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Hydrodynamic cavitation in Stokes flow
of anisotropic fluids
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Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often
implicated in a myriad of industrial and biomedical applications. Although extensively studied
in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking.
Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular
dynamics simulations and theoretical arguments, we report flow-induced cavitation in an
anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow
past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and
growth of the cavitation domain ensued in the Stokes regime, while no cavitation
was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using
simulations we identify a critical value of the Reynolds number for cavitation inception that
scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number
for anisotropic fluids can be 50% lower than that of isotropic fluids.
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avitation, the nucleation of vapour bubbles within

a liquid, is one of the oldest and most extensively

researched phenomena in fluid dynamics!~*. Commonly
triggered by local heating of a fluid above its boiling temperature
(superheating), or by physical processes that abruptly decrease
the fluid’s pressure below its saturated vapour pressure>,
cavitation is often accompanied by pernicious ramifications.
The drop in fluid pressure during cavitation can have consi-
derable implications on a range of industrial and biomedical
processes. Industries conventionally en%aged in tribolo%g&7 and
hydraulics of mechanical components®’, sonochemical’®!! and
cryogenic processing!? and hi?h—throughput extrusion processes
in polymer material plants™® routinely experience material
degradation due to cavitation-induced wear and tear, resulting
in considerable economic losses. The scope and the extent to
which cavitation underpins crucial steps in biophysical and
biomedical processes have recently started to be recognized.
Whether it is ascent of the sap in tall trees'®, the lubrication
efficacy of thin films of synovial fluids between our joints!>, the
performance of a mechanical heart valve!® or the ability of
shrimps to deftly employ it as a tool to stun their preys'’,
cavitation is the common functional determinant in a range of
biological processes.

Cavitation sets in when liquids are subject to tensile stresses.
Above a critical value, known as the breaking tension or
cavitation threshold'®, liquids experience negative pressures,
a thermodynamically metastable state!>?’, While in some cases
reaching the cavitation threshold may be the desired goal
(for example, in applications based on sonomechanics), in
others, the physical and material parameters are tuned to avoid
the inception of cavitation. Hydrodynamic cavitation—the
cavitation in liquids induced by a hydrodynamic flow—has
been the subject of both experiments and extensive simulations,
including molecular dynamics (MD) simulations of Lennard-
Jones fluids>!"?2, Monte Carlo simulations?>~2> and density
functional theory?6~2°. From inception to implosion, the life
time of a cavitating bubble can depend on a number of factors:
volume of dissolved gases in the liquid matrix, presence of
inclusions (for example, particulate matters) or pre-existing
nucleation sites (for example, gas bubbles) and roughness of the
solid surfaces in contact with the liquid. Such multiparameter
dependence can pose technical challenges to study cavitation
experimentally—a possible explanation for the lack of
corresponding investigations in anisotropic liquids.

Anisotropic liquids constitute a special class of complex,
non-Newtonian liquids, in which the molecules exhibit
long-range order in their orientations or positions. Common
examples of such liquids include liquid crystals (LCs)*%3!,
polymeric liquids far from equilibrium (LC polymers)®? and
electro/magnetorheological fluids. In such partially ordered
media, the hydrodynamic properties, and outcomes, are
determined not just by the inertial and viscous parameters, but
also by the long-range elastic interactions between molecules, and
those between the molecules and confining boundaries.
Predictors of cavitation in polymeric and ordered liquids have
been subject of a few simulation-based studies, including MD
simulations of the nucleation of cavities in a homogeneous
polymer under tensile strain®}, and within polymers containing
nanocomposites®?. Interestingly, a number of building blocks in
living organisms are anisotropic®>~3%: amphiphilic lipids in
cellular membranes, cytoskeletal and muscle proteins and the
collagens and proteoglycans of connective tissues possess intrinsic
order; and biopolymer solutions in the cytoskeleton® and F-actin
filaments?%*! have nematic symmetry. Consequently, the study of
cavitation in complex anisotropic media becomes essential,
especially in light of biomedical procedures like electrohydraulic
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lithotripsy*?, and shock-wave lithotripsy that can trigger
intraluminal bubble expansion leading to rupture of capillaries
and small blood vessels*3.

Despite its far-reaching implications, a systematic study of
cavitation in anisotropic liquids is yet to be undertaken. LCs
and LC polymer materials, with their highly tunable physical
properties*, offer a realistic substitute for biological samples to
carry out investigations of cavitation within anisotropic media.
To the best of our knowledge, cavitation in LC materials has been
studied only in the contexts of phase transitions in LCs under
negative pressure®®, and the disruption of director alignment*®.
While in the former case, cavitation was induced by an isochoric
cooling of small LC droplets embedded in a glass-forming
material, acoustic waves were employed in the latter to nucleate
cavitating domains. Any attempt to study hydrodynamic
cavitation in LCs is still largely lacking.

In this work, we use microfluidic experiments to study
hydrodynamic cavitation in a liquid crystalline material
(5CB, nematic phase at room temperature, see Methods), and
employ MD simulations to quantitatively capture the dynamics of
cavitation inception and growth. Cavitation occurred due to the
flow of nematic 5CB past a cylindrical pillar, placed within a
linear microfluidic channel. A vapour-liquid interface, pinned on
the micropillar surface, encases the cavitation domain. Interest-
ingly, the inception and growth of the domain takes place in the
Stokes flow regime (Reynolds number, Re < 1), that is, under
laminar flow conditions. We have identified a range of Ericksen
numbers, 200<Er<500 (the Ericksen number characterizes
the nematofluidic conditions of our system*!, see Methods),
in which cavitation is reproducible and stably sustained. From
its first appearance at a given Ericksen number, the cavitation
domain grows in size, and within a few hours, attains the
saturation volume. For Ericksen numbers below the lower bound,
no cavitation was observed, whereas at Er>500, the domain
was unstable, and was observed to shrink in size. In all our
experiments, the cavitation volume was localized around
the stagnation point downstream of the micropillar. Using
MD simulations, we numerically reproduce the microfluidic
experiments and, by identifying the material and flow parameters,
establish the physical principles that govern cavitation in
anisotropic liquids. We find that the critical Reynolds number,
Re., (minimum Re for cavitation inception), scales inversely with
the order parameter of the anisotropic liquid. This, in contrast to
corresponding flows in isotropic phase (order parameter~0),
was calculated to be less than half of that in isotropic liquids.
Finally, we develop theoretical arguments based on the free
energy of the fluid that support all our findings.

