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Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive motor neurodegenerative disease
that currently has no cure and has few effective treatments. On a cellular level, ALS manifests
through significant changes in the proper function of astrocytes, microglia, motor neurons, and other
central nervous system (CNS) cells, leading to excess neuroinflammation and neurodegeneration.
Damage to the upper and lower motor neurons results in neural and muscular dysfunction, leading
to death most often due to respiratory paralysis. A new therapeutic strategy is targeting glial cells
affected by senescence, which contribute to motor neuron degeneration. Whilst this new therapeutic
approach holds much promise, it is yet to be trialled in ALS-relevant preclinical models and needs
to be designed carefully to ensure selectivity. This review summarizes the pathways involved in
ALS-related senescence, as well as known senolytic agents and their mechanisms of action, all of
which may inform strategies for ALS-focused drug discovery efforts.
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1. Amyotrophic Lateral Sclerosis: Prevalence, Causes, and Symptoms

Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease with a 3
in 100,000 prevalence in Europe [1]. The incidence of ALS displays a positive correlation
with increasing age and the average age of onset is 55–65 years old [2]. The average ALS
survival period is 3–5 years post-diagnosis [3], with disease end stage often resulting from
progressive paralysis leading to respiratory failure [4]. Motor neuron deterioration usually
begins at a random location within the upper or lower motor neurons before spreading to
other regions of the motor cortex and spinal cord [5]. Due to the variation in the anatomical
origin of the disease, the symptom presentation differs greatly between individuals [5].
While lower motor neuron degeneration results in muscle weakness and fasciculations,
damage associated with upper motor neurons can present through hyperreflexia and high
muscle tone [4]. Furthermore, ALS can manifest in bulbar symptomology in approximately
a quarter of affected individuals, resulting in an inability to speak or swallow due to the
paralysis of associated muscles required for voluntary control [4]. Several techniques are
used in ALS diagnosis. These include electromyography to measure electrical activity
in muscle and nerve conduction studies to measure speed of conduction in neurons [2].
Blood and urine samples can provide information about elevated signature inflammatory
markers, while MRI scans inform about the individual’s cerebral degeneration on a gross
scale [2].

The exact cause of ALS is unknown, with familial inheritance (fALS) only contributing
to ~10% of all cases [6], while the remaining 90% are sporadic (sALS). The two most
common mutations associated with ALS are in chromosome 9 open reading frame 72
(C9orf72) and superoxide dismutase (SOD1). The C9orf72 gene is important for autophagy
and vesicle transport across membranes [2] and various mutations in this gene contribute
to almost half of fALS cases and 7% of sALS [4]. In healthy individuals, there are no
more than 30 GGGGCC repeats in this gene [7]. People who develop ALS from a C9orf72
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mutation show hundreds or thousands of repeats [5]. Mutations in SOD1 make up 20%
of fALS cases [3] and 1% of sALS cases [5]. In healthy individuals, the SOD1 enzyme
plays an important role in antioxidant defence by metabolising reactive oxygen species
(ROS) into hydrogen peroxide and oxygen [7]. Amongst other pathomechanisms, genetic
mutations associated with this enzyme result in protein misfolding [7] and toxic aggregate
accumulation in the mitochondria [8]. The mutated aggregates reduce protection against
ROS due to loss of function and affect the mitochondria’s ability to balance the calcium
gradient [8], contributing to inflammation and neurodegeneration.

Currently, there is no effective disease-altering pharmacological or alternative inter-
vention available for ALS, with very few FDA-approved pharmaceutical agents. These
currently approved drugs include glutamate release inhibitor riluzole, an N-methyl-D-
aspartate (NMDA) receptor antagonist Nuedexta, used to treat some of the symptoms
associated with the bulbar manifestation of ALS [9], and edaravone, which targets free rad-
icals [10]. However, while these agents have shown some efficacy in managing symptoms
and slowing disease progression, they do not provide a cure and only extend the average
survival time by mere months. This highlights the need for identifying new therapeutic
approaches that could lead to a disease-modifying therapy.

