHOX2B and genes involved in dopamine synthesis such as 
tyrosine hydroxylase. We previously isolated and determined the transcriptome using gene expression arrays on 
microdissected human fetal neuroblasts and provided evidence for the presumed cell-of-origin for NB for these 
cells46. More recently, we have also generated human fetal neuroblast transcriptomes by RNAseq allowing to also 
explore expression of lincRNAs in normal reference cells versus NB cells. Detailed validation of the samples will 
be described elsewhere but importantly, well-established neuronal and chromaffin markers including TH, CHGA, 
BCL2 and HNK1 were expressed in all samples (Fig. 3A). To further validate the RNA seq data, we analyzed 
mRNA gene sets that were previously reported to be differentially expressed between neuroblasts and high-risk 
NB tumors46. Gene set enrichment analysis demonstrated a strong and significant enrichment of these signatures 
among up- and downregulated mRNAs between neuroblasts and high-risk NB tumors, supporting the validity 
of the expression dataset (Fig. 3B). We identified 2859 lincRNAs expressed in the neuroblast samples (Fig. 3C). 
The neuroblast lincRNome largely overlapped the NB lincRNome, with 2638 lincRNAs in common. Differential 
expression analysis revealed 774 and 912 lincRNAs that were significantly up- and downregulated in high-risk NB 
tumors compared to neuroblasts (Fig. 3D and Supplemental Table 1). Of interest, the highly abundant lincRNA 
MIAT showed a 4-fold upregulation in NB tumors compared to neuroblasts. Of the 774 lincRNAs upregulated in 
NB tumors, 447 were also expressed in NB cell lines and thus likely tumor derived.

DNA copy number alterations drive lincRNA expression. Several studies have shown that DNA copy 
number alterations can drive lincRNA expression in cancer cells47–49. As high-risk NB tumors are characterized 

Figure 3. Establishing the neuroblast lincRNome. (a) Expression profiles of neural and chromaffin markers 
in the neuroblast samples (mean epxr. +/− SE). (b) GSEA results on a logFC ordered mRNA list, derived from 
differential expression analysis between neuroblasts and high-risk NB tumors, using neuroblast/HR NB specific 
gene sets. (c) Number and overlap of expressed lincRNAs in neuroblast and NB samples. (d) Volcano plot of 
differentially expressed lincRNAs between neuroblasts and high-risk neuroblastoma samples at q < 0.05. The 
orange dots represent upregulated genes (774 lincRNAs) in HR NB samples, whereas the blue dots depict genes 
with a lower abundance (912 lincRNAs).
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by recurrent segmental copy number alterations, we first evaluated lincRNA expression in regions with recurrent 
copy number gain (1q, 2p, 17q) and loss (1p, 3p, 11q). We found 23.7% of the neuroblastoma lincRNAome with 
significant positive correlation to their DNA copy number amplitudes (Supplemental Fig. 2). These results are in 
line with similar analysis in other cancer types and further support lincRNA dosage sensitivity.

To evaluate whether segmental copy number alterations can indirectly impact lincRNA expression, we 
grouped tumors based on copy number status, followed by differential expression analysis (Fig. 4). In order not to 
confound the results with lincRNA expression differences driven by MYCN amplification, we excluded all MYCN 
amplified samples from the analysis. Differential lincRNAs were identified for each copy number alteration except 
for 1p deletions. However, when applying a more robust differential expression analysis, based on iterative sub-
sampling, 17q gain was the only copy number alteration for which differential lincRNAs were identified. From 
the 5 lincRNAs differentially expressed between tumors with and without 17q gain, 3 were higher (lnc-BRC1-2, 
LINC02432 and lnc-RPS6KA4-3) and 2 were lower (LINC02211 and LINC01930) expressed in tumors with a 17q 
gain (Supplemental Table 2). These lincRNAs were also expressed in NB cell lines, confirming they are tumor 
derived. None of the upregulated lincRNAs were located on 17q, suggesting that 17q gain indirectly deregulates 
lincRNA expression in NB tumor cells.