Results

Experiments. The first appearance of the microscopic cavitation
domain was detected at Er~200. As shown in Fig. 1lab,
the vapour phase localizes at the hydrodynamic stagnation
point downstream of the micron-sized pillar. As the streamlines
of the flowing 5CB divide upon approaching the micropillar,
both Er and Re first increase locally, reach maximum values
at the point of minimum separation and reattain their original
values as the flows converge downstream of the pillar. With
an average flow speed of 800pums~! (Er=200), the velocity
reaches a maximum of 4,000pums~! at the constriction
(minimum distance of 10 pum between the pillar surface and
the channel wall). This corresponds to Er =945 and Re=0.1,
a hydrodynamic Stokes regime. The resulting drop in the
hydrodynamic pressure corresponds to ~8mPa, corroborating
that the absolute pressure decreases below the vapour pressure of
nematic 5CB (~0.1 mPa at 298 K¥7).
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Figure 1| Cavitation in nematic LC due to flow past a micron-sized pillar. (a) Polarized optical micrograph and (b) white light micrograph show
steady-state cavitation domain in nematic LC, 5CB. The channel and pillar surfaces have homeotropic boundary condition. Right panel: Magnified projection
of the cavitating domain. (¢) Minimum intensity projection of the scattered light over time due to flowing disclination lines. The disclinations were used to
trace the streamlines of the LC flow past the micropillar. The cavitating domain is locally stabilized at the hydrodynamic stagnation point (indicated by the
red arrowhead) downstream of the micron-sized pillar. For the micrographs shown here, the pillar diameter is 2r = 80 pm, placed within a 100 um wide and
15 um deep microchannel. (d) Map of the local nematic order parameter in proximity of the cavitation domain obtained from MD simulations (see attached
colour bar). The area of solid red colour corresponding to vanishing nematic order represents the cavitation. Small dashes in the maps represent the local
director field. The length of a dash represents its three-dimensional orientation: shorter dashes have an orientation closer to the normal to the plane of the
map. (e) Magnified view of the cavitating domain observed between crossed polarizers. The intensity of the transmitted light (normalized by the maximum
intensity) is measured along the dashed lines: red, blue and green, and plotted in (). For each line, the maximum value of the normalized intensity
(bright regions) is recorded outside the cavitation domain (bulk director is oriented at 45° relative to the polarizers). At the apex of the cavitation domain
and further downstream, the director is oriented parallel to the flow direction that appears dark between the crossed polarizers. The gas-filled cavitation
domain also appears dark (minimum intensity) due to the total extinction of transmitted light. (g) Cavitation domain was also observed under planar

surface anchoring conditions, visualized here between crossed polarizers.

Figure 1c shows the downstream hydrodynamic stagnation
point (red arrowhead), visualized using a differential intensity
projection of the light scattered by the flowing disclinations
(Methods). Due to the high Er flows, singular topological
defects readily fills up the nematic bulk that scatter white
light due to the lensing effect*8. These freely flowing disclinations
(both £1/2 and £1 defects are present) follow the streamlines,
and accurately map the laminar flow field around the micropillar.
Between the crossed polarizers, the cavitation domain has a dark
appearance due to complete extinction of the transmitted white
light. As shown in Fig. 1b, the interface between the vapour and
liquid phases of 5CB is distinctly visible under white light.
Cavitation was also observed within microfluidic devices
possessing planar surface anchoring (Fig. 1g). Irrespective of the
surface anchoring, no cavitation was observed in nematic flows
at Er<200. In all cases, the nematic director field, average
orientation of the LC molecules, visualized using polarization
microscopy, was observed to be aligned by the flow field
(nematic 5CB is a flow aligning LC3?). This agrees very well
with flow-induced director field described previously*°.

Figure 1d maps the local nematic order in proximity of
the cavitation domain, obtained through MD simulations. In
agreement with the polarized optical measurements (Fig. 1e), our
simulations predict that the LC molecules anchor homeotropi-
cally at the fluid-vapour interface. As shown in Fig. 1f, the
normalized intensity of the transmitted light, plotted for three

adjacent sections on the cavitation domain (red, blue and green
dashed lines), attains maximum value just outside the cavitation
domain. The maximum intensity corresponds to bulk director
orientation of 45° relative to the crossed polarizers. Close to the
apex of the cavitation domain, the director is oriented along
the flow direction. This appears dark between crossed polarizers
as the director is parallel to one of the polarizers. A minimum
intensity is also observed inside the cavitation domain due to
total extinction of the white light passing through the gas
phase between crossed polarizers. The intermediate values of
the intensity at the cavitation interface suggest that the molecules
have a weak homeotropic alignment at the interface, as
also confirmed by our MD simulations. Measurements on
5CB show that the molecules align homeotropically at the
fluid-vapour interface®®~>2, in agreement with existing studies of
the LC-air interface for 5CB%3, Our MD simulations correctly
capture this behaviour that lends confidence to the predictions
about the underlying physics. The disclination lines found in the
experiments are not present in the MD system (Fig. 1d) as they
require much larger system sizes to develop.

Upon appearance, the cavitation volume increases over
time, and typically within few hours (4-7h) of steady flow
of the nematic 5CB, saturates into a constant size. Figure 2a,b
show polarization optical microscopy (POM) micrographs of
a cavitating domain developing over 5h at Er ~ 210. The time
taken to attain the steady-state volume varies in experiments
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Figure 2 | Cavitation domain growth. (a) Polarized optical micrographs represent the growth of the cavitation volume over time. The total time elapsed is
5h. The minimum intensity regions (dark appearance) are observed either due to the extinction of the transmitted light as it passes through the vapour
phase (in the cavitation domain), or through the bulk nematic phase aligned parallel to one of the polarizers. The two cases are distinguished using

a A-plate. (b) Introduction of the A-plate confirms the absence of the nematic phase in the cavitation domain, and distinguishes it from the bulk nematic
aligned parallel to the polarizer. (¢) Cavitating domains were observed upon LC flow past different obstacle geometries: semicircle (left) and square
(middle); and at different channel depths (right, d~10 um). Shallow channels require high Er numbers for cavitation to be triggered.

