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Introduction: To develop effective therapies and identify novel early biomarkers for chronic kidney dis-

ease, an understanding of the molecular mechanisms orchestrating it is essential. We here set out to

understand how differences in chronic kidney disease (CKD) origin are reflected in gene expression. To

this end, we integrated publicly available human glomerular microarray gene expression data for 9 kidney

disease entities that account for most of CKD worldwide. Our primary goal was to demonstrate the pos-

sibilities and potential on data analysis and integration to the nephrology community.

Methods: We integrated data from 5 publicly available studies and compared glomerular gene expression

profiles of disease with that of controls from nontumor parts of kidney cancer nephrectomy tissues. A

major challenge was the integration of the data from different sources, platforms, and conditions that we

mitigated with a bespoke stringent procedure.

Results: We performed a global transcriptome-based delineation of different kidney disease entities,

obtaining a transcriptomic diffusion map of their similarities and differences based on the genes that

acquire a consistent differential expression between each kidney disease entity and nephrectomy tissue.

We derived functional insights by inferring the activity of signaling pathways and transcription factors

from the collected gene expression data and identified potential drug candidates based on expression

signature matching. We validated representative findings by immunostaining in human kidney biopsies

indicating, for example, that the transcription factor FOXM1 is significantly and specifically expressed in

parietal epithelial cells in rapidly progressive glomerulonephritis (RPGN) whereas not expressed in control

kidney tissue. Furthermore, we found drug candidates by matching the signature on expression of drugs

to that of the CKD entities, in particular, the Food and Drug Administration–approved drug nilotinib.

Conclusion: These results provide a foundation to comprehend the specific molecular mechanisms un-

derlying different kidney disease entities that can pave the way to identify biomarkers and potential

therapeutic targets. To facilitate further use, we provide our results as a free interactive Web application:

https://saezlab.shinyapps.io/ckd_landscape/. However, because of the limitations of the data and the dif-

ficulties in its integration, any specific result should be considered with caution. Indeed, we consider this

study rather an illustration of the value of functional genomics and integration of existing data.
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KD is a significant public health burden affecting
more than 10% of the population globally.1 There

is no specific therapy, and the associated costs are
enormous.2 The origin of CKD is heterogeneous and has
slowly changed in recent years due to an aging popu-
lation with increased number of patients with hyper-
tension and diabetes. Major contributors to worldwide
CKD include diabetic nephropathy (DN) and hyper-
tensive nephropathy (HN). Other contributors are
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immune diseases, such as lupus nephritis (LN), and
glomerulonephritides, including IgA nephropathy
(IgAN), membranous glomerulonephritis (MGN), and
minimal change disease (MCD), as well as focal
segmental glomerulosclerosis (FSGS), and RPGN.

Regardless of the type of initial injury to the kidney,
the stereotypic response to chronic repetitive injury is
scar formation with subsequent kidney functional
decline. Scars form in the tubulointerstitium as tubu-
lointerstitial fibrosis and in the glomerulus as glomer-
ulosclerosis. Despite this stereotypic response, the
initiating stimuli are quite heterogeneous, ranging from
an auto-immunological process in LN to poorly
controlled blood glucose levels in DN. A better un-
derstanding of similarities and differences in the com-
plex molecular processes orchestrating disease
initiation and progression will guide the development
of novel targeted therapeutics.

A powerful tool to understand and model the mo-
lecular basis of diseases is the analysis of genome-wide
gene expression data. This has been applied in the
context of various kidney diseases contributing to
CKD,3–7 and many studies are available in the online
resource NephroSeq.8,9 However, to the best of our
knowledge, no study so far has combined these data
sets to build a comprehensive landscape of the molec-
ular alterations underlying different kidney diseases
that account for most CKD cases. We collected from 5
extensive studies microarray gene expression data from
kidney biopsies of patients of 8 separate glomerular
disease entities leading to CKD (from here on referred to
as CKD entities), FSGS, MCD, IgAN, LN, MGN, DN,
HN, and RPGN. We normalized the data with a
bespoke stringent procedure, which allowed us to
study the similarities and differences among these en-
tities in terms of deregulated genes, pathways, and
transcription factors, as well as to identify drugs that
revert their expression signatures and thereby might
be useful to treat them.
METHODS

Data Collection

Raw data CEL files of each microarray dataset,
GSE20602,10 GSE32591,11 GSE37460,11 GSE47183,12,13

and GSE50469,14 were downloaded and imported to R
(R version 3.3.2). For more information see the
Supplementary Methods.
Normalization

Cyclic loess normalization was applied using the limma
package.15–17 YuGene transformation was carried out
using the YuGene R package.18
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Batch Effect Mitigation: Method

First, we structured the data in a platform-specific
manner. Then, we conducted differential gene
expression analysis between the identical biological
conditions from distinct study sources after cyclic
loess normalization. We subsequently removed the
genes that are significantly differentially expressed
between them, as it indicated differences mainly due
to the data source, rather than the biological differ-
ence. We applied this procedure for the data frag-
ments coming from Affymetrix (Santa Clara, CA)
Human Genome U133 Plus 2.0 Array and Affymetrix
Human Genome U133A Array. Next, we merged the
data sets between the 2 platforms using the over-
lapping genes, followed by a process to mitigate the
platform-induced batch effect. This latter procedure is
similar to the one used for the data source–specific
batch effect mitigation.