NB driver genes regulate lincRNA expression. NB tumors are characterized by low mutation 
rates27,34,50. As a consequence, the identification of oncogenic drivers has been challenging. MYCN amplification, 
activating mutations in the ALK receptor tyrosine kinase, TERT rearrangements, inactivating ATRX mutations 
and dominant negative mutations in PHOX2B are among the most recurrent genetic events that drive oncogenic 
signaling and tumor formation23,25,27,51–54. Our aim was to evaluate to what extent several of these well-established 
driver genes (MYCN, ALK) and neuroblastoma identity genes (PHOX2B) impact lincRNA expression.

Figure 4. Altered expression levels of lincRNAs by copy number variations. Schematic representation of 
the number of cases with a copy number variation (1p deletion, 1q gain, 2p gain, 3p deletion, 11q deletion 
and 17q gain) present in our data set. The volcano plots show differentially expressed lincRNAs per copy 
number variation. Only 17q gain resulted in 5 robust significantly differentially expressed lincRNAs after 
iterative differential expression analysis (upregulated lincRNAs: lnc-BRC1-2, LINC02432, lnc-RPS6KA4-3; 
downregulated: LINC02211, LINC01930).
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Identification of lincRNAs regulated by NB driver genes in primary tumor samples. For MYCN and ALK, this 
was evaluated by grouping tumor samples based on driver gene status (i.e. amplified and mutated respectively) 
followed by differential lincRNA expression analysis (Fig. 5A,B). While MYCN amplification status was available 
for each tumor sample, ALK mutation status was not. ALK mutation status was therefore determined based on 
RNA seq data. We identified 54 tumors with missense mutations in the ALK gene, with the R1275Q and F1174L 
mutations as the most frequent ones (Supplemental Fig. 3). Differential mRNAs in tumors with varying MYCN 
or ALK status were strongly enriched for established mRNA gene sets previously shown to be regulated by MYCN 
or ALK (Supplemental Figs 3 and 4), thus validating our approach. Differential lincRNA expression analysis 
resulted in 1511 (773 upregulated and 738 downregulated) and 80 (55 upregulated and 25 downregulated) lincR-
NAs for MYCN and ALK, respectively (Fig. 5B and Supplemental Tables 3 and 4). When applying a more robust 
differential lincRNA expression analysis, 536 and 1 differential lincRNA(s) for MYCN and ALK respectively were 
retained for further analysis (Fig. 5C and Supplemental Tables 3 and 4). While the ALK associated lincRNA 
was also expressed in NB cell lines, expression of up to 11% of MYCN associated lincRNAs was restricted to NB 
tumor samples (Fig. 5D). The latter suggests these lincRNAs may be derived from stromal cells whose abundance 
or composition differs between tumors with and without MYCN amplification. To evaluate this hypothesis, we 
determined immune cell type fractions in each tumor through deconvolution of the mRNA expression data. We 

Figure 5. Regulation of lincRNAs by key driver genes. (a) Depiction of number of samples in our dataset for 
the three subtypes of genomic aberrations. (b) Volcano plot showing differentially expressed lincRNAs using all 
samples mentioned in (a) at q < 0.05 (orange dots). In the case of PHOX2B, correlation coefficient and adjusted 
p-value are represented. Here, the orange dots represent genes with opposing signs and significance for their 
correlation with the CRC scores. (c) Number of differentially expressed lincRNAs for MYCN and ALK. The far-
right bar plot represents the number of lincRNAs found to be significantly correlated with both the PHOX2B 
CRC and JUN/FOS CRC in opposing directions. (d) Percentage of differentially expressed lincRNAs that are 
expressed in both the CCLE NB cell lines and the SEQC data set, or solely in the tumor biopsies. (e) Overlap of 
differentially expressed lincRNAs found in the SEQC analysis and after perturbation of the driver genes in the 
corresponding model systems (p < 0.05).
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found a clear and significant difference in immune cell infiltration between MYCN amplified and MYCN single 
copy tumors for naïve B-cells, CD8+ T-cells and resting NK cells (Supplemental Fig. 5). These results confirm 
previous observations55 and support our hypothesis that a fraction of lincRNAs associated with MYCN amplifica-
tion status are derived from infiltrating immune cells.