and, in addition to the roughness of the pillar surface
(higher roughness promotes cavitation), it showed a qualitative
dependence on the depth of the microchannel. At a given Er, it
took longer to reach the saturated volume in a shallow channel
(d<12 um), compared with that in deeper channels. However,
once formed, the cavitation domain in a shallow channel
was observed to be stable for longer times, possibly due to
strong pinning of the vapour-liquid interface at the top
and bottom surfaces of the microchannel. The POM micrographs
with A-plate (Fig. 2b) confirm the absence of the nematic phase
within the cavitation domain. While cavitation can be initiated
by pre-existing gas bubbles entrapped in the asperities of the
confining solid surfaces, we do not expect this to play
a determining role in our experiments. Under similar
surface conditions, no cavitation was observed when 5CB in the
isotropic phase was flowed, and in experiments with deionized
water. The inception of cavitation only in the nematic 5CB
suggests that cavitation is triggered due to the complex
anisotropic nature of the flowing material. Cavitation was also
reproduced with obstacles having noncircular cross-sections,
including semicircular and square geometries (Fig. 2c). At high
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flow speeds (Er>500), the domain volume was observed to
reduce in size. This is counterintuitive, since high flow
speed (high Re) is known to favour the onset of cavitation in
isotropic fluids. However, in the present setting, we speculate
that the strong viscous forces disrupt the pinned vapour-liquid
interface, and shear off minuscule gas bubbles from the
saturated cavitation domain. This can reduce the domain
volume, triggering a dynamic tradeoff between the growth
and decay processes that regulate the final cavitation volume
at a given Er.

Simulations. To obtain an in-depth understanding of the
physical processes that underlie the cavitation phenomenon, we
turn to a theoretical modelling of our experimental setup. Due to
the limitations in computer performance, the length scales
accessible to MD simulations are still too small compared with
the micron-sized cavitation domain in our experiments. However,
the MD simulations do provide us access to the early stages
of the LC cavitation, in addition to the structural information
that is not easily tractable with phenomenological theories of LCs
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Figure 3 | MD simulation of the hydrodynamic states. (a-c) Maps of the magnitude of local density in the x-y plane located at z= 0 (see attached color
bar). The circle represents the cylindrical pillar and the arrow above each column indicates the direction of flow, at different Ericksen numbers: (@) Er~65,
(b) Er~897 and (c) Er~1,374. (d-f) MD simulated local pressure plots and (g-i) corresponding local velocity fields, carried out at the same Er as in (a-c).
Colour bars attached to plots in the top panel refer to all plots in the same column.

(see Methods and Supplementary Information). To characterize
the onset and evolution of cavitation within the LC fluid,
in Fig. 3a-c we present the maps of the local density in a
x-y cross-section of the system. For the system at rest, that is,
without flow, the density is homogeneous throughout the
system. For moderate flow conditions the density remains
homogeneous across the system (see Fig. 3a). However, at high
flow rates, starting at Er~ 897, the density across the system starts
to change. Figure 3c shows a well-developed cavitation domain
at Er~1,374. Specifically, we observe a drop in the density in
the downstream wake of the pillar (Fig. 3b). The density of this
area corresponds to that of vapour phase, and therefore
demonstrates hydrodynamic cavitation. The size of the vapour
domain first increases till Er~ 1,374, and then grows at a reduced
rate. At Er~1,586 the cavitation domain reaches the maximum
size and does not grow further.

We notice that the Er at which cavitation initiates is about
a factor of four higher than in our experiments. This apparent
discrepancy is resolved by estimating the nematodynamic para-
meters locally around the micron-sized obstacle, rather
than the far-field values. Locally, the Er reaches much
higher values due to the increased flow speed through the
constriction between the pillar and channel walls*%, When
cavitation first occurs in our experiments, at a far-field Er of 200
(v=800ums ™~ 1) the corres onding local Ericksen number
Erjoc =945 (V1oc=4,000 ums ™ °). This value is intriguingly close
to Er = 897 obtained in the MD simulations. We note that the local
Reynolds number still falls within the Stokes regime (Rejoc =~ 0.1).
The close agreement between the experiments and simulations
prompts us to conclude that the microfluidic experiments and the
MD simulations represent equivalent hydrodynamic conditions.
Thus, despite the difference in length scales, by analysing the
system over comparable nematodynamic conditions, we are able to
capture the underlying mechanism for cavitation under relevant
boundary conditions.

The development of cavitation depends on the local pressure
landscape. Figure 3d-f illustrate maps of the local pressure
in the x-y cross-section of the system. The system at rest
exhibits a homogeneous local pressure, as one would expect
(not shown here). From the map in Fig. 3d it is clear that
this applies to small Ericksen numbers Er~65 as well. However,
as shown in Fig. 3e, for Er~897 (the onset of cavitation),
this situation changes drastically. On the upstream side, the
local pressure builds up because of the flow obstruction by
the pillar. This is accompanied by a pressure drop on the
downstream side, just behind the cylindrical pillar. After passing
the constriction the fluid expands freely, and thus resulting in
the drop in local pressure. This effect becomes even more
pronounced if flow is further increased as shown in Fig. 3f. Notice
that within the cavitation area the local pressure equals to the
pressure of an ideal gas.

Figure 4 presents the corresponding evolution of the local
pressure in the vertical plane (y-z plane) at specific distances
behind the cylindrical pillar. For reasons of symmetry, and to
obtain improved statistics, the values of the local pressure have
been averaged along the channel depth (z-axis), and are presented
across the channel width (y-axis). To avoid confinement effects,
we exclude the regions close to the planar substrates from our
calculation. For small flow velocities, the local pressure behind the
cylindrical pillar is, on average, constant along the y-axis. If flow
is increased (see Fig. 4a), the local pressure starts decreasing
behind the cylindrical pillar. At the threshold value for cavitation,
Er~786, the local pressure attains negative values. Hence,
molecules in this area are pushed out. This occurs just before a
cavitation volume nucleates. As soon as a cavitation volume is
visible (Er~897) the local pressure in that area is equal to the
ideal gas pressure.