2. Cellular Senescence in ALS

A new therapeutic approach with potential to treat ALS may be through targeting
cellular senescence. Senescence is a non-replicative state that cells enter upon repeated
stress and injury related to recurring DNA damage and telomere shortening [11], thought
to have evolved as a protective mechanism against tumour generation. Senescent cells
possess a unique morphology with large, flat cell bodies [12] and an altered nuclear
envelope [13]. Once senescent, cells show resistance to apoptosis and display dysregulation
of molecules involved in the cell cycle and proliferation. They release a range of pro-
inflammatory molecules, which impart stress on surrounding cells. Senescent cells also
lose their normal functionality, removing their regular supporting role and placing further
stress on surrounding cells. Although there is no universal marker of senescence, the
presence of a combination of these indicators is often used to identify senescence, and there
is mounting evidence that these hallmarks are present in ALS.

2.1. Senescence-Associated Beta-Galactosidase

One established marker of senescence is the expression of senescence-associated beta-
galactosidase (SA-β-Gal) which is significantly higher in senescent cells, differentiating
them from their normally-proliferating or quiescent counterparts [14]. Higher SA-β-Gal
levels are found in the spinal cords of SOD1G93A overexpressing rats [15,16]. Astrocytes
cultured from these spinal cords also show significantly higher SA-β-Gal expression and
decreased cell death compared to age-matched wild-type cells [15], suggesting the involve-
ment of these pathways in ALS. Similarly, spinal cord astrocytes derived from induced
pluripotent stem cells (iPSCs) of ALS patients with the C9orf72 mutation displayed a
significant increase in SA-β-Gal expression and a reduction in the proliferation-related
marker Ki-67 overtime, supporting the involvement of senescence in the disease and its
age-dependent development [17].

2.2. Apoptosis-Related Pathways

To evade cellular death, senescent cells upregulate anti-apoptotic genes [18] whilst
simultaneously downregulating proapoptotic mechanisms. One of these pathways in-
volves the B-cell lymphoma 2 (Bcl-2) protein family members, including Bcl-2 and B-cell
lymphoma extra-large (Bcl-xL). Overexpression of these proteins prevents cellular death
in response to exposure to damaging stimuli such as oxidative species such as H2O2 [19].
Activation of Bcl-2 induced by DNA damage results in Bcl-2 binding to, and consequently
inhibiting, the proapoptotic protein Bax, which would usually trigger downstream release
of caspases that can induce cell death (Figure 1). Overexpression of Bcl-2 is also positively
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correlated with SA-β-Gal activity, suggesting its role in development of senescence [19].
Other molecules involved in the anti-apoptotic pathway include phosphoinositide 3-kinase
(PI3K) and heat shock protein 90 (Hsp90), both of which are upregulated in senescent
cells, allowing them to resist apoptosis and increase cellular survival through activating
downstream Bcl-2 signaling [20,21] (Figure 1).
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Hetz and colleagues [22] showed that Bcl-2 and Bcl-xL mRNA and protein levels
were increased in the spinal cord of symptomatic SOD1G85R mice. While Peviani et al. [23]
reported no significant difference in activation of PI3K in motor neurons from the spinal
cords of SOD1G93A mice compared to healthy controls, they showed that PI3K-induced
signaling was upregulated in astrocytes residing in the ALS-affected regions [23], revealing
an association between the role of glial senescence and subsequent resistance to apoptosis
in disease progression.
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2.3. Changes in Cell Cycle Inhibitor Levels

The cyclin-dependent kinase inhibitor p16, sometimes referred to as p16INK4a, slows
cell cycle progression from the G1 to the S-phase, contributing to senescence [24]. Upregu-
lation of p16 is one of the most widely used markers of senescence [25]. Cells expressing
p16 are increased four-fold in the lumbar spinal cord of symptomatic rats expressing the
SOD1G93A mutation compared to wild-type controls or non-symptomatic mutants [16].
Expression of p16 is also significantly elevated in the frontal and motor cortices of post-
mortem ALS brains when compared to the same regions in age-matched healthy human
tissue [26]. The cell types expressing upregulated p16 appear to depend on the state of
disease progression, species, and region within the central nervous system. In SOD1G93A

mutant mice, lumbar spinal cord microglia were the primary cell type exhibiting increased
p16 expression, which was evident at paralysis onset and continued to increase throughout
progression of the disease [16]. Astrocytes and motor neurons also displayed p16 staining,
but only in advanced stages of the disease [16]. In contrast, elevated p16 expression was
found in astrocytes and other glia, but not neurons, in the frontal association cortex of
human ALS donors [26]. However, no increase was seen in any cell type in the motor
cortex of these donors [26].

