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Advances in experimental capabilities in the glycosciences offer expanding opportunities 
for discovery in the broad areas of immunology and microbiology. These two disciplines 
overlap when microbial infection stimulates host immune responses and glycan structures 
are central in the processes that occur during all such encounters. Microbial glycans mediate 
host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence 
factors, impeding host immune responses, or playing other roles in the struggle between 
host and microbe. In the context of the host, glycosylation drives cell–cell interactions that 
initiate and regulate the host response and modulates the effects of antibodies and soluble 
immune mediators. This perspective reports on a workshop organized jointly by the National 
Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial 
Research in May 2020. The conference addressed the use of emerging glycoscience tools 
and resources to advance investigation of glycans and their roles in microbe-host interactions, 
immune-mediated diseases, and immune cell recognition and function. Future discoveries 
in these areas will increase fundamental scientific understanding and have the potential to 
improve diagnosis and treatment of infections and immune dysregulation.
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INTRODUCTION

During the early months of the COVID-19 pandemic (May 27–28, 2020), an NIH workshop 
on “Glycoscience and Immunology at the Crossroads of Biology” was convened on-line. The 
component topics of the workshop were infection, immunity, and glycobiology. Each of these 
broad areas is the subject of intense scientific investigation, and resulting discoveries have 
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advanced human health. Many studies also occur at the 
intersections of these fields. For example, infection and immunity 
represent two views of the events that occur during and after 
encounters between pathogenic microbes and their hosts. 
Understanding how these events unfold from each vantage 
point has been critical for the development of modern 
immunology and microbiology and for the development of 
strategies to treat immune dysregulation and infectious disease. 
This perspective, like the NIH workshop on which it is based, 
focuses on the overlap of glycoscience with each of these two 
fields (Figure  1).

Glycans play key roles in infection and immunity: Pathogen 
glycans may mediate host interactions and stimulate or inhibit 
host immune responses, while host glycans may serve as specific 
targets of microbial adhesion molecules or toxins (Varki and 
Gagneux, 2015). Glycans also act in mediating the host response 
to infection and in regulating immunity at multiple levels. In 
all of these roles, their primary function is molecular recognition, 
as opposed to their structural and dietary cousins (more often 
termed sugars, saccharides, or carbohydrates).

This brief perspective will use the topics discussed at the 
NIH workshop as examples to focus attention on emerging 
areas of research and opportunities in the many areas of 
infection and immunity where glycans play key roles. It will 
also highlight the importance of glycoscience tools for scientific 
progress on these topics and identify areas where investment 
in basic research efforts will advance knowledge and practice 
in glycobiology and glycomedicine.

GLYCANS IN HOST-PATHOGEN 
RECOGNITION AND DISEASE

Microbial glycans are incredibly diverse and play critical roles 
in the interactions between infectious agents and their hosts 
and in the pathogenesis of resulting infections. These compounds 
frequently constitute much of the microbial cell surface and 
therefore mediate the initial encounters between pathogen and 
host cells. Bacteria, for example, are protected by a peptidoglycan 
cell wall and often display polysaccharide capsules as well as 
other glycan-containing moieties. The cell walls of fungi are 
primarily composed of glycan polymers and highly glycosylated 
proteins. Many parasites display surface coats that are both 
anchored by glycolipids and abundantly glycosylated. Study of 
these glycans has revealed novel biological pathways, elucidated 
pathogenic processes, and led to the development of vaccines 
and therapeutics.

Microbial glycan structures contribute to pathogenesis by 
an array of distinct mechanisms. They may physically protect 
the invading pathogen, mediate cell adherence or protein 
interactions, transmit signaling information, serve as decoys, 
or alter the environment to the benefit of the invader, as when 
biofilm production reduces the efficacy of antibiotics or efficiency 
of host clearance. Tamara Doering presented the opportunistic 
eukaryote Cryptococcus neoformans as an example of a pathogen 
whose glycans are critical for the development of disease 
(Loza and Doering, 2021). This yeast, which is responsible for 

roughly 200,000 deaths from meningitis each year, elaborates 
an extracellular capsule that is composed of large (up to millions 
of daltons) polysaccharides and can comprise >75% of the 
pathogen volume. The capsule, made primarily of mannose 
or galactose chains with appendant glucuronic acid and xylose 
residues, is required for infection and inhibits host cell 
phagocytosis (Gaylord et  al., 2020). Shed capsule components 
also perturb host immune responses; this material is also the 
basis for rapid tests that are valuable for diagnosis of this 
frequently lethal infection.