The oscillations visible in Fig. 4a for Er~65 are due to the
layering effects®*>® of the molecules close to the pillar. This leads
to changes in pressure in this region located at the centre of the
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Figure 4 | Mapping the local pressure. (a) Dependence of the local
pressure at distance 0.7 behind the surface of the cylindrical pillar in the
direction of flow, plotted across the channel width (y-axis) for Er~65
(red line), Er~583 (brown dashed line), Er~786 (orange dashed line) and
Er~897 (cyan dotted line). The inset in (a) shows a sketch of different
positions behind the cylindrical pillar at which the local pressure was
measured. (b-e) Plots of local pressure at specific distances behind the
surface of the cylindrical pillar for Er~65: (b) at a distance of 0.7 behind
the pillar, (¢) at 1.3, (d) at 1.7 and (e) at 2.7.

y-axis. If the local pressure is calculated further away from the
surface of the cylindrical pillar, layering effects become less
prominent, and as shown in Fig. 4b-e, the local pressure
minimum (at y =0) vanishes. From a molecular standpoint, the
local pressure oscillations close to the surface of the cylindrical
pillar support the nucleation of a cavitation domain. This is
consistent with the fact that hydrodynamic cavitation requires
a nucleation site such as a surface.

Figure 3g-i maps the local velocity over the mid-plane
cross section (x-y plane) of the nematofluidic system. At small
flow rates, Er ~ 65, the local velocity is rather low, as indicated by
the random orientations of the arrows representing the flow
direction (Fig. 3g). At the onset of cavitation, Er ~ 897, a net flow
is clearly present (Fig. 3h). The local velocity in the constriction is
considerably higher than that in front of and behind the
cylindrical pillar. The relative velocity difference becomes
stronger at still higher flows. Figure 3i presents the velocity
map at Er~1,374 in the vicinity of the obstacle and the cavitation
domain. Due to lack of sufficient statistics within the gaseous
phase, the local convective velocity was set to zero in the
cavitation area for calculating the resulting velocity map.

We apply the density maps presented in Fig. 3a-c for
estimating the volume, V¢, of the cavitation domain. The total
volume was obtained by adding up all the cubic volumes for
which the local density p;<0.15. Figure 5 plots the variation
of V. with the Reynolds number Re, where Re. denotes the
critical Reynolds number for the cavitation inception. Alongside
anisotropic system described so far, we have also performed

6

> v T=088
1,600 : ® T=0.90
®T=092
ET=1.10
1,200
0 5
800 0.50 0.55
*
A
400 I & .
T 07 .
' *
O o

0 05 10 15 20 25 30 35

Figure 5 | Growth of cavitation volume. Cavitation volume plotted
against Reynolds number Re for the nematic LC at T=0.88 (black triangle),
at T=0.90 (red circle) and at T=0.92 (brown diamond), and for an
isotropic LC (blue square). The inset shows the critical Reynolds number,
Re., plotted against the average nematic order parameter S, spanning
temperatures from T=0.92 down to T=0.87.
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Figure 6 | Cavitation volume and Euler number. Dependence of the
cavitation volume on the inverse Euler number C¢ ' for the nematic LC
(red circle) and isotropic LC (blue square).

MD simulations for the same LC model in the isotropic
phase (T=1.1). The two systems differ in their viscosity #: the
nematic LC (n~37) is more viscous than the isotropic LC
(n~21). Thus, from the definition of Re, it follows that
the nematic LC cavitates at lower critical Reynolds number
Re,, than the isotropic LC. That fluids with lower viscosity require
a larger Re. to cavitate is consistent with our experiments.
Neither the deionized water nor 5CB in isotropic phase
elicited cavitation at Reynolds numbers in which the nematic
5CB cavitated. It is important to note here that, in our
simulations, the Re., for the nematic LC is of the same order of
magnitude as the local Re in the microfluidic experiments (~0.1).

For both the nematic and the isotropic phases of liquid crystals,
we observe a steep growth of the cavitation domain after its
formation, followed by a saturation to a plateau. The height of the
saturation plateau is due to the finite size of the simulation box
and, therefore, is system size dependent. However, the plateau
value of the cavitation domain depends on the nature of the fluid,
and can be ascribed to the differences in the liquid matrix
structure, for example, different ordering among the three fluids.
Figure 5 shows the growth of cavitation domains for the nematic
LC at T=0.88 and T=0.92 that correspond to higher (17 ~40)
and lower (1=~ 34) viscosities, respectively, than what we have
considered till now. While the qualitative trend is still retained,
quantitative differences emerge, specifically in the growth and
saturation of the cavitation domain. The lower the temperature
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Figure 7 | Flow-induced local nematic order. (a-c) Magnitude of the local nematic order in the x-z plane located at y =0 (see attached colour bar). The
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to the plane of the map. The Ericksen numbers considered are (a) Er~130,

x-y plane located at z=0.

(higher viscosity), the larger was the resulting cavitation volume.
In addition to viscosity, the nematic order parameter also varies
with T. The inset of Fig. 5 shows the dependence of Re., on the
average nematic order parameter S for temperatures ranging
from T=10.92 down to T=0.87. For values of S in the nematic
phase the critical Reynolds number Re,, decreases linearly with S,
demonstrating that cavitation is enhanced by stronger nematic
alignment. This qualitative measurement serves as a first step
towards understanding the influence of long range ordering on
cavitation at micro scales.

Figure 6 shows the cavitation volume V_ in terms of the inverse
Euler number Cg, a dimensionless number that is independent of
the viscosity of the system. The ratio between the pressure
gradient and the kinetic energy per volume is decisive for the
development of a cavitating volume, as captured distinctly in
Fig. 6. Independent of the model system cavitation occurs at the
same Euler number Cz. When cavitation first occurs in the
experiments we find Cgp ~ 0.5 that is within similar order of
magnitude as the simulations.