Detection of Genes With Consistently Small P

Values Across All Studies

Based on the assumption that common mechanisms
might contribute to all CKD entities, we performed a
Maximum P value (maxP) method,19 which uses the
maximum P value as the test statistic on the output of
the differential expression analysis of the hypotheti-
cally separate studies. For more information see the
Supplementary Methods.

Diffusion Map

The batch-mitigated data containing merely the maxP
identified 1790 genes (Supplementary Material and
Supplementary Data and Code) (false discovery rate <
0.01), were YuGene transformed,18 and the destiny R
package20 was used to produce the diffusion maps.

Functional Analysis
Transcription Factor Activity Analysis

We estimated transcription factor activities in the
glomerular CKD entities using DoRothEA,21 which is a
pipeline that tries to estimate transcription factor ac-
tivity via the expression level of its target genes using a
curated database of transcription factor (TF)–target
gene interactions (TF Regulon). For more information
see the Supplementary Methods.

Inferring Signaling Pathway Activity Fusing

PROGENy

We used the cyclic loess normalized and batch effect
mitigated expression values for PROGENy,22 a method
that uses downstream gene expression changes due to
pathway perturbation to infer the upstream signaling
pathway activity. For more information see the
Supplementary Methods.
Kidney International Reports (2020) 5, 211–224
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Pathway Analysis With Piano

Pathway analysis was performed using the Piano
package from R.23 For more information see the
Supplementary Methods.
Drug Repositioning

For each CKD entity, the signature of cosine distances
computed by characteristic direction was applied to a
signature search engine, L1000CDS2,24 with the mode of
reverse in configuration.
Immunofluorescent Staining of Human Kidney

Biopsies and Analysis

Validation involving human kidney biopsies was
approved by the local ethics committee at Karolinska
Institutet (Dnr 2017/1991-32). Stainings were per-
formed on 2-mm paraffin-embedded sections as previ-
ously described.25 For more information see the
Supplementary Methods.
Figure 1. Visual abstract and descriptive analysis. (a) Flow of analysis follo
studies and microarray platforms. (c) Hierarchical clustering of the arrays
diabetic nephropathy; FSGS, focal segmental glomerulosclerosis; GEO, Ge
nephropathy; IgAN, IgA nephropathy; LN, lupus nephritis; MCD, minimal ch
progressive glomerulonephritis; TN, tumor nephrectomy.
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RESULTS

Assembly of a pan-CKD Collection of Patient

Gene Expression Profiles

We searched in NephroSeq (www.nephroseq.org) and
the Gene Expression Omnibus26,27 and identified 5
studies, GSE20602,10 GSE32591,11 GSE37460,11

GSE47183,12,13 GSE5046914, with human microarray
gene expression data for 9 different glomerular disease
entities: FSGS, FSGS-MCD, MCD, IgAN, LN, MGN, DN,
HN, and RPGN, as well as healthy tissue and nontumor
part of kidney cancer nephrectomy tissues as controls
(Figure 1a and b). In addition, in one dataset, patients
were labeled as an overlap of FSGS and MCD (FSGS-
MCD) and we left it as such. These studies were
generated in 2 different microarray platforms. To
jointly analyze and compare the different CKD entities,
we performed a stringent preprocessing and normali-
zation procedure involving quality control, either cy-
clic loess normalization or YuGene transformation, and
a batch effect mitigation procedure (see the Methods
wed in this study. (b) Heatmap of the distribution of samples across
based on gene expression Spearman’s correlation coefficients. DN,
ne Expression Omnibus; HLD, healthy living donor; HN, hypertensive
ange disease; MGN, membranous glomerulonephritis; RPGN, rapidly
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section and the Supplementary Material). At the end,
we kept 6289 genes from 199 samples in total. From the
2 potential controls, healthy tissue, and nephrectomies,
we chose the latter for further analysis as the batch
mitigation removed a large number of genes from the
healthy tissue samples.

Technical Heterogeneity Across Samples

We first examined the similarities between the samples
to assess further batch effects. Data did not primarily
cluster by study source or platform, which can be
attributed to our batch mitigation procedure (Figure 1c;
Supplementary Figure S1), although some technical
sources of variance potentially remained
(Supplementary Figure S1). Samples from RPGN and
FSGS-MCD conditions seemed to be more affected by
platform-specific batch effects than samples from other
conditions, due to the unbalanced distribution of
samples: RPGN and FSGS-MCD samples were exclu-
sively represented in 1 study and in 1 of the 2 plat-
forms (Affymetrix Human Genome U133 Plus 2.0 Array
[GPL570]). Therefore, the batch effect mitigation pro-
cedure could not be conducted on them.
Figure 2. Transcription-based map of chronic kidney disease (CKD) entitie
across 6 or more disease entities (upregulation or downregulation). (b)
structure of the glomerular CKD transcriptomics data. DN, diabetic nephro
donor; HN, hypertensive nephropathy; IgAN, IgA nephropathy; LN, lup
glomerulonephritis; RPGN, rapidly progressive glomerulonephritis; TN, tum
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Biological Heterogeneity of CKD Entities

