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Abstract: Endometrial organoids (EMO) are an important tool for gynecological research but have
been limited by generation from (1) invasively acquired tissues and thus advanced disease states and
(2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged
population. We sought to overcome these limitations by generating organoids from (1) menstrual
fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant,
stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking
hormonal medication (EMO-H). MF was collected in a menstrual cup for 4–6 h on day 2 of men-
struation. Biopsies and hysterectomies were obtained during laparoscopic surgery. Organoids were
generated from all sample types, with MFO and EMO-H showing similar cell proliferation rates,
proportion and localization of the endometrial basalis epithelial marker, Stage Specific Embryonic
Antigen-1 (SSEA-1), and gene expression profiles. Organoids from different disease states showed the
moderate clustering of epithelial secretory and androgen receptor signaling genes. Thus, MFO and
EMO-H are novel organoids that share similar features to EMO but with the advantage of (1) MFO
being obtained non-invasively and (2) EMO-H being obtained from 50% of the women who are not
currently being studied through standard methods. Thus, MFO and EMO-H are likely to prove to be
invaluable tools for gynecological research, enabling the population-wide assessment of endometrial
health and personalized medicine.

Keywords: endometrial organoids; menstrual fluid; endometriosis; adenomyosis; disease modelling;
hormones; human; gynecology

1. Introduction

The diagnosis and study of gynecological disease currently utilizes endometrial biop-
sies that are often acquired under general anesthesia. The histopathological analysis of
biopsies can confirm the presence of polyps and can diagnose hyperplasia and endometrial
cancer. Endometrial biopsies do not provide information about the function of endometrial
cells, which are important for fertility and are implicated in diseases such as endometriosis,
adenomyosis, Asherman’s syndrome, and infertility. Until recently, the extensive study of
endometrial cell behavior was limited to the stromal fraction and endometrial mesenchy-
mal stem cells (eMSC), which was made possible by the identification and prospective
isolation of eMSC [1]. While colony forming assays allowed the identification of endome-
trial epithelial stem/progenitor cells [2–4], the study of the endometrial epithelium was
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curtailed by an inability to maintain those cells in long-term culture. Recently, the gen-
eration of organoids from endometrial tissue [5–7] has enabled the long-term culture of
endometrial epithelial cells, aiding our understanding of endometriosis [6] and fertility [8].
However, these organoids are (1) derived invasively from endometrial biopsies, hysterec-
tomy tissue, and excised endometriosis lesions and thus require surgical intervention and
often represent advanced disease states and (2) are derived from women who not taking
hormones and thus may not capture the biology of 50% population that is of reproductive
age (d).

Menstrual fluid represents a novel biofluid with the potential for diagnosis and
disease modeling [9]. We have shown that a range of menstrual fluid cells and proteins
have minimal variation from cycle to cycle [9] and that endometrial stem and progenitor
cells can be found in menstrual fluid and the pelvic cavity and therefore may play a role in
endometriosis [9,10]. Therefore, we proposed that menstrual fluid could be a non-invasive
source of endometrial organoids that may enable the population-wide study of early
disease.

Current endometrial organoids have been derived from the endometrium of women
who are not taking hormonal contraception, despite the fact that a large proportion of young
women take some form of hormone for menstrual cycle manipulation. We have shown that
endometrium contains epithelial stem/progenitor cells, including in the samples from post-
menopausal endometrium [11], that are reactivated upon the administration of estrogen [3]
and in hormone-treated endometrium [12]. Therefore, we proposed that the endometrial
tissue from women taking hormones could be a source of endometrial organoids that
may enable the population-wide study of endometrial epithelial cell behavior in spite of
exogenous hormone status.

In this study, we aimed to compare the endometrial organoids that were derived
from endometrial biopsies or hysterectomies (EMO) to those derived from menstrual fluid
(MFO) and from endometrial tissue from women taking hormonal medication (EMO-H).

2. Materials and Methods
2.1. Ethics Approval and Consent to Participate

This study was conducted in accordance with the Declaration of Helsinki. All human
tissues were collected following ethical approval from Monash Health and Monash Univer-
sity Human Research Ethics Committees (HREC). Menstrual fluid (HREC 20-0000-159A,
09349B, and 01067B) and endometrial biopsies and hysterectomy tissues (HREC 20-0000-
159A, 08078B, and 01067B) were collected with approval and written informed consent
from all participants. Participant information and demographic data were collected with
each sample.