To identify PHOX2B associated lincRNAs, an alternative strategy based on two gene expression scores was 
applied. The first score reflects the activity of the PHOX2B core regulatory circuit (CRC) defining the noradren-
ergic cell state (NOR score). The second score reflects the activity of the JUN-FOS CRC, defining the neural crest 
cell state (NCC score) (Supplemental Fig. 6)56. As the activity of both CRC inversely correlates, PHOX2B asso-
ciated lincRNAs were defined as lincRNAs that positively and negatively correlate to the NCC and NOR score, 
respectively, or vice versa. A total of 603 lincRNAs for which such relationship was identified were prioritized for 
further analysis (Fig. 5B,C and Supplemental Table 5). Similar to MYCN, 9% of these lincRNAs are not expressed 
in NB cell lines (Fig. 5D). We observed significant correlations between tumor NCC/NOR scores and the percent-
age of immune cells in the tumor biopsies, again suggesting that a fraction of these lincRNAs are stromal derived 
(Supplemental Fig. 7). Interestingly, 120 of the NCC/NOR associated lincRNAs were also differentially expressed 
in MYCN amplified tumors (Fig. 6A). Further, 2 and 1 lincRNA(s) that were differentially expressed in MYCN 
amplified tumors were also differentially expressed in tumors with a 17q gain or an ALK mutation, respectively.

Integration of driver gene model systems to validate lincRNA regulation. To evaluate which of the selected lin-
cRNAs are regulated (directly or indirectly) by these driver genes, we used both in house generated data as well 
as publicly available RNA seq data for MYCN, ALK and PHOX2B perturbation model systems. For MYCN 
and PHOX2B, we applied inducible model systems containing a shRNA construct against MYCN (IMR5-
75-shMYCN-TR)57 or PHOX2B (CLB-GA-shPHOX2B)56 or a MYCN overexpression construct58. For ALK, the 
ALK mutant NB cell line CLBGA was treated with the ALK inhibitor crizotinib. Out of 536 lincRNAs differen-
tially expressed in MYCN amplified vs MYCN single copy tumor samples, 36 were also perturbed in at least one of 
two MYCN model systems (Supplemental Table 6). For ALK and PHOX2B, 1/1 and 36/603 differential lincRNAs 
were also regulated in the respective model systems (Fig. 5E and Supplemental Tables 7 and 8). These results 

Figure 6. Association of lincRNAs with genetic and clinical parameters. (a) Number of lincRNAs regulated 
by one or more driver gene(s) or differentially expressed upon copy number variation in the patient samples. 
(b) Number of lincRNAs regulated by one or more driver genes or differentially expressed upon copy number 
variation, for lincRNAs differentially expressed in both the patient samples and model systems. (c) Number of 
lincRNAs regulated by MYCN, associated with clinical and genetic features. (d) Representation of the genomic 
locus and RNAseq data of lnc-GOLGA6A-1. lnc-GOLGA6A-1 expression levels in ALK wild type and mutated 
samples, and MYCN amplified and single copy samples are shown, together with expression of the lincRNA 
upon crizotinib treatment, an ALK inhibitor. The boxplot shows the expression pattern of lnc-GOLGA6A-1 
across the different cancer types.
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demonstrate that NB driver genes can (directly or indirectly) regulate lincRNA expression. The majority of these 
lincRNAs appear to be regulated by a single driver gene (Fig. 6B), with only a small subset affected by multiple 
drivers (i.e. PHOX2B and MYCN). We found driver gene regulated lincRNAs to be strongly associated with NB 
patient survival and often differentially expressed between NB tumors and neuroblasts (Fig. 6C and Supplemental 
Fig. 8). For instance, 27/36 MYCN regulated lincRNAs are significantly associated with patient survival and 16 
are differentially expressed between neuroblasts and high-risk NB tumors (Supplemental Table 9). Occasionally, 
these lincRNAs are located within a super-enhancer or display a NB-specific expression profile. In total, 14 lincR-
NAs are associated with multiple parameters, increasing their potential importance in NB biology.

