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Abstract

The unprecedented performance of Deepmind’s Alphafold2 in predicting protein structure in

CASP XIV and the creation of a database of structures for multiple proteomes and protein

sequence repositories is reshaping structural biology. However, because this database

returns a single structure, it brought into question Alphafold’s ability to capture the intrinsic

conformational flexibility of proteins. Here we present a general approach to drive Alpha-

fold2 to model alternate protein conformations through simple manipulation of the multiple

sequence alignment via in silico mutagenesis. The approach is grounded in the hypothesis

that the multiple sequence alignment must also encode for protein structural heterogeneity,

thus its rational manipulation will enable Alphafold2 to sample alternate conformations. A

systematic modeling pipeline is benchmarked against canonical examples of protein confor-

mational flexibility and applied to interrogate the conformational landscape of membrane

proteins. This work broadens the applicability of Alphafold2 by generating multiple protein

conformations to be tested biologically, biochemically, biophysically, and for use in struc-

ture-based drug design.

Author summary

Many questions have arisen with the remarkable protein prediction capability of Alpha-

fold2. One of the main questions is whether Alphafold2’s architecture is amenable to

reveal the intrinsic conformational heterogeneity of proteins. The potential to obtain

unseen or hidden conformations with high accuracy would greatly advance a broad range

of structural biology pursuits. We have devised a method of in silico mutagenesis of the

multiple sequence alignments (MSA) that are central to Alphafold2’s prediction capabili-

ties. The approach consistently unveils conformations not seen with the unmodified

default MSA. Analysis of the ensembles of predicted conformations relative to experimen-

tal structures fully support the biochemical significance of the models.
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Introduction

The explosion of complete sequencing for a multitude of genomes has allowed for the genera-

tion of deeper multiple sequence alignments (MSA). These MSAs are a treasure trove of infor-

mation encoding co-evolution of residues that may be far apart in the linear amino acid

sequence. Multiple groups have harnessed co-evolution of residues to generate distance

restraints/matrices and the subsequent construction of a three-dimensional protein structure

[1,2]. The latest iteration, Alphafold2 (AF2), took a significant leap forward with the quality of

its predicted structures [3,4].

A database of structural models for multiple proteomes generated by AF2 has been released

(www.alphafold.ebi.ac.uk). The database contains a single conformation for each protein

sequence following Anfinsen’s principle that the amino acid sequence determines the native

fold of the protein [5]. However, the deposition of a single structure for each protein belies the

true ensemble nature of proteins which often undergo functionally important conformational

changes. The ensemble nature and conformational heterogeneity of most protein structures

would therefore argue that a protein sequence also encodes for structural diversity. The impli-

cation is that the distance matrix, which AF2 derives from the MSA, contains information on

this heterogeneity although at present, the general consensus is that AF2 is only able to predict

a single conformation.

Here, we develop a general approach to transcend this apparent limitation of AF2 and con-

sequently predict ensembles of conformations. Our work was stimulated by the modeling of

the Deepmind team of multiple conformations of the multi-drug transporter LmrP (T1024) in

their most recent CASP submission, which they achieve by manually curating structural tem-

plates [6]. It was noted, based on the MSA and structures for LmrP homologs, that there

should be more than one conformation, including an inward- and outward-open conforma-

tion. Although the initial runs of AF2 yielded only the inward-open conformation, the MSA

derived distance matrix predicted regions that should be close, but were in fact far apart in the

computed structure [6]. The submission to CASP XIV entailed paring the MSA and limiting

the structural templates to outward-open structures, which yielded the alternate outward-fac-

ing conformation of LmrP.

Recently, a methodology for sampling protein conformational space with AF2 was

described [7]. To obtain multiple conformations, several alterations in the AF2 pipeline were

made: there was no recycling within the AF2 module and the number of sequences in the

MSA input was reduced. The authors tested this modified pipeline on a set of 8 protein targets

where none of the structures were in AF2’s training set. Remarkably, they were able to obtain

both conformations in 7 targets without templates and in the last case with templates. In con-

trast, this approach failed for 4 targets where one of the structures was present in AF2’s train-

ing set, suggesting that in these cases AF2 may default to learned structures.

This study introduces an alternative method for biasing the models generated by AF2 that

transcends the apparent bias of AF2 to conformations in its training set. The method entails

replacing specific residues within the MSA (in silico mutagenesis) to potentially manipulate

the distance matrices leading to alternate conformations. In outline, AF2 initial models are

scanned to identify interaction surfaces within the structure. The MSA is then modified, by in
silico alanine mutagenesis, either in a systematic manner or based on possible contact points in

the initial AF2 structure and/or prior structural information (Fig 1). Within AF2 is an atten-

tion network that ascertains the co-evolution of amino acid residues from the MSA. The ratio-

nale of our method is that alteration of a set of amino acids to alanine or other residues across

the MSA turns the attention of the network to different parts of the MSA allowing for AF2 to

find alternative conformations based on other co-evolved residues. Our methodology goes a
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step further than testing the validity of AF2 models by interrogating the conformational land-

scape of the protein in the context of the underlying biochemical function.