We set out to find molecular differences among
glomerular CKD entities. First, we calculated the dif-
ferential expression of individual genes between the
different CKD entities and tumor nephrectomy (TN)
samples using limma.17,28 From the 6289 genes included
in the integrated dataset, 1791 showed significant dif-
ferential expression (jlogFCj > 1, P < 0.05) in at least 1
CKD entity. RPGN was the CKD entity with the largest
number of significantly differentially expressed genes
(885), and MCD was the one with the least (75). Twelve
genes showed significant differential expression across
all the CKD entities (AGMAT, ALB, BHMT2, CALB1,
CYP4A11, FOS, HAO2, HMGCS2, MT1F, MT1G,
PCK1, SLC6A8). Interestingly, all these genes were
underexpressed across all the CKD entities compared
with TN. In contrast, QKI and LYZ genes were
significantly overexpressed in HN, IgAN, and LN, and
significantly underexpressed in FSGS-MCD and RPGN
(and DN for QKI); 107 different genes were signifi-
cantly differentially expressed relative to TN in at least
6 CKD entities (Figure 2a). Of note, several of the pre-
viously mentioned genes are considered to be
s. (a) Radial heatmap of consistently differentially expressed genes
Diffusion map of CKD entities reveals the underpinning geometric
pathy; FSGS, focal segmental glomerulosclerosis; HLD, healthy living
us nephritis; MCD, minimal change disease; MGN, membranous
or nephrectomy.
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expressed mainly in tubule. This could be explained by
contamination of the glomerular samples with tubular
cells during the microdissection procedure. Future
studies using single-cell RNA sequencing (scRNA-seq)
will dissect which genes are specifically expressed in
glomerular cells during homeostasis and disease.

To better comprehend the divergence and similar-
ities of the CKD samples, we asked how the distinct
CKD entities localized with respect to each other using
a common set of differentially expressed genes with
regard to the nontumorous part of tumor nephrec-
tomies using diffusion maps (Figure 2b). For illustrative
purposes, we included the healthy tissue samples in the
diffusion map; we did not use the healthy samples for
differential expression analysis. The diffusion distances
of each given CKD entity sample relative to TN samples
reflect a nonlinear lower dimensional representation of
the differences in gene expression profiles between
those samples. The diffusion map orders the patients
along a “pseudo-temporal” order, which we interpret
here as an indicator of disease progression severity in
glomeruli.29

The most distant condition from nephrectomy sam-
ples was RPGN, which is arguably the most drastic
kidney disease condition with the most rapid func-
tional decline among the entities included (Figure 2b).
Healthy donor samples were distinct from TN samples
even though the latter were resected distantly from the
tumors. This might be explained by either minor
contamination with cancer cells or paraneoplastic ef-
fects on the nonaffected kidney tissue, such as immune
cell infiltration or solely that the nephrectomy tissue
was exposed to short ischemia whereas the biopsy
tissue from healthy donors was not. DN and LN were in
close proximity to RPGN, whereas HN localized near
IgAN. Differences were harder to assess in the middle
of the diffusion map, but were visible when plotting
the dimension components pair-wise (Supplementary
Figure S2). For instance, MCD samples spanned from
a point proximal to TN to near FSGS, but some MCD
samples were in close proximity to MGN or even HN.
Although it makes sense that MCD, as a relatively mild
disease with normal light microscopy, is relatively
close to the control groups of TN and healthy living
donor, it remains unclear why other disease entities
such as LN and DN spread widely in the diffusion map.
Unfortunately, the data we used did not include in-
formation about disease severity, which might help to
explain this heterogeneity, with early-stage disease
possibly closer to the control groups and late-stage
disease closer to RPGN. Dimension component 1
(DC1) seems to focus on the dissimilarity between the 2
reference healthy conditions, TN and healthy living
donor from the CKD entities. Dimension component 2
Kidney International Reports (2020) 5, 211–224
(DC2) provides more insight into the disparity of the
reference conditions. Dimension component 3 (DC3)
discerns the subtle geometrical manifestation of the
distinct CKD entities with regard to each other. In
summary, using diffusion maps, we could visualize the
intertwinement of the CKD entities that are present in
our studies.

Transcription Factor Activity in CKD Entities

To further characterize the differences among the CKD
entities, we performed various functional analyses.
First, we assessed the activity of TFs based on the levels
of expression of their known putative targets (see the
Methods). These changes provide superior estimates of
the TF activity than the expression level of the tran-
scription factor itself21,30 (Figure 3). We found 10 TFs
differentially regulated in at least one CKD entity.
Furthermore, we correlated the activities of the iden-
tified TFs with their expression. Those TFs with no
correlation indicate factors whose activity may be
significantly modulated using posttranslational modi-
fications or factors whose regulation or expression
measurements are unconfident. For instance, interferon
regulatory factor-1 (IRF1) is significantly enriched in
LN and moderately correlated (Spearman’s rho, rs ¼
0.624) with the expression level of the gene encoding
for IRF1. This might imply an as of yet undiscovered
potential role of IRF1 as a transcriptional activator in
LN. In addition, the transcriptional activity of IRF1 was
elevated in LN compared with the other disease en-
tities. The activity of the upstream stimulatory factor 2
(USF-2)31 was estimated to be significantly decreased in
MCD compared with the rest of the conditions. Inter-
estingly, the estimated activity of USF-2 across the CKD
entities was inversely correlated, Spearman’s rho
(rs ¼ �0.867), with the expression level of the gene
USF-2 itself.