Figure 7 maps the local nematic order parameter over the
range of flow regimes considered here. The flow field reorients
the nematic director from homeotropic (on the surfaces) to
flow-aligned orientation (in the flowing matrix). Topological
defects arise in the director field, close to the top and the bottom
walls, where the cylindrical pillar intersects the channel surfaces
(Fig. 7a). The singular defect loops are formed due to the
homeotropic anchoring, both on the channel surfaces and on
the pillar, and are consistent with the defect topology discussed in
ref. 49. It is evident from Fig. 7d that over the x-y plane, located
at the channel half depth (z =0), no defect is visible. The director
field remains stable for small Er. However, for Er>675 a single
loop around the pillar stabilizes in the x-y mid-plane. The loop is
deformed and extended towards the downstream direction along
with the flow, shown in Fig. 7b,e. Additionally, there is a growing
region of flow alignment behind the cylindrical pillar in the
downstream direction. Upon increasing Er one can see that the
loop becomes stretched further downstream (see Fig. 7c).
However, the overall defect topology, especially downstream
behind the pillar, is increasingly smeared, possibly due to the
appearance of the vapour phase at high Ericksen numbers
(Fig. 7f). Changing the surface anchoring from homeotropic
to planar did not produce any qualitative change in our results.
This agrees well with the experiments, where too we have
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(b) Er~675 and (c) Er~786. (d-f) Corresponding director fields over the

observed that cavitation in nematic phase was independent of the
nature of the surface anchoring.

Theoretical analysis. We theoretically study the cavitation in
an anisotropic matrix and predict the role of nematic order
parameter on cavitation inception. As the simplest case, let us
consider a spherical environment containing the nematic liquid
crystal (see Methods and Supplementary Fig. 1). The fluid is
subject to a pressure drop AP. Under appropriate hydrodynamic
conditions, a stationary pressure drop leads to cavitation in the
nematic bulk. The first region of interest, the spherical cavitation
domain with radius r., encloses the vapour phase of the LC.
From our foregoing experiments and computer simulations
we know that the nematic LC molecules align homeotropically to
the surface of the vapour phase. This we consider as the region 2:
a spherical shell of thickness rq —r. with perfect homeotropic
alignment to region 1. Finally, the rest of the system is the bulk
nematic phase that we will treat in the mean-field approximation,
namely, with a homogeneous nematic order parameter S. Locally,
the order parameter may vary as a result of the inception and
growth of the cavitation domain. The third region has a radius
r.>rg, and excludes the sphere of radius 7.

Although the presence of hydrodynamic flow induces
nonequilibrium conditions, the fluid has typically enough
time to reach conditions of local equilibrium, and therefore
a discussion based on free energies is admissible. We find that
the total free energy can be expressed as

B

1 T
Fiot= 7% {Sf\jvm + <87‘c s + u

i

where the cavitation volume v = &> = (r./r.)’, o, ff and y are
coefficients with dimensions of energy (see Methods section
for details), 7 the surface tension of the liquid—-vapour interface,
Sx is the nematic order parameter in the absence of cavitation
and AP is the absolute value of the pressure drop. Cavitation
will occur when the free energy in equation (1) develops
a minimum v*>0. This critical point is found from the two
conditions OF,,/Ov=0 and 9%F,/0v*=0 that determine the
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critical cavity volume and critical pressure

P ANV VR
M ’ PO 'yz N 317

where Py = o/(3nr]) is a reference pressure, 1 = oS},
2

p=lo@rit+ b “—fﬂ) For >0 and <0 a finite minimum

develops.

The influence of the order parameter on cavitation can be
found from studying how v* depends on Sy,

-
u Snérf-l- g S (3)

y
3 )
=(1) (1+3,%).
o oSy
where ¢ = 8nirf + g < 1. Thus, as Sy grows, v* decreases and
cavitation grows easier. This fact is confirmed by our computer
simulations.

The following physical picture emerges from the theory
above. Upon increasing flow speeds the pressure in the stagnation
point downstream of the obstacle diminishes. The elastic
energy associated with the nematic order increases due to the
deformations induced by both the flow alignment and the
pressure drop. At a certain flow magnitude, it becomes
energetically more favourable to produce a liquid-gas interface
whereon anchoring conditions compatible with the nematic
director alignment can materialize. Consequently, the director
field can relax, and the nematic order parameter attains values
locally higher and closer to the value in stationary conditions than
in the case when no liquid-gas interface would form. We note
that the presence of the coupling « between order parameter
and deformation is crucial to produce nematic cavitation.
At vanishing o, there is no advantage in producing cavitation.
Note also that for vanishing Sy (that is, not in the nematic phase)
cavitation does not occur. Our theoretical arguments are in
fact valid only for phases with nematic order.

Discussion

We report hydrodynamic cavitation in the Stokes flow regime of
an anisotropic fluid, due to flow of a nematic LC past a micron-
sized pillar within a microfluidic chip. By varying the flow speed
within a channel, we studied the growth of a stable, microscopic
cavitating domain on the pillar surface that positioned
stably at the downstream stagnation point of the micropillar.
Cavitating domains were experimentally observed for
200 <Er<500, and Re < 1, in microchannels possessing both
planar and homeotropic boundary conditions. For flows with
Er<200, cavitation was not detected, whereas for Er>500,
the cavitating domain, after formation, was sheared off due to the
high flow speed, and advected downstream. At a given Er, the
cavitation domain, over a few hours (5h for Er = 250), attained
the saturation volume. By demonstrating that cavitation in
complex anisotropic fluids can be triggered at Re~10">-a
hydrodynamic Stokes flow regime, our work complements earlier
reports on hydrodynamic cavitation of isotropic fluids at high
Reynolds numbers (for example, microchannel flows in deionized
water flowing through a micro-orifice by Mishra and Peles®®>8).
The occurrence of cavitation under both planar and homeotropic
boundary conditions indicates that the nematofluidic conditions
that favour cavitation in 5CB are weakly influenced by the nature
of LC anchoring on the microchannel surfaces. This corroborates
that the viscous forces play a dominant role relative to the
elastic forces, given the high Er at which inception of cavitation
is observed in our experiments.

8

Micro pillar

Figure 8 | Microfluidic confinement. (a) Microchannel with micron-sized
cylindrical pillar fabricated using surface bonding of PDMS and glass
components. The orthographic projection shows a linear channel of a
rectangular cross-section with the integrated micropillar. The x, y and z
coordinates denote the flow direction of the anisotropic fluid (a nematic
molecule), the transverse direction of the channel (width) and the channel
depth, respectively. The blue arrowheads show the flow path.