Another commonly used marker to detect senescent cells is upregulation of a second
cyclin-dependent kinase inhibitor, p21 [27]. This p21 plays a role in arresting the cell cycle
through inhibiting the formation of the cyclin/cyclin-dependent kinase protein complex,
which is crucial for cell division and proliferation in the G1 and S cell cycle phases [18]
(Figure 1). Increased p21 expression is often associated with an overall dysregulation in cell
cycle arrest and is elevated in both neurons and glia in the frontal association cortex, but not
motor cortex, of ALS-affected brains [26]. In particular, p21 was shown to be upregulated
in C9orf72 astrocytes derived from ALS patients [17], as well as in astrocytes cultured from
SOD1G93A overexpressing mutant rats [15].

A third marker commonly used to detect senescence is upregulation of the cell cycle
inhibitor, p53, which regulates p21 levels (Figure 1). There was a 1.5-fold increase in p53-
positive cells in the lumbar spinal cord of SOD1G93A-overexpressing rats when paralysis
first appeared compared to wild-type controls, and continued to increase throughout
disease progression [16,22]. Such p53 upregulation has been noted in motor neurons and
astrocytes of the post-mortem human spinal cord and motor cortex of ALS patients [28].
Furthermore, under severe cellular stress, individuals with ALS exhibit inhibition of
the enzyme MDM2 that is responsible for the degradation of p53 [29], evident through
significant reduction in the protein’s metabolites [28], leading to increased p53 expression
due to reduced metabolism.

It should be noted that a specific marker able to detect senescence across the entire
time course of senescent development does not exist. p16 may only be upregulated in later
stages of senescence, implying that it may not mark cells in the early phases of senescence
induction [27]. In contrast, p21 is expressed at its highest levels when cells are developing
senescence and then expression levels decline once senescence is induced [27]. Additionally,
in some cell types it not only marks senescent cells but also cells that have undergone DNA
damage [27,30], although this might not be the case in ALS [26]. Furthermore, in some
situations, p53 can reduce senescence [31]. Despite these caveats, the upregulation of all
3 of these markers across multiple modalities, including ALS human tissue, ALS animal
models, and iPSC-derived astrocytes from ALS donors, in combination with the SA-β-Gal
changes in Section 2.1, provides converging evidence suggesting extensive senescence in
ALS, particularly in glial cells.

2.4. Senescence-Associated Secretory Phenotype

Despite losing their capacity to proliferate, senescent cells remain metabolically active
and through an increase in IL-1α secretions [32] upregulate IL-6 and IL-8 expression [33].
This leads to secretion of high levels of proinflammatory cytokines, the build-up of which
results in the senescence-associated secretory phenotype (SASP). Some suggest that the
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reason for this is to allow the immune system to identify these cells for clearance [32],
where increased IL-6 and IL-8 secretions can lead to increased immune cell recruitment.
However, senescence is significantly increased with ageing and can lead to the body’s
inability to clear senescent cells at a rate matching their accumulation [32], resulting in
excess neuroinflammation. The SASP can create a positive feedback loop to increase
further pro-inflammatory mediators from the already-senescent cells while spreading
inflammation and neurodegeneration to neighboring cells [26]. This relationship is evident
in ALS, where astrocytes secrete toxic soluble factors including proinflammatory signaling
molecules TNF-α [34], TGF-β, IL-6, IFN-γ, and nitric oxide [35] and overexpress the
astrocytic proinflammatory marker C3 in human spinal cord and motor cortex, which has
been correlated with the onset of ALS-associated symptoms in the SOD1G93A mouse model
of ALS [36].

In addition to the increased cytokine secretions, astrocytes in the SOD1G93A model
are significantly more reactive to cytokine release compared to wild type glial cells [36],
contributing to the positive feedback loop of inflammation in ALS. An increase in TNF-α
secretions from SOD1G93A astrocytes in vitro is also correlated with subsequent elevations
in several downstream molecules involved in inflammation, including prostaglandin E2
and leukotriene B4, in addition to increased activation of the inducible nitric oxide synthase
enzyme [37] which can trigger nitric oxide generation and increase ROS burden. Spinal
cord astrocytes in SOD1G93A mice significantly increase downstream pro-inflammatory
effects of signaling induced by IFN-γ [38], TNF-α [39], IL-6, IL-8, and IL-15 [15].