Results

Protein targets were selected to illustrate the general applicability of this method and to investi-

gate its limitations. They include two classical examples of protein flexibility, adenylate kinase

and ribose binding protein; four membrane proteins where only one conformation was in the

AF2 training set; and eight membrane proteins where both conformations were not in the AF2

training set. To enable direct comparison, the twelve membrane proteins were the same as

those used in a previous study exploring conformational sampling with AF2 [7]. In summary,

the choice of residues to alter in the MSA entails determining sites of interactions within the

target using an 11 amino acid sliding window along the best pLDDT (the predicted local-dis-

tance difference test which is Alphafold’s metric for ranking the confidence in the structure at

every residue) scoring model from an initial AF2 run without templates. The sites of interac-

tion are then modified in the MSA to alanines across all sequences where there is a non-gap

residue. This modified MSA alignment is then used 3 times, varying the random seed, to

Fig 1. Methodology. An initially generated MSA, via MMSeqs2, is input into Alphafold2 within ColabFold to generate five structural models. For illustration,

the model with the highest pLDDT, AF2’s ranking of model confidence, is shown in red. Residues for mutation are chosen, in this case the three residues in red

mediating a contact point on the upper surface of the protein. These mutations are made across the entire MSA (ignoring gaps). This modified MSA is then

input into ColabFold for generation of new models. With the contact points in red missing, Alphafold2 within ColabFold generates a new conformation based

on the contacts shown in blue.

https://doi.org/10.1371/journal.pcbi.1010483.g001
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generate 15 models from AF2. The unmodified MSA is also run additional times to obtain 15

initial models.

Canonical examples of conformational flexibility

Adenylate Kinase. Adenylate Kinase (AK), considered a canonical example of protein

flexibility, is a nucleoside monophosphate kinase that catalyzes the reaction ATP+AMPÐ

2ADP. Crystal structures of E. coli AK in various catalytic states have shown that this kinase

undergoes large conformational changes. At the two extremes, apo AK adopts an open confor-

mation (PDB: 4ake) [8] whereas the inhibitor bound structure adopts a closed conformation

(PDB: 1ake) [9] (Fig 2A) that differ by the two ligand binding domains/lids leading to an

RMSD of 7.2 Å or TM score of 0.68 between the two crystal structures.

Input of the E. coli sequence for AK yields a relatively closed conformation for the fifteen

AF2 models (Fig 2B) with the most disorder localized to the ATP binding lid. Scanning the struc-

ture identifies 21 sets of interacting residues yielding 315 additional AF2 models after MSA muta-

genesis with three repeats per set of residues. Because targeting interaction surfaces with alanine

substitutions could lead AF2 to generate models that are misfolded, we assessed the quality of the

AF2 models for this test target by the TM score relative to the two crystal structures (Fig 2C). The

broad range of TM scores spanning the range between the two structures is a remarkable demon-

stration that this method unlocks AF2’s ability to predict alternate conformations. However, we

observed that some models do not appear to be a combination of the open and closed state as

they fall below the dashed line, the TM score for the two structures relative to each other (Fig 2C).

Close examination of these models reveals a variety of structural distortions that, in some cases,

involved beta sheets being replaced by alpha helices (Fig A in S1 Text).

To explore whether an objective criterion can be applied to filter out such misfolded struc-

tures, we calculated the molprobity [10] score of all 330 models. The histogram for the mol-

probity score indicates that the majority of the scores lie between 1.6 and 1.9 with some tailing

toward higher scores. (Fig 2D). To filter out models with high scores, which represent dis-

torted structures, we calculated the average molprobity scores for the 22 sets of structures and

then discarded sets where the average score was greater than one standard deviation of the

mean relative to the median of all scores (Fig 2D). The resultant plot of TM scores for the

remaining models indicate that the majority of models that were below the dashed line corre-

spond to the sets with higher molprobity scores (Fig 2E). This suggests that this method can be

used to systematically filter out sets with misfolded models.

While the relative TM scores highlight the conformational flexibility, this comparison

requires the availability of more than one experimental structure. Alternatively, principal com-

ponent analysis (PCA) provides a description of structural variance without multiple known

protein structures. PCA for the AK crystal structures and the remaining AF2 models yields an

interesting plot of principal components 1 and 2 (PC1, PC2) with one grouping of structures

highly divergent from the rest of the models and the two crystal structures (Fig 2F). Examina-

tion of these structures indicate that while these structures passed the molprobity criteria, they

are differently folded in the ATP binding lid compared to the crystal structures (Fig 2G). After

removal of these misfolded models, PCA analysis of the remaining models yields two separate

clusters suggestive of more than one intermediate between the open and closed structures (Fig

2H, Fig B in S1 Text). This set of models is consistent with a wide variety of studies on this

canonical example of protein flexibility that indicate that the ATP binding lid and AMP bind-

ing lid are capable of opening and closing independently [11,12].

Ribose binding protein. Ribose binding protein (RBP) is a bacterial periplasmic protein

involved in the chemotactic response to ribose. It has also been crystallized in a number of
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Fig 2. Sampling conformational flexibility of Adenylate Kinase (AK). A) Crystal structures of Adenylate Kinase

aligned on residues 1–25: closed, 1ake (lightorange) and open, 4ake (lightpink). B) AK model with the thickness of the

chain based on the rmsf for the 15 AF2 models from the unmodified MSA. C) TM score plot comparing all AF2 models

to the two crystal structures. The dashed line is the TM score between the two experimental structures. The color scale is

based on the relative molprobity score, (MP–MPmin) / MPmin. D) Histogram of molprobity scores. In blue are all of the

PLOS COMPUTATIONAL BIOLOGY Sampling protein ensembles and conformational heterogeneity with Alphafold2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010483 August 22, 2022 5 / 16

https://doi.org/10.1371/journal.pcbi.1010483


conformations including the ones compared here: the closed structure (PDB 2dri) [13] and an

open structure (1ba2B) that was obtained as a consequence of the mutation D67R [14] (Fig 3A).