In addition to glycans produced by microbes themselves, 
host glycoconjugates are critical in determining the outcomes 
of host-pathogen interactions. Influenza virus is a compelling 
example of this dual association of glycobiology and 
pathogenesis. This virus exploits host glycans by using sialic 
acid bearing proteins for cell entry (mediated by 
hemagglutinin) and a sialidase (neuraminidase) to trigger 
release of budding virions (Gamblin and Skehel, 2010); as 
a result, species-specific differences in sialic acid isomers 
impact the host selectivity of various strains. For example, 
pathogenic human influenza strains all bear hemagglutinins 
that bind sialic acid linked to the 6-carbon hydroxyl of 
galactose whereas bird influenza binds to sialic acid when 
linked to the 3-carbon hydroxyl of galactose. The molecular 
switch in human to bird specificity can occur when as few 
as two amino acids in the sialic acid binding site of influenza 
hemagglutinin are appropriately mutated.

On the flip side, influenza also illustrates how microbial 
protein glycosylation can impact host defenses. Seth Zost 
discussed how antigenic drift in the influenza virus hemagglutinin 
protein may alter its glycosylation, which in turn can change 
characteristics of the infection, such as infectivity and viral 
fitness, as well as the efficacy of host antibody responses that 

FIGURE 1 | Glycoscience, infection, and immunity overlap in multiple areas 
that drive pathogen and host function. Color-coded overlap topics mentioned 
in the text are listed as examples.
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neutralize the virus (Zost et  al., 2017; Altman et  al., 2019). 
Vaccine efficacy may also change in this scenario, both because 
the new antigen will induce a distinct antibody response and 
because protection conferred by prior immunization may 
be  less robust.

The exploitation of host glycans by microbial invaders 
to advance infection and disease occurs frequently across 
domains of microbiology. For instance, Stefan Ruhl discussed 
the contributions of host glycan recognition to the physiology 
of the oral microbiome. The interactions between lectin-
like adhesins on bacteria and complementary glycan motifs 
on glycoproteins adsorbed to tooth enamel play central 
roles in initial bacterial colonization. Lectin-glycan binding 
also facilitates bacterial coadhesion that leads to the formation 
of microbial biofilms. Glycan-driven bacterial-host 
interactions are key both to establishing the commensal 
oral microbiota and to oral disease progression (Thamadilok 
et  al., 2016; Cross and Ruhl, 2018). Host glycans can also 
significantly impact pathogen behavior by modulating the 
immediate pathogen environment. As a striking example, 
Katharina Ribbeck presented the effects on epithelial microbes 
of host mucus, which is often excluded from experiments 
performed in vitro despite its known role in defense against 
infection. Her group has shown that mucin-associated glycans 
influence multiple microbial functions that are central to 
pathogenic processes of yeast and bacteria, including surface 
attachment, quorum sensing, virulence gene expression, and 
biofilm formation. Released O-linked glycans from highly 
glycosylated mucins, such as MUC5B, retain many of 
these effects.

GLYCANS IN TUNING AND CONTROL 
OF IMMUNE RESPONSES

As major molecular determinants on cell surfaces, on secreted 
proteins, and in the extracellular matrix, glycans are well suited 
to regulate molecular recognition and molecular signaling events. 
Nowhere is this more evident than in the immune system, 
where different types of immune cells respond to secreted 
factors, each other, and molecules in their extracellular milieu 
to coordinate pathogen clearance while avoiding damage to 
host cells and tissues. Glycans and glycan recognition drive 
and regulate immune responses at every level and provide 
inviting and often untapped opportunities for therapeutic 
development targeting immune dysregulation.

Among the most exciting recent findings is that humoral 
immunity is tuned by antibody glycosylation. Robert Anthony 
and Margaret Ackerman provided clinical and mechanistic 
insights related to IgE and IgG glycosylation. Allergen-specific 
IgE is absolutely required for allergic symptoms and disease. 
Unbiased examination of glycosylation patterns of total IgE 
from individuals with a peanut allergy and non-atopic 
individuals revealed altered glycosylation – an increase in 
sialic acid content – on IgE from allergic subjects (Shade 
et  al., 2020). Selective sialic acid removal from IgE lessened 
effector-cell degranulation and anaphylaxis in allergic disease 

models. These findings make IgE glycosylation a promising 
target for therapeutic modulation.

Human IgG Fc glycans also correlate with disease outcomes, 
in both infectious and autoimmune diseases (Cobb, 2020). This 
appears to be  due to the ability of various IgG Fc glycoforms 
to drive distinct Fc-dependent mechanisms and immune 
outcomes, from activating immunity to supporting tolerance. 
Intriguingly, glycoform expression may be  specific for the 
antigen eliciting the response. Evidently, B-cell glycan biosynthetic 
enzymes respond to the antigen and regulate Fc glycosylation 
to tune the downstream response (Larsen et  al., 2021). For 
both IgE and IgG, the technology has been developed to create 
designer immunoglobulin glycans, thereby modulating immune 
responses for therapeutic benefit.