While an increase in proinflammatory cytokine secretion is correlated with old age,
this difference is further exacerbated in elderly individuals affected by inflammation-
driven conditions, such as ALS. In fact, healthy elderly controls show higher levels of
anti-inflammatory regulation exhibited through more marked elevation in IL-10 plasma
levels and a reduced level of inflammation compared to their age-matched ALS-affected
counterparts [32]. Studies in individuals with ALS have further supported the specific
involvement of the SASP in disease development, as patients display significantly elevated
levels of IL-6, IL-8, and nitrite in their blood serum [40] and increased IL-2, IL-10, IFN-γ,
and TNF-α plasma concentrations [41] compared to healthy age-matched controls.

The mechanism by which senescence results in SASP is poorly defined. There is
preliminary evidence that some of the cell cycle inhibitor-related senescence markers may
be involved in the generation of SASP. For example, p53 is upstream of NF-kB, a primary
regulator of cytokine expression [42]. Furthermore, knockdown of p16 alleviates SASP in
oncogene-induced senescent cells and DNA damage-induced senescence [43]. However,
numerous mechanisms independent of these markers have also been implicated [44]. For
example, accumulation of malfunctioning mitochondria in senescent cells can lead to SASP
via release of cytoplasmic chromatin fragments. Considering the breadth of components
that constitute SASP, and that the nature of factors released can differ with senescence-
inducing stimuli [44], it is likely that SASP develops from multiple deleterious processes
that occur during senescence.

2.5. Loss of Glial Function

A confounding factor in neurodegeneration that results from senescence develop-
ment in the CNS glial population is loss of their usual supportive functions. Inducing
senescence in human astrocytes through H2O2 [45] or X-ray [33] exposure downregulates
excitatory amino acid transporter (EAAT) 1 and 2 [33]. X-ray irradiation of human astro-
cytes also downregulates Kir4.1 potassium transporter expression [33,45]. Due to EAAT1/2
and Kir4.1 being responsible for glutamate redistribution and potassium ion regulation,
respectively, their downregulation results in an elevation of glutamate in the synapse.
Furthermore, aged senescent rat cortical astrocytes display reduced glutamate uptake,
reduced mitochondrial activity, and increased ROS production [46]. This combination
significantly reduces the neuroprotective capacity of astrocytes, contributing to increased
cell death of the neighboring neurons [46]. In ALS, this is further coupled with increased
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glutamate release by microglia [47]. Lastly, senescent astrocytes upregulate the expression
of GRINA [33], which encodes the glutamate ionotropic receptor NMDA type subunit
associated protein 1. The NMDA receptor is located on the post-synaptic motor neuron
terminal and is highly permeable to Ca2+ [48]. Increased Ca2+ flow into motor neurons
leads to increased neuroexcitation [49], which may be toxic to motor neurons.

Another factor contributing to the vulnerability of motor neurons is the protein lamin
B1, which usually provides significant structural support to the motor neuron nucleus
but is significantly reduced in senescent cells. Co-staining for nuclear p16 expression and
lamin B1 in an SOD1G93A rat model of ALS showed an inverse correlation between the
two proteins, evident through a marked increase in p16-positive cells within the spinal
cord and the associated decrease in their lamin B1 expression [16]. This dysregulation
was also co-localized with senescent microglia that expressed elevated levels of ionized
calcium binding adaptor molecule 1 (Iba1), p53, p16, and SA-β-Gal; all markers of senes-
cence [16]. These trends are positively correlated with increasing age of cell cultures and
animals, once again supporting the relevance of this mechanism in ALS and age-related
senescence development.

3. Senescence as a Therapeutic Target in ALS and Other CNS Diseases

Given hallmark signatures of senescence are present in ALS, and that senescence in-
volves deleterious ALS-relevant outcomes such as increased production of pro-inflammatory
cytokines and loss of useful cell functions, removing senescent cells or restoring senescent
cells back to normal function may be a strategy for producing a disease-modifying ALS
therapy. While a study exploring the impact of clearing senescent cells on ALS progress
has not yet been published, this approach has been successful in animal models of other
neurodegenerative disorders and in ageing. A transgenic INK-ATTAC mouse model was
developed that allowed for selective apoptosis of senescent cells upon administration of a
trigger drug AP20187 (Figure 1) in a mouse MAPTP301SPS19 model of tauopathies such as
Alzheimer’s disease (AD) and frontotemporal dementia [50]. Administration of the trigger
drug to eliminate senescent microglia and astrocytes that accumulated in this model led to
a reduction in gliosis, prevention of tau phosphorylation and aggregation, and a complete
recovery of short-term memory loss [50]. The beneficial effect of clearing senescent cells on
neuron loss, overall tissue volume loss, and tau pathology have been further confirmed in
four different AD transgenic mouse models [51]. Furthermore, senescent cell clearance in
a fifth model of AD reduced neuroinflammation, amyloid-β plaque level, and cognitive
deficits [52].