Similar to AK, input of the amino acid sequence for the Enterobacteriase RBP yields confor-

mations that are most similar to the closed structure, 2dri (Fig 3B). Comparison of interacting

residues within the sliding 11 amino acid window lead to 27 sets for mutational analysis of the

MSA. The TM scores of the 420 AF2 models were calculated for comparison to the open and

closed state of the two crystal structures (Fig 3C). Most of the models are near the closed state

though there are several that yield a very high TM score with the open conformation. The mol-

probity score was calculated for all models and the sets that are one standard deviation of the

mean greater than the median of all of the models were discarded (Fig 3D). The TM score plot

supports this initial criteria for filtering as most of the models that lie outside of the progres-

sion of the closed to open states are eliminated (Fig 3E).

PCA of the remaining 315 AF2 models and the two crystal structures yields an apparent

scatter plot of conformations with a cluster near the closed state (Fig 3F). The changes in the

models lying between the two crystal structures is consistent with other studies of RBP [15,16].

The models within the scattered region with higher PC2 values are spread across several sets of

mutations and do not appear to be misfolded (Fig C in S1 Text). Further experiments would

be needed to ascertain whether these models have a role in RBP function.

The analysis of these two canonical examples of conformational flexibility indicate that the

molprobity scores can be used as a first screen for misfolded models in the absence of any

prior structures for the protein being examined. PCA can then be used as an additional screen

for sets of models that do not fit the overall structural heterogeneity. In addition, the PCA

allows for the identification and analysis of structures that might not be present in the struc-

tural database, leading to formulation of new hypotheses to be tested experimentally.

Conformational diversity of membrane proteins with no structures in the

Alphafold2 training set

We selected a set of membrane protein targets on the basis of a previous report examining the

ability of AF2 to predict multiple conformations [7]. Experimental structures of these targets

were determined subsequent to the training of AF2. The set includes members of diverse pro-

tein families (Table A in S1 Text) such as the major facilitator superfamily (MFS), LeuT-fold,

cation diffusion facilitator (CDF), and G-protein coupled receptor (GPCR) family. The specific

proteins are: MCT1 an MFS protein that requires an ancillary protein, basigin, for expression

and transport of monocarboxylates; STP10 an MFS proton-sugar transporter from Arabidop-

sis thaliana; Lat1 a human amino acid transporter belonging to the LeuT-fold family; ZnT8 a

dimeric, zinc transporter that is a member of the CDF; ASCT2 a sodium-dependent exchanger

of neutral amino acids that forms a trimer and is thought to work via an elevator-type mecha-

nism; CGRPR the GPCR for the calcitonin-gene-related peptide that is functionally part of a

heterotrimer; PTH1R the GPRC for parathyroid hormone; and FZD7 the GPCR of the ’friz-

zled’ gene family that are receptors for Wnt signaling proteins. The modeling pipeline

described above consisting of initial AF2 modeling, mutagenesis of the MSA, generation of

new models from the mutated MSAs, molprobity structural filtering, and PCA analysis was

applied to these membrane proteins. The modeling excluded accessary or interacting proteins.

In addition, only the transmembrane spanning region is modeled for the GPCRs.

models. The hatched red plot is for the models parsed by excluding sets that are one standard deviation above the median

of all models. E) TM score plot of the parsed set of models. F) PCA plot of the first two components for the parsed set of

models. Note the outlier set to the lower right. G) Highlighted is the ATP binding region, 1ake (orange), 4ake (magenta),

and a representative structure from the outliers in ‘F’ (red). H) PCA plot removing the misfolded models shown in ‘G’.

https://doi.org/10.1371/journal.pcbi.1010483.g002
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The modeling of the 8 membrane proteins using the unmodified MSA leads to a diverse

breadth of conformational heterogeneity and correspondence with the now available experi-

mental protein structures (Fig 4A–4B). The majority of the proteins adopt a single

Fig 3. Sampling conformational flexibility of Ribose Binding Protein (RBP). A) Crystal structures of RBP: open, 1ba2B (lightorange) and

closed, 2dri (lightpink). B) RBP model with the thickness of the chain based on the rmsf for the 15 AF2 models from the unmodified MSA. C)

TM score plot comparing all AF2 models to the two crystal structures. The dashed line is the TM score between the two experimental structures.

The color scale is based on the relative molprobity score, (MP–MPmin) / MPmin. D) Histogram of molprobity scores. In blue are all of the

models. The hatched red plot is for the models parsed by excluding sets that are one standard deviation from the median of all models. E) TM

score plot of the parsed set of models. F) PCA plot of the first two components for the parsed set of models.

https://doi.org/10.1371/journal.pcbi.1010483.g003
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conformation with varying disorder within each conformation. Three of the proteins are able

to adopt multiple conformations: ZnT8 exhibits one slightly different additional conformation;

ASCT2 appears to adopt conformations near the two extrema exemplified by the experimental

structures; Lat1 on the other hand appears to adopt conformations along the whole pathway

between the two experimental structures. These results indicate that in some cases AF2 is

directly able to yield multiple conformations without any modification of the MSA. This result

is a consequence of two factors: the five different AF2 modelers are not monolithic and the

increased variation of the MSA input as a result of varying the random seed. However, as seen

below, the advantage of our systematic approach is that it is less dependent on the idiosyncra-

sies of the MSA, random seed, and the set of templates that were included in the training of

AF2.