Glycosylation of cell surface molecules on immune cells 
also regulates immune outcomes. Michael Demetriou described 
how the patterns of N-glycosylation on cell surface glycoproteins 
control the distribution, clustering, and surface residency of 
immune regulatory glycoproteins in a predictable manner. The 
mechanism involves glycan-binding proteins called galectins 
that, when N-glycans are sufficiently abundant and branched, 
form a cell surface lattice of immune regulatory molecules on 
both T cells and B cells (Mortales et  al., 2020). Insufficient 
branching of N-glycans can result in autoimmune sensitivity, 
for example, in multiple sclerosis and autoimmune diabetes 
(Brandt et  al., 2021). Remarkably, oral administration of the 
sugar N-acetylglucosamine in human subjects increases N-glycan 
branching, raising the hope that dietary supplementation may 
reduce autoimmunity.

Whereas GlcNAc-induced N-glycan branching regulates 
cell surface residency on immune cells, the same single 
sugar is dynamically attached to and removed from specific 
serine and threonine residues of cytoplasmic, nuclear, and 
mitochondrial proteins. This modification (O-GlcNAc) 
modulates protein and cell functions in immunity, cancer, 
neurodegeneration, and diabetes (among others) and is 
regulated by a single transferase (OGT) and glycosidase 
(OGA). Christina Woo shared new technologies to fuse 
nanobodies to these enzymes to modulate the O-GlcNAc 
residency of a particular protein or protein site (Ramirez 
et  al., 2020; Ge et  al., 2021). These methods promise to 
allow interrogation of the roles of O-GlcNAc on target 
proteins and to decode O-GlcNAc regulation.

Once an immune response is elicited, it must be  controlled 
to avoid pathology due to the activated immune cells causing 
host tissue damage. Glycans play a role in this process as 
well. Ronald Schnaar described the 14-member family of human 
glycan-binding proteins (GBPs) called Siglecs, most of which 
are expressed on the surfaces of overlapping sets of immune 
cells and most of which dampen immune responses via 
intracellular immunoreceptor tyrosine-based inhibitory motifs 
(Duan and Paulson, 2020). When inhibitory Siglecs on activated 
immune cells encounter their native glycan ligands on target 
tissues, the immune cells apoptose or are otherwise inhibited, 
halting the ongoing immune event. Based on these findings, 
Siglecs are being targeted therapeutically as immune checkpoint 
inhibitors (Youngblood et  al., 2020).

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


McKitrick et al. Crossroads of Glycoscience, Infection, and Immunology

Frontiers in Microbiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 731008

TOOLS AND RESOURCES FOR 
GLYCOBIOLOGY

Despite significant advances in the study of glycosylation, 
there is much to be  learned regarding the biological roles 
of these highly diverse molecules. For example, the human 
glycome is predicted to be  vast: Some estimates suggest well 
over 7,500 unique structures, which require more than 700 
genes for synthesis (Cummings, 2009). These structures are 
further diversified with additional modifications, including 
sulfation, methylation, and acetylation, which can directly 
impact or alter the function of individual glycans. Progress 
in the fields of glycomics and glycobiology has been limited 
by technical challenges in glycan sequencing and glycan 
synthesis, and insufficient tools to characterize the temporal 
and spatial expression of glycan determinants at high resolution. 
These barriers are coming down, providing enhanced 
opportunities to decode glycosylation function in physiology 
and pathology.

Determining the sequences of glycan structures remains a 
highly specialized technique that requires multiple orthogonal 
approaches, microgram amounts of material isolated from 
proteins or lipids, and does not capture the spatial and temporal 
nature of the glycan itself. Glycan synthesis also presents 
significant challenges. Functional synthetic glycans must retain 
the correct linkages between sugars in the correct stereochemical 
orientation. Clay Bennett introduced ways in which the 
stereochemical outcome of glycosylation can be controlled using 
methods that are accessible to novice synthetic chemists and 
scalable (Zhuo et  al., 2019; Ling and Bennett, 2020). 
Democratizing glycan synthesis can advance glycomedicine, as 
evidenced by the development of synthetic glycans capable of 
targeting drug resistant pathogens and a potentially new class 
of antibiotic drugs.