The useful effects of senescent cell clearance have also been shown in models of other
neurodegenerative diseases and age-related CNS conditions. Clearance of senescent as-
trocytes in a paraquat-induced Parkinson′s disease mouse model reduced dopaminergic
nigral neuron loss and improved motor function [53]. Similarly, clearance of senescence
cells alleviated chemotherapy-related peripheral neuropathy [54]. Clearing senescent mi-
croglia from aging mice reduced microglial activation and the level of SASP, and improved
cognitive functioning [55]. In another INK-ATTAC model, administration of the trigger
drug AP20187 led to reduction in age-related cataract development in eyes, and muscle
retention, independent of age at the time of administration [56], supporting the therapeutic
benefit of using this approach in conditions with age as a risk factor. Further improve-
ments included reduced levels of IL-6, IL-1α and TNF-α in adipose and skeletal muscle
tissues, showing promise for treating inflammation [56]. AP20187-driven clearance of p16-
expressing cells also displayed anti-inflammatory effects against SASP-related cytokines in
animal models of aging [56] and in an obesity-induced model of senescence where drug
treatment significantly reduced the levels of IL-1α, IL-1β, and TNF-α [57].

In addition to evidence that removal of senescent cells is useful in other neurodegener-
ative disorders and ageing, there is a suggestion that targeting aspects of senescence-related
pathology can improve ALS. Mesenchymal stem cells from ALS patients show increased
senescence, and if anti-senescence genes such as TERT and ANG are upregulated, these
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cells show increased ability to protect against oxidative damage [58]. Knocking out the
genes responsible for coding some markers of inflammation such as IL-1α, TNF-α, and
C1q reduces motor impairment in rotarod test performance by SOD1G93A mice, demon-
strating the useful effects of treatments that may decrease inflammation [36]. In addition,
targeting increased inflammation by administering cromolyn sodium to SOD1G93A mice
led to reduced microglial activation and delayed the onset of associated symptoms [59].
These results were further supported by an increase in spinal cord motor neuron survival
and a reduction in degeneration of neuromuscular junctions involved in tibialis muscle
function [59], suggesting that targeting senescent cells which exhibit the SASP could help
rescue motor dysfunction in ALS.

4. Senolytic Agents and Their Limitations

A major strategy for targeting senescent cells is the development of senolytic agents
that selectively remove these cells. Although there are no studies to date examining the
impact of senolysis in ALS, the evidence in Section 3 demonstrates the useful effect of
clearing senescent cells in other nervous system disorders. Furthermore, it highlights the
benefits of correcting senescence-related pathology in ALS models. These two factors
suggest that senolysis may be a useful therapeutic approach in the disease. However,
before progress can be made towards this, a suitable senolytic agent must be found.

Inducing Senolysis: The Challenge of Choosing a Signaling Pathway Target

Much is understood about the signaling pathways involved in the development
and progression of senescence from other disease models in which senescence emerges,
including atherosclerosis, diabetes [60], cancer [61], and general age-related symptomology
discussed in Section 3. These pathways centre around dysregulation of the pro- and anti-
apoptotic cascade introduced in Section 2.2 (Figure 1), including general upregulation of
anti-apoptotic proteins such as Bcl-2 and Bcl-xL, and upstream regulators of those proteins
such as Hsp-90, PI3K, and p53. Current senolytics that have been trialled in non-CNS
disorders or animal models of CNS disorders (Table 1) target these proteins.