We next sought to validate the expression of the 2
previously identified TFs USF-2 and FOXM1 in human
tissue by immunostaining. We choose these 2 TFs
because the activity of USF2 was predicted to be the
lowest in MCD, and FOXM1 to be highest in RPGN
(Figure 3). We stained for USF2 in human kidney bi-
opsies from healthy controls and patients with MCD. In
glomeruli, USF2 was expressed in podocytes, the
mainly affected glomerular cell-type in MCD (Figure 4a
and b). However, when compared with controls, USF2
expression in podocytes showed no significant differ-
ence detectable by immunofluorescence (Figure 4c–c00).
This does not exclude reduced activity of USF-2, as this
might be regulated not only by its abundance in the
nucleus but also by its DNA binding capability,
influenced in turn by, for example, posttranslational
modifications and the interaction with other proteins.
215



Figure 3. Transcription factor activity in glomerular chronic kidney disease (CKD) entities. Heatmap depicting transcription factor activity (color)
for each CKD entity and tumor nephrectomy (TN) in glomerular tissue. Negative numbers (blue) signify decreased transcription factor activity,
positive numbers (pink) indicate increased transcription factor activity. The significance according to the corresponding q-value of each
transcription factor in each disease entity is represented by asterisk(s). The numbers to the right of factor names are Spearman’s rank-based
correlation coefficients of factor activity and factor expression across different CKD entities. DN, diabetic nephropathy; FSGS, focal segmental
glomerulosclerosis; HLD, healthy living donor; HN, hypertensive nephropathy; IgAN, IgA nephropathy; LN, lupus nephritis; MCD, minimal change
disease; MGN, membranous glomerulonephritis; RPGN, rapidly progressive glomerulonephritis.
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We then stained for FOXM1, a transcription factor of
the forkhead box family. Our analysis suggests a
highly increased activity of FOXM1 in RPGN (Figure 3).
We next validated this observation in human biopsy
samples from patients with RPGN and healthy controls.
FOXM1 showed a unique expression in CD44-positive
glomerular parietal epithelial cells in RPGN lesions,
whereas we did not find any expression of FOXM1 in
healthy human glomeruli (Figure 4d–f). Consistent with
our TF activity analysis, quantification of this finding
in 5 RPGN biopsies versus 6 controls yielded a highly
significant difference (Figure 4f), indicating that
FOXM1 could play a role in RPGN progression. These
data suggest that our computational method might be
useful to identify novel regulators in CKD.

Signaling Pathway Analysis

We complemented the functional characterization of
transcription factor activities with an estimation of
pathway activitieswith the tools PROGENy22 and Piano.23

Pathway Activity of CKD Entities Using PROGENy

PROGENy infers pathway activity by looking at the
changes in levels of the genes downstream of the cor-
responding pathways, rather than to the genes that
216
constitute the pathway. This provides a better proxy of
pathway activity than assessing the genes in the actual
pathway.22 We used PROGENy to estimate pathway
activity in the different disease entities from the gene
expression data (Figure 5a). Essentially, the degree of
pathway deregulation was associated with the degree of
disease severity, and present rather divergent activities
across the CKD entities. For example, vascular endo-
thelial growth factor pathway was estimated to be
significantly influential in 5 CKD entities: RPGN, HN,
DN, LN, and IgAN, of which it is predicted to be deac-
tivated in RPGN and DN, but more activated in HN, LN,
and IgAN. Ten of 11 pathways were predicted to be
significantly deregulated in RPGNwith respect to TN, in
accordance with the diffusion map (Figure 2b) outcome;
the divergence of RPGN from TN (control) was consid-
erably more prominent both at a global transcriptome
landscape and signaling pathway level. Intriguingly,
the Janus kinase–signal transducers and activators of
transcription (JAK-STAT) pathway did not appear to be
affected in RPGN, but was considerably activated in LN
and markedly deactivated in DN in comparison with
TN. Overall, the CKD entities were characterized by
distinct combinations, magnitudes, and directions of
signaling pathway activities according to PROGENy.
Kidney International Reports (2020) 5, 211–224