One example is lnc-GOLGA61-1, a divergent lincRNA upstream of the ISLR2 gene. lnc-GOLGA61-1 is upregu-
lated in tumor samples harboring an ALK mutation or a MYCN amplification. Treatment with crizotinib strongly 
represses lnc-GOLGA61-1 expression, suggesting ALK is involved in lnc-GOLGA61-1 regulation. Of interest, 
lnc-GOLGA61-1 and ISLR2 expression are strongly correlated in NB tumors (Supplemental Fig. 9). ISLR2 is an 
interaction partner of NTRK1 and RET, both involved in regulating NB differentiation, and RET has been shown 
to be activated by mutant ALK59,60. Expression of lnc-GOLGA61-1 and ISLR2 is restricted to NB cells as evidenced 
by RNA seq data of the CCLE cohort61 (Fig. 6D and Supplemental Fig. 10).

LincRNAs as upstream regulators of neuroblastoma driver genes. LincRNAs as modulators of 
driver gene activity. The above described analyses demonstrate the impact of various NB driver genes on lin-
cRNA expression. However, lincRNAs can potentially also function upstream of, or in concert with these driver 
genes. To uncover such lincRNAs, we applied LongHorn, a computational pipeline aimed at uncovering effector 
genes and target genes of individual lincRNAs62. The pipeline essentially considers lincRNAs as modulators of 
effector proteins (i.e. transcription factors (TF) or RNA-binding proteins (RBP)) or as indirect regulators of tar-
get gene expression (Fig. 7). To uncover these relationships, LongHorn integrates mRNA and lincRNA expres-
sion data with experimental data on RNA-RBP interactions (eCLIP), TF regulation (ChIP-seq and PWM) and 
lincRNA-DNA binding site prediction (triplex). As both MYCN and PHOX2B are transcription factors, we first 
evaluated if lincRNAs could modulate MYCN or PHOX2B activity. Only tumor derived (i.e. expressed in primary 

Figure 7. Identification of lincRNAs as modulators of activity or expression of driver genes. (a) Schematic 
representation of the investigated lincRNAs, modulating the activity of the effector proteins, MYCN and 
PHOX2B. The circular plots display the number of lincRNAs, expressed in NB cell lines, found to be modulators 
of MYCN and PHOX2B targets. Bar plots show the top 5 hallmarks that were significantly enriched (Fisher 
exact test, p < 0.001). (b) The heatmap visualizes the clustering of the significantly enriched hallmarks for 
the top 20 modulating lincRNAs. (c) Differences in distance correlation between the samples of low and high 
abundance of the lincRNAs. The presented targets are genes enriched in the hallmark gene sets. (d) Schematic 
representation of the investigated lincRNAs, regulating the activity of the target protein MYCN. The circular 
plots display the number of activating and inhibiting lincRNAs modulating MYCN expression. The top 5 
effectors targeting MYCN are shown in the bar plot. (e) Clustering of the top 20 regulating lincRNAs with 
MYCN as target is visualized in the heatmap.

https://doi.org/10.1038/s41598-019-42107-y


9Scientific RepoRts | (2019) 9:5685 | https://doi.org/10.1038/s41598-019-42107-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

tumors and cell lines) lincRNAs with a median absolute deviation >0.1 in the SEQC dataset were considered. 
LongHorn uncovered 25 and 36 lincRNAs that were predicted to modulate PHOX2B and MYCN activity, respec-
tively (Fig. 7A, Supplemental Table 9). Importantly, none of these lincRNAs correlate with MYCN or PHOX2B 
expression levels directly, excluding the possibility that such correlations may confound the results. LincRNAs 
predicted to modulate MYCN activity included - amongst others - MIAT, TSIX and MEG3. Of note, 7 lincRNAs 
were found to modulate both MYCN and PHOX2B activity. Targets that were predicted to be affected by lincRNA 
modulation with MYCN or PHOX2B as effectors were subsequently evaluated for enrichment of hallmark gene 
sets. We observed enrichments for, amongst others, the TP53 pathway (8 lincRNAs), STAT signaling (24 lincR-
NAs), KRAS signaling (14 lincRNAs) and the apoptosis pathway (9 lincRNAs) (Fig. 7B). We identified TSIX as a 
modulator of MYCN activity, driving expression of KRAS signaling genes including BIRC3 and CCND2 (Fig. 7C). 
Alternatively, TTTY15 was found to modulate MYCN activity towards repression of the apoptosis pathway genes 
GADD45B and BTG2 (Fig. 7C).