p53 acts to eliminate cells carrying damaged DNA through reducing the expression of
antiapoptotic members of the Bcl-2 protein family, including Bcl-xL and Bcl-2 (Figure 1).
Whilst the proapoptotic protein Bax usually resides inside the mitochondria, p53 can down-
regulate binding between Bcl-2 family members and Bax, leading to the latter migrating
to the mitochondrial cytosol (Figure 1). This increases the permeabilization of the mito-
chondrial membrane, triggering the release of cytochrome C and caspases [22] (Figure 1).
This mechanism is crucial in combating senescence by inducing apoptosis in affected cells.
While seeking to activate upstream proteins such as p53 may seem to be a suitable strategy
for induction of senolysis compared to targeting individual downstream proteins such
as Bcl-2 or Bcl-xL, it also carries significant risk of unwanted effects if used as a target in
neurodegenerative disorders, including ALS. Upregulation of p53 in the spinal cord can
result in an increase in Bax activity causing cellular apoptosis [22] and subsequent loss
of motor neurons. Furthermore, while deleting p53 in mice protects neurons from death
usually caused by DNA damage or excess glutamate elevation [29], it may trigger the
development of tumours [29] due to suppression of p53′s ability to repair DNA damage.
This highlights the multifaceted difficulty of targeting p53 signaling pathways to combat
ALS-related senescence. Due to the many roles of p53 signaling, pursuing strategies to
target proteins further downstream in the signaling pathway may be a safer option and is
the path senolytic agent development has taken for non-CNS diseases.

A new class of senolytics designed to inhibit heat shock protein 90 (Hsp90) is being
developed [62]. While Hsp90′s role in the development of senescence remains unclear,
its role in phosphorylating Akt to its active form is well established as is its indirect
upregulation of the anti-apoptotic Bcl-2 family members [20] (Figure 1). Thus, inhibition
of Hsp90 prevents the binding of the protein to Akt, subsequently inducing apoptosis
further downstream [63]. In this manner, the Hsp90 inhibitor 17-DMAG can prevent
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cells from entering cell cycle arrest [62]. This compound extends lifespan and reduces
the burden of p16-positive cells in senescent embryonic mouse fibroblasts in vitro [62]
(Table 1). Its senolytic efficacy was further supported in a progeroid Ercc1−/∆ mouse
model in vivo where it decreased the expression of p16 and SA-β-Gal and improved motor
function of mice [62] (Table 1). It has also been used within the CNS, where it improved
motor function and survival rate in a mouse model of polyglutamine disease [64], which
offers some promise to motor neurodegenerative conditions such as ALS. Despite Hsp90
being upregulated in the serum of ALS patients [65], this approach may be hindered
in ALS as Hsp90 contributes to proteostasis. Adequate proteostasis plays a key role in
preventing the formation of abnormal protein aggregates that have been linked to ALS
pathophysiology [66]. Pharmacological induction of Hsp90 in a SOD1G93A mouse model
shows efficacy in improving motor neuron viability and extending lifespan compared
to untreated SOD1G93A mice [15,33]. One of the proteins that Hsp90 helps to regulate
proteostasis of is the trans-active DNA binding protein-43 (TDP-43), a key component
of the proteinopathy in most ALS cases [67]. This is a significant consideration in CNS
treatment, as deleting Hsp90 in human neuroblastoma cells leads to a significant increase in
phosphorylated TDP-43 aggregates, suggesting the role of Hsp90 in the degradation of the
phosphorylated aggregate [68]. These findings highlight the challenge of targeting these
pathways to reduce senescence in glia whilst minimising further motor neurodegeneration
(Figure 2) and represent a strong need for additional research to determine the relative
extent of Hsp90 dysregulation in each of the cell types during ALS to inform future selection
of an appropriate pharmacological target.
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Figure 2. The effects of inhibiting current senolytic targets in non-ALS and ALS models. Blunted red line indicates inhibition.
Red boxes and green boxes represent damaging and beneficial effects, respectively. ↑ denotes increase/improvement;
↓ denotes decrease. *Risk is based on the opposite effect occurring when Hsp90 or PI3K is activated. ALS: amyotrophic
lateral sclerosis; Hsp90: heat shock protein 90; PI3K: phosphoinositide 3 kinase; Bcl-2: B-cell lymphoma 2; Bcl-xL: B-cell
lymphoma extra-large.