Figure 4. Validation of upstream stimulatory factor 2 (USF-2) and FOXM1 in human kidney biopsies. (a–c) Histological validation of USF-2
expression in human biopsies from patients with minimal change disease (n ¼ 5) and controls (n ¼ 6). (a) Immunohistochemical staining of
USF-2 showed expression in nuclei of many cell types of the kidney including tubular cells (strongest in collecting duct, arrow with tails). In the
glomeruli, USF-2 expression could be detected in podocytes (arrows). (b) USF-2 staining in biopsies from patients with minimal change disease
demonstrated a similar staining pattern compared with controls including expression in podocytes (arrows). (c–c0 0) Colocalized Ddach1
(podocyte marker in red) and USF-2 (in green). Arrows mark Dach1-USF-2 double-positive podocytes. (d–f) Histological validation of FoxM1
expression in human biopsies from patients with rapidly progressive glomerulonephritis (RPGN) (n ¼ 5) and controls (n ¼ 6). FoxM1 expression
was detected most abundantly in glomeruli with crescentic CD44þ lesions (arrows in d–d00). Rarely expression could be noted in the tubular
compartment (arrows with tails). (e–e0) Serial sections revealed that FoxM1 expression was mainly detected in CD44þ cells in the glomerular
crescentic lesions (arrows in e and e0). (f) Quantification of number of glomerular FoxM1þ cells control versus RPGN (P ¼ 0.0043). **P < 0.01 by
unpaired Mann-Whitney t test (c and f and bar plot data represent mean � SD. Bars ¼ 100 mm. DAPI, 40,6-diamidino-2-phenylindole; n.s., not
significant; PAS, periodic acid–Schiff.
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Pathway Enrichment With Piano

Although PROGENy can give accurate estimates of
pathway activity, it is limited to 11 pathways for which
Kidney International Reports (2020) 5, 211–224
robust signatures could be generated.22 To get a more
global picture, we complemented that analysis with a
gene set enrichment analysis using Piano.23 A total of 160
217



Figure 5. Pathway activity alterations in chronic kidney disease (CKD) entities. (a) Heatmap depicting pathway activity (color) for each CKD
entity relative to tumor nephrectomy in glomerular tissue, according to PROGENy.22 The magnitude and direction (positive or negative) of
PROGENy scores indicate the degree of pathway deregulation in a given CKD entity with regard to the reference condition, tumor nephrectomy.
Permutation q-values are used to indicate statistical significance of each pathway in each disease entity, indicated by asterisks. (b) Radial
heatmap of consensually enriched pathways across 3 or more disease entities (upregulated, downregulated, or nondirectional regulation)
according to Piano23 using MSigDB-C2-CP gene sets. DN, diabetic nephropathy; FSGS, focal segmental glomerulosclerosis; HN, hypertensive
nephropathy; IgAN, IgA nephropathy; LN, lupus nephritis; MCD, minimal change disease; MGN, membranous glomerulonephritis; RPGN, rapidly
progressive glomerulonephritis.
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pathways of 1329 were significantly enriched (upregu-
lated/downregulated, correctedP< 0.05) in at least 1 CKD
entity. HN was the entity with the largest number of
differentially enriched pathways (81; 25 downregulated,
56 upregulated), whereas FSGS-MCD did not show sig-
nificant enrichment for any pathway. Cell-cycle and im-
mune-system–related pathways were significantly
upregulated in 7 of 9 CKD entities (FSGS, HN, IgAN, LN,
MGN, and RPGN in both cases, DN for immune system,
and MCD for cell-cycle); in contrast, the vascular endo-
thelial growth factor pathwaywas differentially enriched
in LN only. Interestingly, the tumor necrosis factor re-
ceptor 2 pathway was differentially enriched in IgAN,
HN, and LN, in line with the results from PROGENy, in
which the vascular endothelial growth factor pathway
was significantly deregulated not only in IgAN, HN, and
LN, but also in RPGN and DN. A total of 59 different
pathways showed significant enrichment in at least 3 CKD
entities (Figure 5b). Figure 4b also shows that HN (52),
MGN (45), and IgAN (37) are the CKD entities with more
218
pathways differentially enriched in at least 3 entities, a
result that agreeswith Figure 2b showing these entities in
the center of the diffusion map.

Prediction of Potential Novel Drugs That Might

Affect the Identified Disease Signature in

Different Kidney Diseases

Finally, we applied a signature search engine,
L1000CDS2,24 that prioritizes drugs that are expected to
have a reverse signature compared with the disease
signature. This engine is based on computing the dis-
tance between the signature of the disease and the
signature of the LINCS-L1000 data, a large collection of
changes in gene expression driven by drugs. We per-
formed this analysis separately for the 9 CKD entities
and identified 220 small molecules across the CKD en-
titles (Supplementary Figure S5). To narrow down the
list of 220 small molecules, we focused on 20 small
molecules observed in the L1000CDS2 output of at least
3 subtypes (Figure 6a).
Kidney International Reports (2020) 5, 211–224
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Figure 6. Top 20 drug candidates from drug repositioning. (a) Distribution of 20 small molecules reversely correlated with at least 3 chronic
kidney disease entities. (b) Table of 4 small molecules of the 20 of (a) supported by manual curation. Table shows drugs (first row), protein
coding genes targeted by these 4 drugs (second row), and pathways (MSigDB) related to the biological functions these drugs affect (third row).
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By curation of scientific publications, we found that
4 small molecules have experimental evidence to sup-
port their clinical relevance in CKD or renal disease
animal model testing (Supplementary Figure S7). BRD-
K04853698 (LDN-193189), which is known as a selec-
tive bone morphogenic protein signaling inhibitor, has
been shown to suppress endothelial damage in mice
with CKD.32 Wortmannin, a cell-permeable PI3K in-
hibitor, decreased albuminuria and podocyte damage in
early DN in rats.33 The tyrosine kinase inhibitor nilo-
tinib is used to treat chronic myelogenous leukemia in
humans.34 Nilotinib treatment resulted in stabilized
kidney function and prolonged survival after subtotal
nephrectomy in rats when compared with vehicle.35