As performed for the canonical targets, mutational scanning of the MSA was carried out.

These modified MSAs were then used by AF2 to generate new models. Following a molprobity

filtering step, models were compared to the two experimental models (Fig 4C). For the five

transporters, MCT1, STP10, Lat1, ZnT8, and ASCT2, the breadth of variability and correspon-

dence to the two experimental structures increased in all cases (Fig E in S1 Text). We observed

for the GPCRs, PTH1R and FZD7 but not CGRPR, an increase in the breadth of conforma-

tions that lie between the two experimental structures. In addition, the plots of the TM scores

for the GPCRs were more diverse than the transporters. In the previous report using these

Fig 4. Sampling conformational flexibility of proteins with no structures in AF2 training set. A) Models with the thickness of the chain based on the rmsf

for the 15 AF2 models from the unmodified MSA. B) TM score plot for the 15 initial models. C) TM score plot for all models after parsing for molprobity score.

D) PCA of the parsed models. In Fig D in S1 Text are plots of the experimental structures and the best model based on TM score.

https://doi.org/10.1371/journal.pcbi.1010483.g004
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targets, the authors were able to increase the number of apo-like structures for all of the

GPCRs, but were unable to obtain alternate conformations of MCT1 without using a structural

template [7].

To contextualize the multiple conformations without reference to the experimental struc-

tures, PCA was carried out on the parsed model sets. In some cases, additional sets or individ-

ual models were removed from the initial PCA. The plots of PC1 vs PC2 for the resulting

analyses are shown in Fig 4D. Four of the transporters exhibit a V-shaped plot, supporting

isomerization of the transporter between inward and outward facing conformations. Positions

of the experimental structures relative to the AF2 models would suggest that not all of the

experimental structures are at the extremes of the range of conformational heterogeneity. The

plot for ASCT2 yields a gap between the two experimental conformations similar to the TM

scores plot suggesting a lack of intermediate conformations. CGRPR exhibits only an interme-

diate state between the two experimental conformations in agreement with the TM scores plot,

while PTH1R and FZD7 exhibit more diverse shapes relative to the transporters and each

other. Overall, the PCA reflects the TM score plots, supporting the utility of the PCA in the

absence of multiple experimental structures.

Membrane proteins with one structure in the Alphafold2 training set

The previous report by Del Alamo et al. noted that their approach of using a shallow MSA was

unable to generate more than one conformation for targets where one structure existed in the

AF2 training set suggesting an intrinsic bias within AF2 [7]. Having established the applicabil-

ity of our method to targets with no conformations in the training set, we examined whether

this bias would be present here. Therefore, we selected the same set of targets for analysis by

our method: the lipid II flippase MurJ and the multidrug and toxic compound extrusion

(MATE) transporter PfMATE of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP)

flippase superfamily; SERT the human serotonin transport belonging to the LeuT-fold family;

and CCR5 a GPCR for CC chemokines.

Following the pipeline established above, the sequences of these four membrane proteins

were used to predict models by AF2 (Fig 5A–5B). The initial models for MurJ are fairly diverse

with a wide variance for TM13-14, whereas PfMATE, another member of the MOP superfam-

ily, has essentially one conformation, outward-open that is similar to that present in the train-

ing set. It should be noted that while the full length protein was modeled, the analysis for

PfMATE does not include TM1 as it is unraveled in the low pH experimental structure (deter-

mined subsequent to the training of AF2) as a result of crystal contacts and does not appear to

represent the native conformation [17]. The serotonin transporter, SERT, has some variability

in TMs 1b and 6a, which are a part of the opening and closing of the extracellular vestibule.

CCR5 exhibits more variability than the GPCRs that had no structure in the training set.

Mutational scanning of the MSA and AF2 model generation were carried out for these four

proteins. After filtering by molprobity scores, the resulting AF2 models were compared to the

experimental structures (Fig 5C). MurJ has an interesting profile and the bifurcation of the

TM scores is related to the highly diverse transmembrane helices 13–14 since analysis of the

TM scores without this region yields a single line of models between the two structures (Fig G

in S1 Text). This is particularly notable as transmembrane helices 13–14 are thought to be the

site of binding for the lipid II isoprenoid tail [18]. Conversely, there are hardly any additional

conformations for PfMATE, but there are several models that do represent the alternate

inward-open conformation that was not present in the AF2 training template set. SERT does

adopt alternate conformations, though the structural changes are not completely in the direc-

tion of the second experimental conformation. Similar to the GPCRs with no structures in the
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Fig 5. Sampling conformational flexibility of proteins with one structure in AF2 training set. A) Models with the thickness of the chain based

on the rmsf for the 15 AF2 models from the unmodified MSA. B) TM score plot for the 15 initial models. C) TM score plot for all models after

parsing for molprobity score. D) PCA of the parsed models. In Fig F in S1 Text are plots of the experimental structures and the best model based on

TM score.

https://doi.org/10.1371/journal.pcbi.1010483.g005
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training set above, mutational analysis for CCR5 generates a more diverse set of models. The

generation of alternate conformations for these four proteins argues against a general bias as

the origin of the observation that decreasing the number of sequences in the MSA did not lead

to the alternate conformations for these proteins.