LincRNAs as regulators of driver gene activity. Next to direct modulation of MYCN or PHOX2B activity, lincR-
NAs may also modulate effectors of MYCN, PHOX2B or ALK expression (Fig. 7D). We identified 65 lincRNAs 
that were predicted to regulate MYCN expression through modulation of one or more effectors. Several effectors 
of MYCN expression, including TCF3, NAP1L1, HMGA1 and CREB3L4 were predicted to be modulated by mul-
tiple lincRNAs (Fig. 7D,E). No lincRNAs were predicted to regulate PHOX2B or ALK expression. Taken together, 
these analyses demonstrate that lincRNAs may indeed regulate or modulate the expression or activity of one or 
multiple NB driver genes.

Discussion
We have evaluated RNA seq data of primary NB tumors, human fetal neuroblasts and various cellular pertur-
bation model systems to reveal alterations in lincRNA expression patterns invoked by driver mutations, ampli-
fications or DNA copy number variations. Through various prioritization strategies, we provide a core set of 
lincRNAs with a potential role in NB tumor biology, up- or downstream of the key NB driver genes MYCN, ALK 
and PHOX2B.

Integration of RNA seq data from primary tumors and cell lines revealed that a fraction of the lincRNAs 
expressed in tumor biopsies were not detected in cell lines. Cell lines are known to have higher levels of CpG 
hypermethylation than primary tumors63,64, potentially explaining why expression of certain lincRNAs was 
restricted to tumor samples. In addition, the tumor sample cohort is more heterogeneous in nature compared 
to the NB cell lines which are typically derived from high-risk tumors only. However, tumor biopsies also have a 
stromal component that is absent in cell lines, leading us to hypothesize that some of these lincRNAs are stromal 
in origin. Tissue ontology enrichment analysis provided support for this hypothesis. Moreover, we could demon-
strate that stromal composition, and more specifically immune cell infiltration, correlated with MYCN amplifi-
cation status and PHOX2B core regulatory circuit activity. This confounded our differential lincRNA expression 
analysis between MYCN amplified and MYCN single copy tumors and lincRNA PHOX2B CRC correlation anal-
ysis. As a result, many lincRNAs that were prioritized as differentially expressed or correlated, were undetected 
in NB cell lines and thus likely stromal cell derived. Cell type composition of tumor biopsies can be elucidated 
using computational deconvolution methods65–67. In addition, RNA seq data from various human cell types is 
becoming increasingly available3. Integrating this type of information when performing (differential) lincRNA 
(or mRNA) expression analysis on tumor biopsies could help elucidate the cell of origin of RNA molecules and 
assist in prioritizing key players in tumor biology.

By combining RNA seq data from primary tumors with model systems for MYCN, ALK and PHOX2B, we 
could demonstrate that each of these driver genes regulate a core set of lincRNAs. Whether these lincRNAs are 
regulated directly (e.g. through binding of MYCN or PHOX2B transcription factors in the lincRNA promoter) or 
indirectly remains to be determined. Several of these lincRNAs were found to be differentially expressed between 
NB tumors and precursor neuroblasts and/or associated with patient survival and disease stage. To further prior-
itize driver gene regulated lincRNAs, we evaluated their link with super-enhancers and NB expression specificity. 
Several lincRNAs that play a role in tumor biology, including CCAT1-L and SAMMSON42,68 are associated with 
these features. This core set of NB driver gene regulated lincRNAs should be further explored by genetic pertur-
bation experiments to investigate their impact on the cellular and molecular phenotype.