Finally, narciclasine was identified, and it has been
reported to reduce macrophage infiltration and
inflammation in the mouse unilateral ureteral obstruc-
tion model of kidney fibrosis.36

To further explore the association of these drugs with
CKD and its progression, we analyzed the expression
data for the targets of the drug candidates. First, each
drug candidate was mapped to genes that encode the
proteins targeted by these drugs (Figure 6b). For each
gene, its differential expression of any CKD entity
against TN was evaluated. Of the 11 mapped genes,
MYLK3, a target of narciclasine, was significantly
differentially expressed (underexpressed, logFC <�1,
P < 0.05) in 2 CKD entities (IgAN and LN)
(Supplementary Figure S6). Complementarily, screened
drugsweremapped to the pathways they affect based on
their functional information. The enrichment of the
subset of pathways was evaluated using the previous
results from the gene set analysis algorithm (Piano). This
time, only the PI3KCI pathway appeared to be enriched
in HN (upregulated, P < 0.05), and as the pathway
Kidney International Reports (2020) 5, 211–224
affected by the candidate repositioned drug (Wort-
mannin, PI3K inhibitor). Taken together, these data
suggest that kidney transcriptomics might be useful to
predict potential drug candidates novel for CKD.
CONCLUSION

We have aimed to shed light on the commonalities and
differences among glomerular transcriptomes of major
kidney diseases contributing to the CKD epidemic
affecting >10% of the population worldwide. Multiple
pathologies are covered under the broad umbrella of
CKD and, although they share a physiological mani-
festation (i.e., loss of kidney function), the driving
molecular processes can be different. In this study, we
explored these processes by analyzing glomerular gene
expression from kidney biopsies obtained via micro-
dissection. We observed expression data of many genes
that are considered to be tubule-specific in the
glomerular data set (e.g., ALB and CALB1). This might
be due to contamination of the glomerular samples with
surrounding tubular cells as a consequence of imper-
fect microdissection. Current technologies, including
scRNA-seq will help to dissect expression in particular
cell types of the glomerulus.

Genes such as Quaking (QKI) or Lysozyme C (LYZ),
were significantly overexpressed, underexpressed, or
not altered depending on the underlying kidney dis-
ease. It is known that QKI is associated with angiogenic
growth factor release and plays a pathological role in
the kidney,37 whereas LYZ is known to be related to
the extent of vascular damage and heart failure38 and
has recently been found to be increased in plasma
during CKD progression.39 These data support the fact
that despite a stereotypic response of the kidney to
219
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injury with glomerulosclerosis, interstitial fibrosis, and
nephron loss, there are various disease-specific differ-
ences that are important to understand so as to develop
novel personalized therapies.

CKD is a complex disease that can be acquired
through a variety of biological mechanisms. Our
pathway analysis reflects this heterogeneity. There was
little to no overlap in significantly enriched pathways
between the different kidney disease entities. We
found 59 different pathways that showed significant
enrichment in at least 3 disease entities (Figure 5b),
indicating that different disease entities share some
general mechanisms but their underlying pathophysi-
ology differs from one to another. Besides increasing
the interpretability, the pathway analysis identified
many more differences among disease identities than
the gene-level analysis (Figures 2a and 5b). For
example, pathway analysis identified pathways related
to the metabolism of lipids and lipoproteins signifi-
cantly downregulated in MCD, MGN, and HN; and
pathways related to fatty acid metabolism significantly
downregulated in MCD, IgAN, MGN, and HN, results
similar to those reported by Kang et al.6

PROGENy (Figure 5a) yielded JAK-STAT, a major
cytokine signal transduction regulator,40 to be signifi-
cantly activated in LN with respect to TN, and DoR-
othEA (Figure 3) predicted the TFs IRF1 and STAT1 to
be significantly enriched in LN and downregulated in
DN. A pathogenic role of JAK-STAT/STAT1/interferon
signaling in LN is supported by various studies.41–43

Indeed, different human and mouse studies have
shown an upregulation of JAK-STAT signaling in
DN,44,45 in contrast to our results showing decrease in
JAK-STAT. However, the study of Berthier et al.45 also
revealed a downregulation of JAK2 mRNA in glomeruli
of advanced/progressive diabetic kidney disease in
humans. Pathway activities could vary depending on,
among many other factors, the state of pathology of the
cohort. Such a difference or other confounding factors
could explain this discrepancy.