PCA of this set of proteins leads to a diverse set of plots (Fig 5D). The MurJ plot of the first

two principal components yields a square shape, comparable with the bifurcated TM score

plot; while the data without transmembrane helices 13–14 exhibit a V-shape plot for the prin-

cipal components (Fig G in S1 Text). If the AF2 models generated here for the transmembrane

helices 13–14 region are correct, this would suggest that there is coupling between ion gradi-

ents and movement of transmembrane helices 13–14 and by proxy the movement of lipid

across the membrane. The small number of alternate conformations for PfMATE is reflected

in the plot of PC1 vs PC2. Interestingly, the plot would suggest that the experimental structure,

3vvn, is not the fully outward-open state. If the AF2 models for SERT are correct, then there

are more conformations at the extrema for the transport cycle of serotonin. For CCR5 there is

a line of models from the two experimental conformation with a scattering away from them.

This scatter is reflected in the TM score plots. These results further support the utility of the

PCA as a tool for classifying models in the absence of multiple experimental structures.

Conformational flexibility by targeted in silico mutagenesis

Whereas the protocol above makes no assumption regarding the surfaces to be mutated, prior

knowledge of the underlying model of conformational changes may restrict the search to the

hypothesized areas of contacts. We have carried this out for the MOP family transporter

PfMATE and the multidrug transporter LmrP.

Based on the two-fold symmetry for PfMATE we hypothesized that the interface between

the two halves would mediate the change in conformation. Therefore, the residues that were

within 4 Å between the N- and C-terminal halves of the protein were mutated to alanine in the

MSA as before and new AF2 models were generated. These residues lead to a complete reversal

of conformation from the outward-open for all of the initial models to inward-open for all of

the models generated from the mutated MSA (Fig H in S1 Text).

Directed mutation of the MSA was carried out for LmrP, a target in CASP XIV. Modeling

of the LmrP structure with the unmodified MSA yields mostly inward-open conformations

(Fig I1 in S1 Text), a result that differs from the initial models obtained by Deepmind that

were all inward-open conformations. The difference is most likely due to the update (v 2.1) of

the model parameters for Alphafold used here. To obtain an alternate outward facing confor-

mation, the Deepmind team parsed the MSA and limited the structural templates to those that

are outward facing [6]. In contrast, the approach here does not use structural templates.

Rather, the residues that mediate the interface between the two halves of the protein in the

inward facing AF2 model were explored. The mutations targeted residues in both the N- and

C-terminal half, residues in either the N- or C-terminal half, and a set of 3 residues at the cen-

ter of the transmembrane region. These mutations prompted AF2 to generate mostly out-

ward-open conformations that match the experimental structure (Fig I1 in S1 Text). PCA was

carried out on the AF2 models and the single experimental structure and yielded a mostly V-

shaped curve as seen for the other transporters (Fig I2 in S1 Text). The four structures that

were not inward-open in the initial runs of AF2 do not segregate with any of the other models

and appear to be partially open on both sides (Fig I3 in S1 Text) suggesting that these are mis-

folded structures. The ability to generate the opposite conformations with fewer modified

MSAs supports the use of directly targeting residues to mutate in the MSA based on prior

knowledge of conformational changes.
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Discussion

The premise of the work presented here is that the MSA contains information on multiple pro-

tein conformations. Therefore, it follows that AF2 can generate these conformations with

appropriate modifications of the MSA. Our method entails simple in silico mutagenesis to suc-

cessfully coerce AF2 to sample alternative conformations for a number of target proteins both

water-soluble and membrane embedded (Figs 2–5). This simple in silico mutagenesis is fol-

lowed by two filtering steps to remove misfolded proteins. The molprobity score sets a thresh-

old to filter out sets of models that overall yield poorer quality structures while the PCA

enables the removal of models that are not part of an ensemble. In addition, the PCA allows

for the development of specific hypothesis regarding the conformational dynamics in the

absence of experimental structures.

Our mutagenesis method requires no prior structural knowledge about the protein of inter-

est or its conformational landscape. The protein sequence is used to generate five models by

AF2. Typically, the top ranked model is probed to identify contact points within the structure,

though any of the five models can be used. Contact sites between the rest of the protein and

residues within a chosen window are determined. These contact residues are then mutated to

alanine in the MSA and new models are generated. The window of interest is scanned along

the protein sequence leading to the generation of sets of models. If the alanine substitutions do

not alter the information content of the MSA, AF2 returns similar models to the wild-type

sequence. In contrast, if the mutations to alanines do alter the information content of the

MSA, the AF2 models are expected to include alternate conformations. Our underlying

hypothesis is that these models reflect the protein conformation space because the MSA

encodes this information. This is supported by a study that found that the distance contact

map generated from co-evolution analysis is correlated to the flexibility of the residue pairs

[19]. That alternate conformations are encoded in the MSA and the ability of the method to

yield multiple secondary structural elements (Fig A in S1 Text) would support this methodol-

ogy in examining fold-switch proteins where the standard AF2 pipeline was generally unable

to model both conformations [20].