As driver genes themselves could be under the control of one or more lincRNAs, we applied a state-of-the-art 
computational workflow aimed at prioritizing lincRNAs that modulate driver gene activity or expression. This 
resulted in 36 and 25 lincRNAs that modulate MYCN and PHOX2B activity, respectively. Functional associations 
between MYC and several lincRNAs predicted to modulate MYCN activity, have been demonstrated previously 
for MEG369 and TSIX70 amongst others. MIAT, one of the most abundant lincRNAs in NB, was identified as a 
modulator of both MYCN and PHOX2B. Target genes that were affected as a result of this modulation were sig-
nificantly enriched in the IL6-JAK-STAT3 pathway. Interestingly, MIAT has been described to enhance STAT3 
expression by acting as a molecular sponge for miR-181b71, a miRNA upregulated in MYCN amplified NB tum-
ors72. MIAT was also identified, together with 48 additional lincRNAs, as a candidate to modulate the activity of 
effectors of MYCN expression. TCF3, HMGA1 and CREB3L4 were among the most recurrent effectors of MYCN. 
HMGA1 is able to regulate MYCN expression in NB cells73, while TCF3 has been shown to regulate MYC expres-
sion in colorectal cancer cells74. Moreover, TCF3 has previously been identified as a master regulator in MYCN 
amplified NB tumors75.

In summary, we identified a comprehensive catalogue of lincRNAs up- and downstream of key NB driver 
genes. These lincRNAs could play an important role in tumor initiation and progression and may serve as a solid 
starting point for further experimental validation.
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Material and Methods
Annotation and quantification. The TARGET fastq files were downloaded from the Genomics Data 
Commons Data portal. Kallisto (v0.42.4) was used to quantify gene expression in the samples, using the hg38 
human assembly (GRCh38.p10), encompassing 37,297 lincRNA and 180,869 protein coding transcripts. Only 
long intergenic non-coding RNAs were considered, as RNA seq data for both data sets was unstranded. The tran-
scripts were classified according to the Ensembl biotype annotation (GRCh38.p10).

Cancer cell line encyclopedia. RNA sequencing data of the Cancer Cell Line Encyclopedia was repro-
cessed using Kallisto with the hg38 human genome assembly (GRCh38.p10). using this RNA seq data set to filter 
out lincRNAs not expressed in NB cell lines (i.e. tumor specific). Uberon and cell types assigned to lincRNAs were 
downloaded from FANTOM53. Only lincRNAs with Ensembl gene IDs were selected. Enrichment of stromal cell 
types was determined based on tumor specific lincRNAs (Fisher Exact test, p < 0.05).

Specificity of genes was calculated based on a minimum fold change >3 between median expression of each 
cancer type per gene.

Neuroblasts. Ethical approval was obtained for the collection of fetal adrenal glands from fetuses aborted for 
clinical reasons and informed consent was obtained for the use of all samples (Ethics committee Erasme Hospital, 
Brussels, Belgium; approval no.: OM021). All methods were carried out in accordance with relevant guidelines 
and regulations. Neuroblasts were isolated from 3 fetal adrenal glands from 13–16 week gestation embryos using 
laser capture microdissection. We extracted RNA from 6 neuroblast clusters and 3 areas of adjacent normal adre-
nal cortex as controls using the PicoPure kit (ARCTURUS). Samples were PCR amplified (SMART-Seq v4 ultra 
low input RNA kit, Takara Bio) and sequenced on the Illumina Hiseq 4000 platform to create a unique resource 
of neuroblast mRNA and lincRNA expression data.

Copy number analysis. Copy numbers status was determined using array CGH. Copy number amplitudes 
(CNA) higher than 2.5 and lower than 1.5 were annotated as aberrant. Each segment was annotated by its cor-
responding chromosome arm, allowing classification according to known chromosome arm gains and deletions 
in NB tumors. To assess of dosage sensitivity of lincRNAs, a CNA was assigned to each gene per sample, based 
on its chromosomal location. Correlation with expression was calculated using Pearson’s method, p values were 
adjusted using the Benjamini-Hochberg method76 (q < 0.05).