We next aimed to compare some of the predicted
pathway activity to the literature. Interestingly, our
analysis predicted increased nuclear factor-kB pathway
activity in LN and it has been shown that selective
inhibition of nuclear factor-kB inducing kinase reduces
disease severity in an LN mouse model.46 Furthermore,
we predicted increased phosphoinositide 3-kinase ac-
tivity in FSGS and a human causing FSGS mutation in
the anilin gene was shown to increase phosphoinositide
3-kinase activity in podocytes.47

We also used a signature-matching algorithm to
explore potential drugs that could revert the disease
phenotype. We found that 4 drugs hold promise in
different CKD entities. Even though more experimental
220
and clinical validation is required, our approach sug-
gests that it is possible to find promising treatments for
CKD via drug repositioning. In particular, for one of
the identified drugs, nilotinib, use in humans has
already been granted in leukemia and there are sup-
porting data of its valuable insight at indications for
CKD.35

Analysis of expression of the drug targets found that
MYLK3, a gene encoding for one of the targets of
narciclasine, was significantly underexpressed in IgAN
and LN when compared with TN. Similarly, the PI3KCI
pathway, the target of Wortmannin was enriched in
HN (upregulated, P < 0.05). This analysis attempted to
refine the outcome of the repositioning analysis and at
the same time helped to connect it to the disease
mechanism at both the gene and pathway levels.

The analysis of TF activity revealed significantly
higher FOXM1 activity in RPGN over all other kidney
diseases analyzed. RPGN is characterized by a rapid
decline in kidney function due to proliferation of pa-
rietal epithelial cells in the glomerulus, which leads to
deterioration of the associated nephron.48 FOXM1, a TF
crucially involved in proliferation,49 could represent a
potential therapeutic target in glomerular parietal
epithelial cells in RPGN. The fact that protein level of
USF-2 was not significantly changed does not exclude
reduced activity of USF-2, as the activity of tran-
scription factors is very often influenced not only by
their expression but also by posttranslational modifi-
cations and binding to other proteins.

We view our analysis as a first, preliminary step
toward a characterization of the similarities and dif-
ferences of the various pathologies that lead to CKD. As
more data become available, either from micro-arrays
or RNA sequencing, these can be integrated in our
pipeline. Furthermore, the burgeoning field of scRNA-
seq has just started to produce data from kidneys50,51

and can revolutionize our understanding of the func-
tioning of the kidney and its pathologies.52,53 In
particular, scRNA-seq data can provide signatures of
the many cell types in the kidney, which in turn can be
used to deconvolute the composition of cell types12 in
the more abundant and cost-effective bulk expression
data sets.53 Other data sets, such as (phospho)prote-
omics54 and metabolomics,55 may complement gene
expression toward a more complete picture of the CKD
entities.56 Ideally, all these data sets will be collected in
a standardized manner to facilitate integration, which
was a major hurdle in our study. Such a comprehensive
analysis across large cohorts, akin to what has
happened for the different tumor types thanks to ini-
tiatives such as the International Cancer Genome Con-
sortium, can lead to major improvements in our
understanding and treatment of CKD.57
Kidney International Reports (2020) 5, 211–224
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Looking forward, our aim is to extend our collection
and subsequent analyses as more datasets are available.
Our methods complement those already available else-
where, in particular in NephroSeq. While we provide
our own user-friendly interface to mine the results, we
could envision to embed them within NephroSeq and/
or other resources.

Limitations

Our results should be interpreted with caution
because of the limitations coming from the data,
which required an aggressive batch effect mitigation
procedure. Nonetheless, our analysis could provide
pointers to mechanisms in CKD entities to be further
studied. Furthermore, our work provides an example
of the potential usefulness of integrating publicly
available data. Further, the limitations observed in
this study shed light into the lack of standardization
of basic experimental designs in the CKD community.
To learn the most of CKD, the community should work
collectively to create fundamental experimental and
data handling guidelines. This should result in more
comparable and robust data across research
laboratories.

The integration of the data from different sources
and platforms requires batch effect management, which
should be customized to the data at hand. The current
data were heavily affected by platform- and study-
specific batch effects, because the outcome categories
(CKD entities and their samples) were unevenly
distributed across studies and microarray platforms.
The commonly used algorithms for correcting batch
effects assume a balanced distribution of outcome cat-
egories across batches and are vulnerable to the group-
batch imbalance.58–61 We conducted a stringent batch
effect mitigation process to minimize the influence of
technical heterogeneity. Note that this is a more
stringent approach than other batch correction ap-
proaches that seek to “model-away” batch-related
variance but retain all the data. In our case, we opted
to remove genes that are most affected by batch effects.
For the illustration of this procedure, see
Supplementary Figure S1.

Further, we had to omit crucial and pertinent
studies, such as Woroniecka et al.62 or Beckerman
et al.3 Adding Woroniecka et al.62 would have required
introducing a third microarray platform, further
complicating the batch mitigation procedure. We did
not include Beckerman et al.,3 as we focused on
microdissected glomerular fractions, whereas this
study provides data from tubuli.

Because of the heterogeneity of the included samples
and strong batch effects, we identified only a small
number of genes that were differentially expressed,
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and thus one has to be cautious when drawing con-
clusions from this analysis. However, our aim is pri-
marily to demonstrate several computational tools that
have been developed mainly in cancer settings and will
be of major interest in future analyses when more
kidney transcriptomic data is openly available.