(b) Microchannel projection showing the cross-sectional view (yz plane)
with r, w and d being the pillar radius, channel width and depth, respectively.
() Sketch of the empty simulation channel with the discrete walls.

Using MD simulations, we have established a critical
Reynolds number criterion, Re,,, that sets the threshold Re for
cavitation inception. Strikingly, the simulations reveal that
the Re., can be up to 50% lower in anisotropic fluids than in
isotropic fluids. While the susceptibility of a liquid to cavitate is
clearly linked to its viscosity, importantly still, our finding
that Re. decreases linearly with the global nematic order
parameter S demonstrates that long-range ordering is a key
material parameter for cavitation inception in complex
anisotropic fluids. Measurements of the growth in cavitation
volume revealed that the qualitative behaviour in isotropic
LC fluids is similar to the one of anisotropic fluids, for example,
the rate of volume growth. However, the size of cavitation domain
at large Er numbers is markedly different. This further adds on
to the consideration that structural differences of the system,
such as long-range order, affect the growth of cavities due
to hydrodynamic flow. In addition, our simulations at lower
Er numbers (before cavitation sets in) are in very good agreement
with earlier microfluidic experiments*®. Finally, our theoretical
calculations support the occurrence of cavitation in nematic
LCs, and correctly predict the lowering of the cavitation threshold
with increasing nematic order parameter.

Our study is a step towards understanding cavitation in
anisotropic fluids that aptly complements investigations on
cavitation in isotropic fluids. Beyond its fundamental significance,
this study can potentially introduce a novel control parameter
for devising applications based on cavitation at low Reynolds
number flows and in the development of future biomedical
applications.

Methods

Materials. We have used 4'-pentyl-4-biphenylcarbo-nitrile, commonly known as
5CB (Synthon Chemicals), as the anisotropic liquid for our experiments. 5CB is a
single component LC that is in the nematic phase at room temperature, and was used
without any additional purification. In the nematic phase, the 5CB molecules possess
a long-range orientational order that is lost at higher temperatures, as 5CB undergoes
a transition to the isotropic phase at ~33°C (ref. 59). On cooling it down below
18 °C, nematic 5CB undergoes a phase transition to the crystalline phase.

| 8:15550 | DOI: 10.1038/ncomms15550 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

Microfluidic setup. The microfluidic devices were fabricated using channel reliefs
cast on polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) and surface
bonded to glass following exposure to oxygen plasma. The cylindrical pillar was
formed as a part of PDMS cast prepared using soft lithography*®. An orthographic
view of the microfluidic chip is shown in Fig. 8a. Experiments were conducted in
simple linear channels with a rectangular cross-section and a cylindrical pillar
placed at the middle of the channel, spanning the channel depth, d, from 10 to
50 um, and the pillar diameter, 27, between 10 and 80 um (see Fig. 8b). Here we
present results that were obtained (unless otherwise stated) due to the flow of
nematic 5CB past micropillars of diameter, 2r =80 um within w= 100 pm wide,
d~15um deep, and sufficiently long (20 mm) channels. In Fig. 8a, x, y and

z denote the flow direction, channel width and channel depth, respectively.
Cylindrical holes of 750 pm diameter at either ends of the channel served as the
housing for the inlet and outlet tubes (Teflon). The tubes (300 pm inner diameter
and 760 pm outer diameter) were inserted within the holes punched in the PDMS
mould. Smaller diameter of the PDMS housing as compared with the external
diameter of the tube ensured good mechanical fitting. Additionally, uncured PDMS
was applied at the point of fitting. After curing of the PDMS, any possible leakage
at the inlet and outlet ports was ruled out. For filling the channel and subsequent
flow experiments, a gear pump (neMESYS, Cetoni) with flow rate precision of
nlh =1 (£0.02% of the corresponding flow rates) was used to drive a gas-tight
microlitre syringe (1001LT, Hamilton Bonaduz), connected to the inlet tube. The
outlet tubing was dipped in a sink of 5CB. In agreement with the observed
dependence of the swelling ratio on the substance polarity (~4.8 D for 5CB)*, no
perceptible swelling of PDMS by 5CB was observed during the course of our
experiments. To rule out the presence of pre-existing gas or air pockets entrapped
in the surface asperities, and anywhere else in the fluidic circuit, the experiments
were conducted after degassing the PDMS-glass microchannels, connected to the
LC-filled microfluidic syringe, for 1h using a vacuum chamber. In addition to
visualizing the cylindrical pillar, the entire microfluidic device was periodically
scanned to check for other cavitation-like nucleation sites.

Surface anchoring and flow field characterization. The microfluidic devices
employed here comprised two chemically distinct surfaces, namely PDMS and
glass. While LC molecules orient perpendicular to the PDMS surface (homeotropic
surface anchoring), on the glass surface, the molecules anchor parallel to the glass
surface with azimuthal degeneracy (degenerate planar anchoring)*®. To achieve a
homogeneous homeotropic surface anchoring on all the surfaces, the confinement
was functionalized using an aqueous solution of octadecyldimethyl(3-
trimethoxysilylpropyl)ammonium chloride (DMOAP). The channel was first filled
with the DMOAP solution and then rinsed with deionized water (after ~ 10 min).
The surface treatment was thereafter thermally stabilized by heating the channel at
80 °C for 15min and at 110 °C for 1h. This yielded homogeneous homeotropic
surface anchoring conditions on all the surfaces. To induce planar boundary
conditions, freshly fabricated microchannels were rinsed with a dilute solution of
polyvinyl alcohol (average molecular weight =90k, concentration 0.1% by weight
in deionized water). The hydroxyl groups of polyvinyl alcohol bond covalently to
silanol groups on the glass surface and plasma-treated PDMS surfaces®®. The
bonding was additionally stabilized by baking the filled channel at 80 °C for 15 min
followed by baking at 110 °C for 1 h. On completion of the baking process, the
polymer chains, oriented parallel to the confining surfaces, imposed a planar
surface anchoring on all four walls of the microchannel.