To define the localization of glycans, identify their components, 
and explore their functions in biological tissues, the most 
commonly utilized tools in the glycobiologist’s toolkit are lectins 
and monoclonal antibodies (mAbs). Lectins, which are GBPs 
found in animals and plants, are used extensively, although 
their broad specificity can limit their utility. For example, three 
plant lectins are commonly used to distinguish between two 
biologically important structures: α2-3 linked sialic acid (bound 
by MAL, Maackia amurensis lectin I  and II) and α2-6 linked 
sialic acid (bound by SNA, Sambucus nigra agglutinin). However, 
MAL-I and MAL-II also bind 3-O-sulfated determinants and 
SNA binding can be  inhibited by lactose or galactose. Thus, 
interpretation of such experiments always requires caveats. 
Addressing this challenge, Lori Yang presented exciting 
technology in development to engineer more specific GBPs 
called Lectenz®. These proteins are engineered from carbohydrate-
processing enzymes that exhibit high specificity and affinity 
for monosaccharides and glycosidic linkages. By eliminating 
catalytic activity and enhancing affinity using directed evolution 
informed by computational predictions of known molecular 
interactions, enhanced GBPs are generated. In theory, this 
innovative approach could convert any glycoactive enzyme to 
a binding reagent that is far more specific than traditional 

lectins, providing valuable reagents to further our understanding 
of glycobiology (Angel et  al., 2021; Büll et  al., 2021).

Monoclonal antibodies are another powerful tool to examine 
glycan localization and function. However, the mAbs available 
to researchers bind only a small fraction of the predicted glycan 
epitopes within the human glycome and fewer than a third 
of them are reliably available from commercial sources (according 
to a survey of the Database for Anti-Glycan Reagents); the 
situation is even worse for mAbs that specifically recognize 
microbial glycans. The paucity of such commercial reagents 
forces many laboratories to produce their own mAbs, an 
expensive solution that perpetuates problems of availability. 
Finally, due to the similarity of the human and mouse glycomes, 
human glycan structures are often not immunogenic and result 
in the production of IgM mAbs with broader specificity. To 
address these obstacles, Tanya McKitrick is developing “smart” 
anti-glycan reagents (SAGRs) by immunizing the sea lamprey, 
Petromyzon marinus, and then producing recombinant lamprey 
antibodies with a mouse/rabbit Fc for detection purposes 
(McKitrick et  al., 2020, 2021). Lampreys have evolved an 
alternative adaptive immune system that occurs only in jawless 
vertebrates and uses a family of highly diverse, single-chain 
antibody-like proteins called variable lymphocyte receptors B 
(VLRBs). The potential diversity of SAGRs exceeds that of 
antibody production in mice, studies to date have identified 
over 25 VLRBs which can discriminate between glycosidic 
linkages, functional groups, and monosaccharides. These VLRB 
antibody sequences are publicly available in GenBank.

A further exciting area of tool development relates to protein-
glycan interactions. Greg Hudalla discussed how galectins 
recognize glycans of the cell surface and extracellular matrix 
and thereby modulate biological processes, including those 
relevant to inflammation and infection. His group has developed 
peptide-based platforms to engineer multivalent scaffolds to 
influence galectin interactions at the cellular level (Restuccia 
et al., 2015; Farhadi et al., 2021). Beyond defining key biological 
interactions, these approaches have potential application in 
areas, including signaling, apoptosis, and drug delivery.

DISCUSSION

The workshop presentations briefly reviewed above highlight 
the importance of research in glycobiology for the advancement 
of fundamental knowledge and human health. Approaches from 
glycome profiling to glycan engineering have deepened our 
understanding of glycan mediated host-pathogen interactions 
and regulation of host immunity. This understanding in turn 
increases our ability to develop feasible approaches for diagnosis, 
treatment, and prevention of infectious disease as well as for 
control of both protective and dysregulated immune responses.

Further development of tools and resources to help 
characterize, localize, and engineer glycans and glycan-binding 
proteins will accelerate discovery and application in both 
infection and immunity. Studies of infection will benefit from 
analysis and synthesis of microbial glycans, examination of 
the host activities and glycoconjugates that modulate events 
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at the host-pathogen interface, the use of microbe diversity 
to uncover new processes and cellular interactions, and the 
expansion and availability of glycan arrays that reflect the 
diversity of microbes and their host niches. Studies of immunity 
will benefit from the ability to analyze, create, and regulate 
specifically glycosylated antibodies to control immune outcomes; 
therapeutically regulate cell surface glycans to modulate their 
responsiveness target intercellular glycosylation to modulate 
signaling pathways; and target native immune inhibitory 
pathways with glycans. Robust support of these efforts will 
continue to yield exciting scientific discoveries and improved 
human health.
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