One variable in this method is the size of the window for alanine scanning. The choice of 11

amino acid presented here was selected based of the expected size of the structural elements to

be probed, mainly long α-helices of transmembrane proteins, and the number of models that

would be generated, i.e. the protein length divided by the window length. As the length of the

window gets smaller, more models need to be generated and the compute time of the AF2 cal-

culations increases. To explore the effect of window size on the ensemble of models, we tested

the effect of smaller windows of 8 and 5 amino acid on adenylate kinase. The PCA of the

resulting models from the three window sizes show good overlap of the conformational space

explored (Fig J in S1 Text). These results support the use of the 11 amino acid window, though

a smaller window might be more appropriate when the structural elements of the protein of

interest are smaller or similar in size to the length of this window.

A question with this method is the effect of mutating residues to alanine on a protein that

does not undergo a conformational change. We tested this question by using a 3 amino acid

window on the protein ubiquitin. The small window size was selected because ubiquitin is at

least 1/4 as large compared to the membrane proteins that make up the testing set. The same

protocol was followed where the MolProbity score is used to filter out the initial set of models

(Fig K1 in S1 Text). The remaining models were further examined by PCA along with several

sets of structures obtained by NMR spectroscopy (Fig K2 in S1 Text). We observed a slight

shift between the center of the AF2 models and the center of the NMR structures, which is

most likely due to subtle differences in the AF2 model compared to the experimental structure
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(Fig K3 in S1 Text). However, the strong overlap in the PCA indicates that structural flexibility

is highly similar (Fig K4 in S1 Text) and examination of the structures on the periphery do not

indicate any additional conformations. The similarity in the explored conformational space

and lack of any new conformations generated by AF2 further supports the overall conclusion

that the method presented here, when filtered for misfolded models, does not lead to gross

deviations from experimentally sampled conformations.

When the alternate methodology of subsampling the MSA was released in preprint [21], an

additional, complementary method was suggested in a Twitter feed [22]. This method entailed

using dropout and altering the random seed within AF2 to sample a protein’s conformational

space. It appears to work for one case, but was unsuccessful for MCT1. While it was mentioned

that combining dropout and subsampling of the MSA might be of interest [22] nothing further

has been put forth. Here we have carried out a comparison with the subsampling method by

examining all of the proteins used in the now published study [7]. Plots of the TM-score for

the AF2 models generated by making in silico mutations in the MSA suggest that the approach

described here is capable of generating both conformations for all of the targets, except

CGRPR, including those where the MSA subsampling method failed (Fig 4–5). This demon-

strates the general utility of our methodology in generating ensembles of multiple conforma-

tions regardless of whether the protein is in the training set.

Alternate conformations for almost all of the proteins were obtained and in some cases

without modifying the MSA. These results support that the five different AF2 modelers are not

monolithic and the first step in obtaining alternate conformations are multiple runs of AF2

with different random seeds. The inconsistent ability of AF2 to generate multiple conforma-

tions with the unmodified MSA and the failures of both methodologies might have similar

roots, the information content of the MSA. This would explain the disparate results and how

different random seeds lead to multiple conformations. This is supported by a recent report

examining optimizing MSAs for maximizing AF2 model confidence, though the changes that

lead to higher confidence were self-inconsistent [23]. How the makeup of the MSA, such as

generated via MMseq2 or through the AF2 pipeline, affects the alternate conformations

obtained by AF2 requires further examination. Regardless of the source of the MSA, the meth-

odology developed here is consistent with the notion that AF2 did not just learn structures, but

is able to generate multiple conformations rooted in physical principles. This is supported by

results that showed that AF2’s pLDDT score is highly correlated to model accuracy [24],

though the learned physical principles do not describe protein folding pathways [25].

The results presented here strongly support manipulation of the MSA to generate ensem-

bles of multiple conformations of proteins via AF2. Furthermore, the PCA of the ensembles

and conformations presented fully support the biochemical significance of the models gener-

ated here. These in silico structures can guide experimental design and be tested using spectro-

scopic approaches, and will ultimately provide a framework for interpretation of existing

biochemical data and the development of mechanistic models.

Methods

Initial Alphafold2 structure

Protein sequences were downloaded as fasta files from NCBI [26]. These sequences were used

as input for colabfold_batch that is part of ColabFold [27]. ColabFold implements folding of

the protein with the models for Alphafold2 using MMseqs2 to generate the MSA. The models

were generated with the default parameters, which includes no template [3,27–30]. The ratio-

nale for not including any templates is to allow Alphafold2 to generate structural intermediates

that may not be achieved by the bias of including structural templates.
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In silico mutagensis

The total length of the protein to be alanine-scanned was determined from the pLDDT results

for the top AF2 model, though if the initial AF2 models have different conformations any of

the models could be chosen. Both the N- and C- terminal ends were truncated where the

pLDDT values were less than the mean of all the pLDDT values. An 11 amino acid window

was scanned from these starting and ending points. Within this window, all interacting residue

pairs of this region and the rest of the protein that lie within 4 Å of each other are tabulated.

To keep from destabilizing secondary structure, any of the interacting partners that were

within 4 amino acids in the primary sequence relative to the region of interest were omitted.

Four angstroms was chosen as the cutoff to encompass polar and ionic interactions including

those mediated by water. Alternate cutoffs or criteria could be chosen to yield smaller or larger

sets of potentially interacting pairs.

Modification of the MSA

The initial MSA generated by MMseqs2 is in a3m format. This format has the query sequence

in all capitals without gaps. The subsequent sequences have a dash for a gap in that sequence

and lowercase letters for a gap in the first sequence. The alanine substitutions were made in

the equivalent amino acid position across all sequences. This substitution was not made if the

equivalent position was a gap. The choice of alanine is to minimize any negative consequences

of the mutation on secondary structure. A jupyter notebook to carry out this mutagenesis step

is available (https://github.com/RSvan/SPEACH_AF).