RNA sequencing data based mutation analysis. The SEQC and TARGET data set were aligned to 
the human hg19 assembly, using TopHat (v2.10). Mutations were identified by means of the Genome Analysis 
ToolKit (v3.2–2) using the RNA-seq best practices workflow. Only mutations in protein coding genes deemed 
damaging or possibly damaging by means of Polyphen and Sift, were retained. Variants with a prevalence of more 
than 0.1% according to gnomAD, having a total read-depth below 5 or a read-depth for the mutant allele below 
3, were filtered out.

Differential expression analysis. Limma voom (v3.36.5) was used to assess differential expression 
between neuroblast and high-risk neuroblastoma samples, mutated and non-mutated samples for ALK, and 
amplified and non-amplified samples with INSS stage 4 for MYCN and gain/deletions and wild type samples 
for the CNVs, for genes expressed in at least half of the SEQC samples. Genes were classified as differentially 
expressed based on their adjusted p-value (q < 0.05). For a more robust differential expression analysis for ALK 
and MYCN differentially expressed genes, the SEQC data set was divided into two subgroups, having an equal 
number of mutated or amplified samples. Differential expression analysis was performed for both subgroups and 
genes differentially expressed in both groups were identified (q < 0.05). This workflow was repeated 100 times, 
and only genes differentially expressed in more than 80 of the repeats were classified as being truly differentially 
expressed genes. Differential expression in the model systems was calculated using limma voom, with a threshold 
of p < 0.05 (non-adjusted p-value).

Gene set enrichment analysis. Gene set enrichment analysis77 was performed using the Java GSEA 
application of the Molecular Signatures Database (1000 permutations, classic analysis). To validate differen-
tially expressed genes between high-risk NB samples and neuroblasts, a list of mRNAs was analyzed through 
pre-ranked GSEA, using gene sets built out of known differentially expressed genes between these two groups 
of samples46. GSEA was also performed on mRNA lists resulting from differential expression analysis between 
MYCN amplified and MYCN single copy tumors (INSS stage 4) and mRNA list from treated and untreated MYCN 
model systems, using all curated gene sets in the Molecular Signatures Database (Supplemental Figure 11). For 
the GSEA on mRNA list from differential expression analysis for the CNVs, only the positional genesets were 
used (Supplemental Fig. 12). In the case of ALK, no gene sets are available. As such, we created our own gene sets 
based on a validated ALK mRNA signature59. Significant enrichment was defined at FDR < 0.05. All mRNA lists 
were ordered based on the log-transformed fold change.

Defining stromal cell composition. CIBERSORT67, a computational method to estimate cell type frac-
tions from bulk RNA-seq data, was used to define the cell type composition of the primary tumors. Gene expres-
sion data sets with raw counts were used as input. The algorithm (v1.04) was run in R (v3.5.0) with the default 
signature matrix at 100 permutations. Statistical significance between the MYCN amplified and MYCN single 
copy subset was calculated with a Mann-Whitney test. For samples associated with the PHOX2B or the JUN/FOS 
core regulatory circuit, correlations of the percentages of immune cell types and the ranksums were calculated 
with Spearman’s rank correlation method. P-values were adjusted using the Benjamini-Hochberg method76. 
Significance cut-off was set at q < 0.05.
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Cell line perturbation models. Four neuroblastoma model systems were used in this study. For 
MYCN, publicly available RNA seq data sets for IMR5-75-shMYCN-TR (ArrayExpress E-MTAB-6568) and 
SHEP-MYCN-TET (Gene Expression Omnibus GSE83327) cells were used. CLBGA-shPHOX2B cells56 were 
treated with doxycycline for 5 days (n = 2), together with a shControl cell line (n = 2) (Supplemental Fig. 13). 
ALK mutant CLBGA cells were treated with ALK inhibitor crizotinib at a concentration of 500 nM for 24 hours. 
Over the course of 3 weeks, matched treatment of 1 sample and 1 control sample was performed per week.