We have combined white light microscopy in bright-field mode and POM to
identify the cavitating domain and the director orientation of the flowing LC
molecules, using a Nikon Eclipse LV100 polarizing microscope. Imaging was
carried out with a 20 x air objective, NA =0.45. The flow speed was typically
extracted from high-speed videos of flowing particles using standard particle
tracking techniques®. Control experiments, to check for long-term effects of
5CB flow on PDMS surfaces, were also done to specifically identify any surface
degradation of PDMS due to 5CB (which can potentially act as a nucleation site for
cavitation). We report no surface degradation of PDMS due to flowing 5CB, for at
least 24 h of continuous flow.

Light travelling through a singular disclination in liquid crystal can lead to
lensing effects that renders the defect optically distinct from the neighbouring
ordered region®!. In high Er nematic flows, disclinations give rise to numerous
flowing optical lenses within the flow-aligned nematic matrix. We visualize such
disclination lines using video microscopy, close to the micron-scale obstacle.

By means of image analysis technique we capture the differential intensity between
the frames acquired from the video, and average them over the duration of the
video acquisition. Thereby, we obtain a time-averaged differential intensity map of
the disclination lines flowing past the obstacle, as shown in Fig. 1c. This
information was used as a proxy for the streamlines of the nematic flow, since
disclinations—both singular and escaped structures—are stretched due to the
viscous drag and, in general, appear as straight lines within the flow®2.

Material and nematofluidic parameters. Microfluidic devices, possessing
homeotropic and planar surface anchoring, were initially filled with 5CB in the
isotropic state, and allowed to equilibrate to nematic phase at room temperature.
Thereafter, we progressively increased the volume flow rate Q (0.01 plh ~!
<Q<20pulh 1) to detect the first appearance of the microscopic cavitating

domain. For a typical channel with dimensions, w= 100 pm, and d =15 pum, the
corresponding flow speed, v, within the microchannel varied between ~2pms ™
and 4mm's ~ !, Thus, for the nematic LC 5CB having bulk dynamic viscosity,
17~50 mPa s, the characteristic Reynolds number Re = pvl/ ranged between
10~ % and 103 that, from a hydrodynamic point of view, signifies the

Stokes flow regime. Here, p~1,025kgm ~3 is the material density, and
I=4wd/2(w+ d) ~ 26 um is the hydraulic diameter of the rectangular
microchannel. The Ericksen number, a dimensionless number that captures the
relative importance of the viscous effects over elastic effects in LC flows*4, is given
by Er =nvl/K, where K=5.5pN is the single elastic constant of nematic 5CB.

It is important to note that the elastic constant does not appreciably change at the
constrictions of the microfluidic channel. Elastic constants depend on the nematic
order parameter, and there should be no other dependence unless the short-range,
molecular structure of the fluid is perturbed. For flow-aligning liquid crystals, the
balance of hydrodynamic torque with the elastic one selects a steady-state angle.
In this way, the viscous stresses relax to a local equilibrium that does not alter the
microphysics of the fluid. We do not expect that the hydrodynamic flow in our
experiments, although strong, change the short-range structure of the fluid. From
the field map of the nematic order parameter calculated via molecular dynamics
simulations and shown in Fig. 7, we can observe that in fact the local order
parameter at the constrictions exhibits no particular difference from the values
sufficiently away from the micropillar. We can then conclude that the elastic
constants will not significantly change in the constrictions.

In our experiments, the corresponding values of Er ranged from ~0.5 to 850:
for Er<1, the elastic effects outweighed the viscous effects, whereas at Er> 1, the
viscous effects are dominant over their elastic counterpart. As Re and Er are both
proportional to vl, we immediately find that Re = Kp/n? Er. Inserting the typical
numbers for the materials 1properties of LCs, we find a general conversion factor:
Re~10 " *Er, for K~10 11, obtained as a ratio of interaction energy between
molecules and the molecular distance, p~103 and 5~ 102 (ref. 44). Therefore,
the specific conversion factor depends on the material properties of the
particular LC and can vary for different LC compounds. For 5CB, Re~10~° Er.
Nevertheless, the experiments and simulations remain in the laminar flow regime
for all Er considered.

1

MD simulations. We consider a confined fluid with a cylindrical pillar filled
with a fluid composed of N molecules (see Fig. 8c). The system is confined by
atomically resolved solid substrates that induce friction on the flowing molecules to
obtain a steady state during the course of a simulation.

In this work all quantities of interest are given in the usual dimensionless
(that is, ‘reduced’) units, by taking the molecule’s mass m, diameter ¢ and potential
energy scale ¢ as the basic units of mass, length and energy, respectively. All
simulations reported here have been carried out for a LC fluid containing
N=2.4 x 10* molecules in a volume V=s,s,5.. We choose a Cartesian reference
system oriented as in the experiments. To ensure that the LC fluid is sufficiently
deep in the nematic phase we choose a temperature T=0.90 and, under
isothermal-isobaric conditions, a pressure P=1.80. For this thermodynamic state
point we obtain a mean number density of p=N/(V) ~ 0.8 in the bulk.

MD simulations generate molecular configurations by integrating Newton’s
equations of motion for each particle in the fluid subject to the total potential
energy due to other particles, confining substrates and external potentials. The
differential equations are solved through a velocity—Verlet algorithm with
a time step of 9t =103 specialized for LCs®>. A nonequilibrium, steady-state
Poiseuille flow is induced along the x-axis by applying a body force F.=F.é, in
a thin slice of thickness ds,=2.00 located at x= — s,/2 + Js, at one end of the
simulation cell and upstream of the cylindrical pillar (see Fig. 8c).

Every simulation is performed according to the following protocol: first, we
equilibrate the LC fluid in the isothermal-isobaric (NPT) ensemble without flow;
second, a hydrodynamic flow is generated via a pressure gradient and a second
equilibration run is performed in the canonical (NVT) ensemble to reach the
steady state; finally, we perform the production run in the NVT ensemble, and
calculate all physical observables discussed below. For the computation of
local quantities we divide our system by means of a grid with cubic cells of
side length 0.2.

Because of the external body force, the system needs to be thermostatted
permanently to achieve a stationary nonequilibrium state. As explained in detail in
previous studies®*®, the choice of a thermostat capable of efficiently removing
viscous heating is of vital importance here because of the presence of the cylindrical
pillar. Following our previous work we employ the Galilean-invariant thermostat
proposed by Stoyanov and Groot® that, because of its Galilean-invariant nature,
conserves momentum locally.