One important limitation of the study is the lack of
detailed individual clinical data that were not depos-
ited together with the raw data and also not available
on request. Further, public freely available data were
included into this work and thus we did not have any
influence on the data generation, quality, and stan-
dardization. The limited number of available samples
also made use of pool data from patients, only differ-
entiating based on the reported disease entities. Un-
fortunately, data on glomerular filtration rate and
histological scores are highly sparse, and given the
limited number of samples, further stratification would
have left us with a considerably diminished statistical
power. Our analysis resulted in major differences be-
tween disease subtypes, although there are likely
confounding effects due to different degrees of disease/
clinical phenotype. Thus, our results should be taken
with caution and rather considered as hypotheses
requiring further studies to be validated.

Furthermore, microdissection often results in cross-
contamination of tubule or glomerular fragments, and
thus the presented glomerular data do contain poten-
tially various tubule-specific genes. Future scRNA-seq
experiments will demonstrate the cell-specific and
compartment-specific expression of genes and over-
come the current issues with microdissection. In
addition, for the drug-matching approach, we had to
rely on cell lines that are not necessarily originating
from kidney tissues. We plan to revisit this method
when a new kidney-specific data set will be available.
This will likely improve the prediction accuracy.

In summary, with this article, we do not claim to
derive specific precise insights, given the clear limita-
tions in the quality of the public kidney data available
so far. Rather, we wish to demonstrate what is possible
to achieve with computational functional genomics
tools that can be used with high-quality omics and
clinical data that will hopefully be available soon.
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Figure S1. Batch effect mitigation procedure. (A) Principal

component analysis (PCA) of gene expression

measurements corresponding of IgAN samples from the

2 distinct studies prior batch effect mitigation. The

second principal component separates samples by study.

(B) MA plot visualizing the difference in gene expression

between the GSE37460 and GSE50469 IgAN samples. (C)

Percentage of variance explained by principal component

2 (PC2) as a function of the gradual removal of the most

affected genes (�log10 adjusted P value of a particular

removed affected gene). (D) PCA of gene expression

corresponding to the IgAN samples from the 2 distinct

studies after batch effect mitigation. (E) Depiction of

variance for each gene that is explained by group (CKD

entity), study, and platform after batch effect mitigation.

CKD entity-related variation explains most of the variance

in the data. The scater R package1 was used for producing

the batch effect management-related plots.

Figure S2. Two-dimensional diffusion maps of CKD entities

unravel the geometric trajectory of CKD entities based on

their comparative transcriptome profile. (A) Dimension

component 1 (DC1) is depicted against dimension

component 2 (DC2), so that the divergence between the

controls and the CKD entities are apparent. (B) DC1 is

visualized against dimension component 3 (DC3),

revealing the fine distinctions between CKD entities.

Figure S3. Transcriptional regulation in CKD entities.

Heatmap of consistently differentially expressed genes

across 6 or more disease entities (upregulation or

downregulation).

Figure S4. Hierarchical clustering of CKD entities based on

a common set of differentially expressed genes with

regard to the nontumorous part of tumor nephrectomies.

The figure is a complementary representation of Figure 2b.

Figure S5. Heatmap depicting the expression of the genes

encoding for the transcription factors shown in Figure 3.

The expression values were averaged within each

condition, then scaled and centered across the

conditions. The numbers to the right of factor names are

Spearman’s rank-based correlation coefficients of factor

activity and factor expression across different CKD entities.

Figure S6. Enrichment of metabolic pathways after gene

set analysis. Pathway analysis result in metabolic

pathways (“METABOL”): and their corresponding enrichment:

upregulation (green), downregulation (red), andnonsignificant
222
(white).Metabolicpathwaysare listedon they-axisanddisease

entities in the x-axis. Only pathways enriched in at least 1

disease are shown. Note that FSGS, FSGS-MCD, and RPGN

do not have any metabolic pathway significantly affected.

Figure S7. Bar graph (count of CKD entities) and heatmap

of the distribution of 220 small molecules reversely

correlated with 9 CKD entities. Colored bars on both the

bar graph and heat map correspond to the subtype of

CKD entities and 220 small molecules are represented on

the x-axis of both graphs.

Figure S8. Volcano plot of differential expression of CKD

entities versus TN for glomerular samples for the drug-

targeted genes. The x-axis indicates the log2 of the fold

change (FC) and the y-axis the �log10 of the P value after

differential expression analysis using limma.

Figure S9. Manual curation of 4 small molecules. The figure

includes drug names corresponding to 4 small molecules,

biological function, Food and Drug Administration (FDA)

approval status, and publications describing the clinical

relevance of the particular small molecule in CKD.

Figure S10. Cell lines used in the drug-matching paradigm.

The number of significant perturbations of a given cell line

per condition.

Data and Code.

Supplementary Methods. Data collection, preprocessing

and mapping, correlation of arrays, batch effect mitigation,

detection of genes with consistently small p values across

all studies, transcription factor activity analysis with

DoRothEA, inferring signaling pathway activity using

PROGENy, pathway analysis with piano, drug

repositioning, immunofluorescent staining of human

kidneybiopsies andanalysis, andsupplementary references.

TRANSLATIONAL STATEMENT

Different etiologies cause chronic kidney disease. We

integrate and analyze transcriptomic analysis of glomerular

and tubular compartments from different entities to dissect

their different pathophysiology, what might help to identify

novel entity-specific therapeutic targets.
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