Additional Alphafold2 runs

The subsequent runs using the modified sequence and MSA were again carried out with colab-

fold_batch, 3 times for each MSA for a total of 15 models for each 11 aa window examined. A

modification was made to batch.py within ColabFold to allow for a different random seed for

each run increasing the variability in the modelers of Alphafold2. The modified batch.py file is

available (https://github.com/RSvan/SPEACH_AF).

Filtering of Alphafold2 models

The AF2 models were subjected to molprobity scoring [10]. The median and the standard

deviation of the mean (SDM) for all models were calculated. Based on the mutagenesis sliding

window the mean molprobity score was calculated for each set of 15 models. The sets where

the mean was greater than one SDM from the median were parsed out from the total set. The

parsed set of models underwent principal component analysis (PCA) with ProDy [31]. The

plots for principal component 1 (PC1) vs principal component 2 (PC2) were plotted. This plot

was then used for manual inspection for outliers relative to the rest of the data. These outliers

were removed from the set and the PCA was repeated until there were no apparent outliers.

Additional analysis

The relative molprobity score (MP) was calculated by (MP-MPmin)/MPmin. The TM score was

obtained with TM_align [32]. The root mean square fluctuation (rmsf) was calculated with

ProDy [31]. Figure generation was carried out in Pymol [33].

Supporting information

S1 Text. Contains all supplemental Tables and Figures. Table A: Membrane Protein Struc-

tures. Fig A: Examples of Misfolded Adenylate Kinase. Fig B: Structural intermediates of
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Ribose Binding Protein. Fig C: Structures outside the transition from 2dri to 1ba2 are not mis-

folded. Fig D: Plots matching models to experimental structures. Fig E: Conformation diver-

sity of the models. Fig F: Plots matching models to experimental structures. Fig G: Analysis of

MurJ without transmembrane helices 13 and 14. Fig H: PfMATE conformational flexibility.

Fig I: LmrP conformational flexibility. Fig J: PCA of Adenylate Kinase. Fig K: SPEACH_AF on

ubiquitin.

(PDF)

Acknowledgments

We thank Derek Claxton for helpful discussions and critically reading the manuscript.

Author Contributions

Conceptualization: Richard A. Stein, Hassane S. Mchaourab.

Methodology: Richard A. Stein.

Writing – original draft: Richard A. Stein.

Writing – review & editing: Richard A. Stein, Hassane S. Mchaourab.

References
1. AlQuraishi M. Machine learning in protein structure prediction. Current Opinion in Chemical Biology.

2021; 65: 1–8. https://doi.org/10.1016/j.cbpa.2021.04.005 PMID: 34015749

2. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, et al. Protein 3D Structure Com-

puted from Evolutionary Sequence Variation. PLOS ONE. 2011; 6: e28766. https://doi.org/10.1371/

journal.pone.0028766 PMID: 22163331

3. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein struc-

ture prediction with AlphaFold. Nature. 2021; 596: 583–589. https://doi.org/10.1038/s41586-021-

03819-2 PMID: 34265844

4. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein

structure prediction (CASP)—Round XIV. Proteins: Structure, Function, and Bioinformatics. 2021; 89:

1607–1617. https://doi.org/10.1002/prot.26237 PMID: 34533838

5. Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science. 1973; 181: 223–230.

https://doi.org/10.1126/science.181.4096.223 PMID: 4124164

6. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Applying and improving

AlphaFold at CASP14. Proteins: Structure, Function, and Bioinformatics. 2021; 89: 1711–1721. https://

doi.org/10.1002/prot.26257 PMID: 34599769

7. del Alamo D, Sala D, Mchaourab HS, Meiler J. Sampling alternative conformational states of transport-

ers and receptors with AlphaFold2. eLife. 2022; 11: e75751. https://doi.org/10.7554/eLife.75751 PMID:

35238773

8. Müller C, Schlauderer G, Reinstein J, Schulz G. Adenylate kinase motions during catalysis: an ener-

getic counterweight balancing substrate binding. Structure. 1996; 4: 147–156. https://doi.org/10.1016/

s0969-2126(96)00018-4 PMID: 8805521

9. Müller CW, Schulz GE. Structure of the complex between adenylate kinase from Escherichia coli and

the inhibitor Ap5A refined at 1.9 Å resolution: A model for a catalytic transition state. Journal of Molecu-

lar Biology. 1992; 224: 159–177. https://doi.org/10.1016/0022-2836(92)90582-5

10. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and bet-

ter reference data for improved all-atom structure validation. Protein Science. 2018; 27: 293–315.

https://doi.org/10.1002/pro.3330 PMID: 29067766

11. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, et al. Intrinsic motions along an enzy-

matic reaction trajectory. Nature. 2007; 450: 838–844. https://doi.org/10.1038/nature06410 PMID:

18026086

12. Miller MD, Phillips GN. Moving beyond static snapshots: Protein dynamics and the Protein Data Bank.

Journal of Biological Chemistry. 2021; 296: 100749. https://doi.org/10.1016/j.jbc.2021.100749 PMID:

33961840

PLOS COMPUTATIONAL BIOLOGY Sampling protein ensembles and conformational heterogeneity with Alphafold2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010483 August 22, 2022 15 / 16

https://doi.org/10.1016/j.cbpa.2021.04.005
http://www.ncbi.nlm.nih.gov/pubmed/34015749
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1371/journal.pone.0028766
http://www.ncbi.nlm.nih.gov/pubmed/22163331
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1002/prot.26237
http://www.ncbi.nlm.nih.gov/pubmed/34533838
https://doi.org/10.1126/science.181.4096.223
http://www.ncbi.nlm.nih.gov/pubmed/4124164
https://doi.org/10.1002/prot.26257
https://doi.org/10.1002/prot.26257
http://www.ncbi.nlm.nih.gov/pubmed/34599769
https://doi.org/10.7554/eLife.75751
http://www.ncbi.nlm.nih.gov/pubmed/35238773
https://doi.org/10.1016/s0969-2126%2896%2900018-4
https://doi.org/10.1016/s0969-2126%2896%2900018-4
http://www.ncbi.nlm.nih.gov/pubmed/8805521
https://doi.org/10.1016/0022-2836%2892%2990582-5
https://doi.org/10.1002/pro.3330
http://www.ncbi.nlm.nih.gov/pubmed/29067766
https://doi.org/10.1038/nature06410
http://www.ncbi.nlm.nih.gov/pubmed/18026086
https://doi.org/10.1016/j.jbc.2021.100749
http://www.ncbi.nlm.nih.gov/pubmed/33961840
https://doi.org/10.1371/journal.pcbi.1010483


13. Björkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL. Probing protein-protein

interactions. The ribose-binding protein in bacterial transport and chemotaxis. Journal of Biological

Chemistry. 1994; 269: 30206–30211. https://doi.org/10.1016/S0021-9258(18)43798-2 PMID: 7982928

14. Björkman AJ, Mowbray SL. Multiple open forms of ribose-binding protein trace the path of its conforma-

tional change. Journal of Molecular Biology. 1998; 279: 651–664. https://doi.org/10.1006/jmbi.1998.

1785 PMID: 9641984

15. Li H, Cao Z, Hu G, Zhao L, Wang C, Wang J. Ligand-induced structural changes analysis of ribose-bind-

ing protein as studied by molecular dynamics simulations. Technol Health Care. 2021; 29: 103–114.

https://doi.org/10.3233/THC-218011 PMID: 33682750

16. Orellana L, Yoluk O, Carrillo O, Orozco M, Lindahl E. Prediction and validation of protein intermediate

states from structurally rich ensembles and coarse-grained simulations. Nat Commun. 2016; 7: 12575.

https://doi.org/10.1038/ncomms12575 PMID: 27578633

17. Jagessar KL, Claxton DP, Stein RA, Mchaourab HS. Sequence and structural determinants of ligand-

dependent alternating access of a MATE transporter. Proc Natl Acad Sci U S A. 2020; 117: 4732–4740.

https://doi.org/10.1073/pnas.1917139117 PMID: 32075917

18. Zheng S, Sham L-T, Rubino FA, Brock KP, Robins WP, Mekalanos JJ, et al. Structure and mutagenic

analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci U S A. 2018; 115: 6709–

6714. https://doi.org/10.1073/pnas.1802192115 PMID: 29891673

19. Schwarz D, Georges G, Kelm S, Shi J, Vangone A, Deane CM. Co-evolutionary distance predictions

contain flexibility information. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab562

PMID: 34383892

20. Chakravarty D, Porter LL. AlphaFold2 fails to predict protein fold switching. Protein Science. 2022; 31:

e4353. https://doi.org/10.1002/pro.4353 PMID: 35634782

21. Del Alamo D, Sala D, Mchaourab H, Meiler J. Sampling the conformational landscapes of transporters

and receptors with AlphaFold2. 2021 Nov. https://doi.org/10.1101/2021.11.22.469536

22. Sergey Ovchinnikov UA [@sokrypton]. In AF_advanced colabfold we suggest enabling dropout

(is_training = True), and iterating through seeds to sample from the uncertainty. This should theoreti-

cally return multiple conformations if there is any ambiguity in coevolution, w/o the need to resample/

subsample the MSA (1/3): https://t.co/MUtee9xIaX. In: Twitter [Internet]. 2021. Available: https://twitter.

com/sokrypton/status/1464278161898848259

23. Petti S, Bhattacharya N, Rao R, Dauparas J, Thomas N, Zhou J, et al. End-to-end learning of multiple

sequence alignments with differentiable Smith-Waterman. bioRxiv; 2022. p. 2021.10.23.465204.

https://doi.org/10.1101/2021.10.23.465204

24. Roney JP, Ovchinnikov S. State-of-the-art estimation of protein model accuracy using AlphaFold. bioR-

xiv; 2022. p. 2022.03.11.484043. https://doi.org/10.1101/2022.03.11.484043

25. Outeiral C, Nissley DA, Deane CM. Current structure predictors are not learning the physics of protein

folding. Bioinformatics. 2022; 38: 1881–1887. https://doi.org/10.1093/bioinformatics/btab881 PMID:

35099504

26. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Informa-

tion. Nucleic Acids Research. 2018; 46: D8–D13. https://doi.org/10.1093/nar/gkx1095 PMID: 29140470

27. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein fold-

ing accessible to all. Nat Methods. 2022; 1–4. https://doi.org/10.1038/s41592-022-01488-1 PMID:

35637307
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