PI3K is another protein that is a current target for senolytic development. Similarly
to Hsp90, activation of PI3K phosphorylates Akt, increasing its activity and resulting in
upregulated Bcl-2 expression [18,69] (Figure 1). Elevated PI3K activity leads to cellular
morphological changes and is correlated with increased IL-6 secretions contributing to the
formation of the SASP, both of which are associated with senescence [70]. Furthermore,
the involvement of the PI3K/Akt pathway in senescence is evident through its ability
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to upregulate expression of several markers of senescence including p53, p21, and SA-β-
Gal [71], and its correlation with replicative senescence [72] in human cell lines in vitro. The
senolytic agent quercetin inhibits PI3K and induces DNA damage through intercalation,
leading to the downregulation of Bcl-2 and secretion of caspases, triggering senolysis [73]
(Figure 1). The compound induces S-phase cell cycle arrest and subsequent apoptosis in
cancer cells, with an associated downregulation of Bcl-xL and Bcl-2, and an upregulation of
Bax and cytochrome C [73]. It has induced effective senolysis in other disease models when
used in combination with dasatinib, which stimulates proapoptotic caspases through Akt
inhibition [74] (Figure 1). Combining quercetin with dasatinib reduced senescent burden
in preadipocytes and human umbilical vein endothelial cells (HUVECs) [18]. Additionally,
it improved many age-related symptoms in an Ercc1−/∆ mouse model of premature aging,
including cardiovascular function, bone density, and physical endurance [18] (Table 1).
In the CNS, quercetin reduced neurodegenerative burden in a triple-transgenic mouse
model of AD by decreasing amyloid-β expression and alleviating some of the pathology
associated with microgliosis and astrogliosis [75]. The dual combination reduced SA-β-Gal
expression, several cytokine secretions, the number of reactive microglia, and amyloid-β
plaque formation in the hippocampus of the APP/PS1 AD mouse model [52] (Table 1).
Furthermore, it reduced atrophy within the cortex and reduced neurofibrillary tangle
expression in cortical neurons, while improving cerebral blood flow in a transgenic mouse
model of AD [51] (Table 1). Finally, combining quercetin and dasatinib administration
improved cognitive function and reduced the number of lamin B1-deficient neurons in a
mouse model of normal aging [55] (Table 1). Given the beneficial effects of PI3K-targeting
senolytics in these disorders, and their tolerability in clinical trials for other disorders [76,77],
trialling the impact of these drugs on glial senolysis in ALS may be a useful strategy.

However, one potential caveat is that upregulating PI3K activity in SOD1G93A NSC34
cells [78] and triggering Akt activation in cultured motor neurons from the spinal cords of
SOD1G93A mice [79] improved cell viability, suggesting that inhibiting PI3K activity may
have unwanted effects on neurons in the disease (Figure 2). Similarly, activation of the
PI3K/Akt pathway in SOD1G93A mice resulted in improved motor function and a longer
lifespan [79,80]. Therefore, any work examining the impact of PI3K-targeting senolytics in
ALS should gauge the impact on both senolytic glia and neurons. Furthermore, if quercetin
is to be trialled in ALS models, it will need to be shown that intercalation into DNA by
quercetin only occurs in senescent cells and not healthy cells. Additionally, quercetin also
holds anti-inflammatory properties as it can attenuate microglial activation and reduce
levels of TNF-α, IL-1α [81], IL-1β, IL-6, and IL-8 [82]. Thus, it will be crucial to explore
whether any potential protective properties of quercetin arise from its senolytic ability
or its direct capacity to combat neuroinflammation and oxidative damage [83]. Similarly,
if dasatinib is to be trialled in ALS models, off-target effects from its impact on tyrosine
kinase receptors will need to be explored [84]. Another factor to consider is that quercetin
has uncertain CNS bioavailability. Some studies suggest it has low potential to cross
the blood brain barrier (BBB) [85], however, quercetin readily crosses in vitro models of
the BBB. If further research confirms that the in vivo BBB-permeability of quercetin is
prohibitive, administration through nanoparticles could offer an alternative avenue for
effective delivery [85]. In contrast, dasatinib has shown great efficacy in crossing the BBB
in cancer treatment within the CNS [86]. Despite differences in bioavailability between
the drugs, their combination is currently being trialled in an intervention-based Phase 2
clinical trial in patients with AD [87], which may offer some insight into their safety and
efficacy for neurodegenerative disorders in humans.
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Table 1. A selection of current senolytic agents. M: mouse; V: in vitro; Ercc1−/∆: ERCC Excision Repair 1-deficient; AD:
Alzheimer′s Disease; NFTs: neurofibrillary tangles; HUVECs: human umbilical vein endothelial cells; IMR90: human lung
fibroblast cells; PN: peripheral neuropathy; DRG: dorsal root ganglia; ↑ denotes increase/improvement; ↓ denotes decrease.