cDNA library prep and sequencing. Total RNA was extracted from the CLB-GA cell line for the 
ALK model system using TRIzol Reagent (Invitrogen) and the miRNeasy Mini Kit (Qiagen). For the 
CLB-GA-shPHOX2B system, total RNA was extracted from fresh cells using TRIzol® Reagent (Invitrogen) and 
the AllPrep DNA/RNA Mini Kit (Qiagen). All samples were subjected to quality control on a Bioanalyzer instru-
ment and all RNA exhibited a RIN (RNA Integrity Number) >8. All RNA sequencing libraries were prepared 
from 200 ng of total RNA using the Illumina TruSeq Stranded mRNA Library preparation kit. Kappa qPCR quan-
tification was used to perform equimolar pooling. The concentration of the pooled library was measured with 
Qubit. Sequencing of 1.2 pM of pooled library was performed with the Illumina NextSeq 500 instrument using 
2 × 75 cycles (paired-end) for all samples (high output sequencing kit). Transcripts were quantified by means of 
Kallisto using the human GRCh38 transcriptome as a reference.

Survival analysis. Overall survival analysis was performed on the SEQC data set using a Kaplan-Meier 
analysis. The curves were created by dichotomizing the RNA-expression data, using the median expression 
value as a cutoff. The log-rank test was used to compare the two curves and generate a significance level of the 
impact of expression on overall survival for each gene. Multiple testing correction was performed using the 
Benjamini-Hochberg method. Genes with q < 0.05 were considered to be associated with survival.

Super-enhancers. H3K27ac ChIP-sequencing and super-enhancer analysis using LILLY was performed as 
described78 (Supplemental Fig. 14). A gene was classified to be located in a super-enhancer if that region was 
called in a minimum of 14 different NB cell lines. The lincRNAs were ordered based on their mean rank over all 
NB cell lines.

Longhorn. LongHorn searches for sequence patterns in proximal promoters that are predictive of RNA-DNA 
triplex structures identified by Triplexator79, and expression-based evidence for modulation of transcription fac-
tor (TF) activity. To predict modulation, we first collected candidate TF-target pair interactions and then tested 
for evidence of their modulation. For all candidate TF-target pairs, we required that each TF-target candidate has 
a significant nonlinear correlation (p < 1E-11) as estimated by distance correlation (dCor), and either TF binding 
evidence from ENCODE ChIP-Seq assays or predicted interactions based on published TF binding-site motifs. 
To collect evidence for the modulation of these TF-target interaction candidates, we used delta dCor within a 
triplet composed of a lncRNA, a TF, and a protein-coding target. Specifically, for each lncRNA, we partitioned 
all tumor samples into four groups based on the expression profile of this lncRNA, from lowest to highest. To 
avoid circularity, for each triplet, we added an independence constraint by requiring that the lncRNA was not 
correlated with the TF (p > 0.1) and a range constraint by requiring a minimum of 2x fold-change between the 
lncRNA’s average expression in the two sets (low vs high). Then, comparing the sample groups with highest and 
lowest lncRNA expression, we required a nonparametric p < 0.05 for the delta dCor between the TF and the target 
against a bootstrapping-based null hypothesis. These p-values were integrated across all significant triplets using 
Fisher’s method to identify significant lncRNA-target pairs at an adjusted p < 0.01. Enrichment of the cancer 
hallmarks gene sets of the Molecular Signatures Database was calculated using Fisher’s exact test (q < 0.05)80. The 
top 20 lincRNAs modulating MYCN or PHOX2B effect were selected based on the minimum calculated adjusted 
p-value, regardless of the specified effector. LincRNAs with MYCN as target in the heatmap were selected based 
on the minimum p-value. All selected lincRNAs were expressed in NB cell lines.

Data Availability
RNA sequencing data of the ALK and PHOX2B model systems have been deposited in GEO with the accession 
codes GSE124450 and GSE124451.
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