The channel aspect ratio and relative dimension of the microfluidic components
were maintained in the simulation domain for MD simulations. Figure 8c shows
the sketch of the empty simulation channel with a cylindrical pillar. The channel is
confined by discrete walls that are atomically resolved solid substrates that induce
friction on the flowing molecules. The green shaded volume marks the region
where a body force F, is applied to create the Poiseuille flow. We have carried out
two sets of simulations: first, where the walls possess homeotropic surface
anchoring conditions and, second, where the walls possess planar surface
anchoring conditions.
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Static and dynamic observables. We first consider the pressure tensor

ST

o(ri— r)>

N
+) 50 Fij>
j=it1

where v; is the molecule’s velocity vector, v=vé, is the averaged local flow velocity,
0 is the Dirac o-function, ® the tensor product, r;;=r; —r; the distance vector
between the centres of mass of molecules i and j, respectively, F;; describes the force
acting between those molecules, and (- - -) indicates a time average. Notice the
convective part of the velocity is subtracted from the kinetic energy contribution in
equation (4) and one can therefore apply standard concepts of equilibrium
thermodynamics. The scalar pressure is defined by P = 1 TrP. For a gas the
contribution of the internal forces in equation (4) becomes negligible. Therefore,
the pressure within the cavity is equivalent to the corresponding ideal gas pressure,
P=NkgT/V.

To analyse the deformation of the director field caused by the presence of the
cylindrical pillar and the associated local nematic order we adopt the local
alignment tensor defined as®”

Q(r):%(r)<2[3ﬁ,- ® ﬁ,vfl]&(r,-fr)>, )

i=1

4)

which is a real, symmetric and traceless second-rank tensor. Q(r) can be
represented by a 3 X 3 matrix, where @; is a versor (unit vector) specifying

the orientation of molecule i in a space-fixed frame of reference. In equation (5)
p(r) is the local (number) density. The local alignment tensor satisfies an
eigenvalue equation that we solve analytically. With these solutions we define the
local nematic order parameter S(r) as the largest eigenvalue and the associated
eigenvector as the local nematic director n(r).

As in the experiments we characterize the state of the LC fluid under
nonequilibrium steady-state conditions with the Reynolds number Re =pvl/n, and
the Ericksen number Er = nvI/K, where we take [ as the distance between the planar
solid substrates. To determine the shear viscosity # and the elastic constant K of our
simulated LC we proceed as in our earlier study®?.

Finally, to characterize the potential of the LC fluid to cavitate we use the
so-called Euler number®® CE=,7A7P where AP is the pressure difference between
the upstream and downstream end of the simulation box. The Euler number
quantifies the ratio of forces due to the local pressure gradient and the kinetic
energy per volume.

Free energy. The total free energy of the system can be written as
Fio=F1 +F, + F, (6)

where the indices 1, 2 and 3 refer to the three domains in which the system is
divided according to the discussion in the Results section (see Supplementary
Fig. 1). The free energy associated to the cavitation domain, region 1, is

4
Fj=— gnrgAP—&-élnrfr. (7)

where AP is the absolute value of the pressure drop and t the surface tension of the
liquid-vapour interface. In the following it will be useful to introduce a scaled
measure of the cavitation domain 6=r./r;. We can then rewrite F; as

4 . "
Fi=- gnAPrib3 + 4ntri ot (8)

In region 2, the liquid crystal is homeotropically aligned to the surface of the
vapour phase. We consider here a perfectly aligned spherical shell of thickness
rq—r. = €=const <K r.. The free energy associated to region 2 stems simply
from the Frank free energy (in the one constant K approximation)

FZ:%K/[(Vm)ZwL(VXn)Z}dV, ©)
where n is the versor representing the director. After integrating, F, turns out to be
a constant, 8K(rq — r.), so that it can be ignored in the following.

In region 3 the fluid is modelled as a homogeneous nematic liquid crystal with a
constant value of the nematic order parameter. Because of the presence of the
cavitation, however, the orientational field of the fluid is deformed. This is due to
the fact that the boundary conditions for the nematic alignment are fixed. At the
fluid-vapour interface they must be homeotropic, whereas in the bulk of region 3 a
homogeneous nematic fluid with a fixed global director is assumed. We consider a
mean-field approximation for the treatment of the fluid for r> r4 so that the fluid is
characterized simply by the value of its nematic order parameter S. This is
obviously a simplifying approximation. The stresses induced by cavitation can be
relaxed by reorientations of the local director field. We ignore these effects here to
keep the theoretical treatment tractable and bring to the front the relevant physics.

With these provisos, we can now build the free energy for region 3. First, there
must be a coupling term between the deformation introduced by the cavitation, o,
and the global nematic order parameter S. At the lowest order in 0 this must be of

10

the form 125?4. This term reflects the fact that S decreases as the relative size of the
cavitation increases because the liquid crystal must accommodate two conflicting
boundary conditions in an increasingly small volume. The fluid must additionally
exert a ‘resistance’ to being deformed by the cavitation because of its nematic
nature. We model this effect simply with a term oc 92 The last contribution comes
from the Landau-de Gennes free energy of a nematic fluid Fiqc = %‘Sz - 3383 + %S“,
where A, B and C>0.
The ‘deformation’ free energy for region 3 can then be written as

Fas= 20825 + 2 5% + Lo(s— )% (10)
2 2 2

Because the fluid is maintained in the nematic phase, in the last term on the

right-hand side of equation (10) we replace Fiq4g with the minimum associated to

the nematic phase that is found from the condition OF;45/0S =0, and

where the order parameter of the nematic phase Sx = 5w (B-+ VB? —4CA) and

y=—2A+ £ (B+ VB> —4CA). S is determined by the deformation 4, that is,

it is found by minimizing Faep OFaedS=0. It follows that S=Sx (%5 +1) .

Equation (10) then becomes '

(11)

o, . (B o @,
Far=- S50+ (5 — -84 )" + —— S48° + O(d*).
def = SN +<2 2 N) +272 N0 +0(8%)

Putting all the pieces together we find equation (1) in the Results section.

Data availability. The authors declare that the relevant data supporting the
findings of this study including raw data and MD simulations custom scripts are
available from the corresponding authors on request.
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