Senolytic Agent Mechanism of Action Effects in Models of non-CNS Disorders Effects in Models of CNS Disorders

17-DMAG Hsp90 inhibition

Premature Aging Ercc1−/∆ model [62]
↓ p16-expressing embryonic mouse fibroblasts

(V)
↓ p16 and SA-β-Gal (M)

↓ kyphosis; ↑motor function and coordination
(M)

—–

Quercetin (Q) PI3K inhibition
DNA intercalation Premature Aging Ercc1−/∆ model (M) [18]

↓ p16 and SA-β-Gal
↑ bone density; ↑ ability to exercise

APP/PS1 model of AD (M) [52]
↓ SA-β-Gal; ↓ IL-6; ↓microglial activation
↓ hippocampal Aβ plaque burden, TNF-α,

and IL-1β, ↓ cognitive loss
AD (M) [51]

↓ NFTs; ↓ atrophy in cortex
↑ blood flow in cerebellum

Normal Aging (M) [55]
↑maze performance; ↑ lamin B1 in

neuronsDasatinib (D) Akt inhibition

Navitoclax Non-selective Bcl-2
family inhibition

Senescence induced through radiation,
oxidative stress, and excessive replication (V)

[88]
↑ apoptosis of Bcl-xL- and Bcl-2-expressing

HUVECs and IMR90 cells
PN induced through cisplatin [54]
↓ p16 and p21 in DRG (V)

↓ mechanical and thermal thresholds of pain (M)

Tau-prone PS19 model of AD (M) [50]
↓ p16, p21, IL-6, and IL-1β expression

↓ phosphorylated tau

A1331852
A1155463

Selective Bcl-xL
inhibition

Radiation-induced senescence (V) [89]
↑ apoptosis of Bcl-xL-expressing senescent

HUVECs and IMR90 cells
—–

Inhibition of the anti-apoptotic Bcl-2 family members is a further strategy for senolytic
development, with navitoclax developed for this purpose [62] (Figure 1). It successfully
induced apoptosis in senescent HUVECs and lung fibroblast (IMR90) cells in vitro [88].
Additionally, it reduced p16 and p21 expression in dorsal root ganglia cells cultured from a
cisplatin-induced model of peripheral neuropathy in vitro and improved neuronal func-
tional response to pain in vivo [54] (Table 1). Furthermore, navitoclax treatment showed
efficacy in reducing the senescent burden and the associated level of phosphorylated tau
protein aggregates in a PS19 mouse model of AD [50] (Table 1). However, due to the
role of the Bcl-2 family in preventing cellular apoptosis, the non-selective targeting of the
protein members by navitoclax can lead to more widespread cellular death [90] and has
resulted in several adverse effecra in humans, including depletion in neutrophil, leukocyte,
and platelet populations [91]. The senolytics A1331852 and A1155463 showed the same
effects in HUVECs and IMR90 cells as navitoclax (Table 1) but hold the advantage of fewer
potential side effects as they are more selective and only target Bcl-xL [89]. Bcl-xL is signifi-
cantly elevated in senescent cells and thus selectively targeting this Bcl-2 family member
is a promising strategy [92]. In addition to its senolytic effects on glia, inhibiting Bcl-2
family members may have further beneficial effects for motor neurons in ALS (Figure 2).
Through interactions with SOD1, Bcl-2 can damage the mitochondria and members of
the Bcl-2 family mediate motor neuron loss [22,93]. Therefore, inhibiting Bcl-2 family
members may be a promising strategy for inducing senolysis in ALS, as well as having
a directly beneficial effect on motor neurons. A1331852 and A1155463 have not yet been
tested in a CNS-relevant model, so it will be important to screen them in preclinical in vitro
and in vivo models of disorders such as ALS to establish efficacy. An alternate future
strategy may also be to investigate methods of senescence prevention, although this would
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require further research as current understanding regarding the exact cause of senescence
is limited.

5. Conclusions

Glial senescence is displayed in pre-clinical ALS models and post-mortem human
ALS tissue. Selective elimination of senescent cells has demonstrated pre-clinical success in
other neurodegenerative and ageing-related diseases such as AD, but it has not yet been
evaluated in ALS. However, current senolytic strategies such as Hsp90 and PI3K inhibition
may counterproductively endanger degenerating motor neurons. In contrast, inhibiting
Bcl-2 family members may be able to protect motor neurons both directly, and indirectly,
through glial senolysis. In addition, identification of further targets that are selectively
upregulated in senescent glia in ALS that could be targeted without impacting motor
neurons need to be identified. If such targets can be found, they may one day allow for
slowing of ALS progression at much earlier stages of the disease, possibly even extending
the lifespan of patients living with this condition.
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