2.2. Human Samples

Human menstrual fluid samples (n = 2) were obtained from pre-menopausal women
with normal menstrual bleeding or endometriosis (Supplementary Table S1). The exclusion
criterion for participation was the use of hormonal contraceptives and/or other exogenous
hormonal treatment within the last 3 months. Menstrual fluid samples were collected using
a silicon menstrual cup (Lunette, Juupajoki, Finland), which was worn by the participants
for 4–6 h on day 2 of menstruation, as previously described [9]. Samples were transferred
into 50 mL polypropylene tubes by the participants, transported at 4 ◦C, and received
by laboratory research staff within 2 h of collection. Menstrual fluid supernatants were
collected by centrifugation and were frozen immediately (<2 h from collection time). The
cellular fraction was processed immediately or within 24 h of collection.

Human endometrial biopsies (n = 4) and hysterectomy (n = 1) samples were obtained
from pre-menopausal women undergoing laparoscopy for menorrhagia, endometriosis,
adenomyosis, fibroids, infertility, or pelvic pain (Supplementary Table S1). Biopsies were
obtained via dilatation and curettage prior to the insertion of laparoscopy ports, and
hysterectomy samples were obtained after the laparoscopic removal of the uterus. The use
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of hormonal contraceptives and/or other exogenous hormonal treatment within the last
3 months was an exclusion criterion for participation in the EMO group and an inclusion
criterion for participation in the EMO-H group. Endometrial biopsy and hysterectomy
tissues were stored in Collection Medium (DMEM/F12 with HEPES, 1% Antibiotics, 5%
neonatal calf serum (NCS); Invitrogen, Carlsbad, CA, USA) at 4 ◦C and were processed
between 2–18 h. Hospital pathology records were used to confirm disease state, hormone
state, and menstrual cycle stage (Supplementary Table S1).

2.3. Generation of Organoids
2.3.1. Generation of EMO and EMO-H

Human endometrial biopsy and hysterectomy tissues were digested as previously
described [2,13]. For the hysterectomy samples, the endometrial tissue was scraped from
the myometrial layer. Scraped endometrium and the inner 1 mm of the myometrium,
which contains the junctional zone and the basalis endometrial glands were digested.
Briefly, the endometrium (and inner 1mm myometrium containing basalis epithelial glands
for hysterectomy samples) was fragmented into 1 mm3 pieces using small curved scis-
sors before enzymatic (Worthington Collagenase 1, LS004197) trituration and mechanical
(Ratek Orbital Shaker, 25 min) digestion with microscopic monitoring until the glandular
fragments could be distinguished from the single stromal cells. The sample was filtered
(Falcon 40 µm cell strainer FAL352340); the filtrate (mostly single stromal cells) underwent
density gradient (Ficoll–Paque) centrifugation (438 rcf, 20 ◦C, 15 min, no brake) before
cryopreservation, while the remaining undigested tissue (mostly epithelial gland frag-
ments) underwent a second digestion with Collagenase 2 (LS004176, Worthington) for
approximately 10min or until clusters of 5–10 epithelial cells remained. Epithelial gland
clusters were filtered from single cells and were seeded at approximately 7000 clusters per
well in Matrigel®, as described previously [5–7].

2.3.2. Generation of MFO

The human MF samples were digested as previously described [9] with the exception
that the collagenase 2 digestion was halted when clusters of 5–10 epithelial cells could be
seen microscopically (usually after 10 min). Clusters were then enriched for by epithelial
cell adhesion molecule (EpCAM) magnetic beading (4 beads/cell, CELLection Epithelial
Enrichment kit, 162.03, Invitrogen) before seeding at 7000 clusters per well in Matrigel®, as
described previously [5–7]. Excess clusters were cryopreserved (30% fetal bovine serum
(FBS), 10% Dimethyl sulfoxide (DMSO), Advanced DMEM:F12, 10 uM Rock Inhibitor) for
the subsequent generation of MFO upon thawing. MF supernatant, CD45+ leukocytes,
Sushi domain-containing protein 2+ (SUSD2+) eMSC, and SUSD2− stromal cells were
isolated as described [1,9] and were cryopreserved (90% FBS, 10% DMSO) for subsequent
experiments.

2.3.3. Maintenance of EMO, MFO and EMO-H

Media were changed every 2–3 days [5], and organoids were passaged every 7–10 days,
as described previously [5–7].

2.4. Proliferation Assay

The proliferation of the organoids were determined by the PrestoBlue Cell Viability
Reagent (A13261, Invitrogen) assay, which was conducted on passage 3 organoids at
day 0, 1, and 7 after seeding. Briefly, EMO media was replaced with 200 µL of basal
medium containing 1 × PrestoBlue for 1 h before removing the Presto Blue and reading
the fluorescence (excitation: 540 nm; emission: 590 nm) of the supernatant on a plate
fluorometer (SpectraMax i3 Platform). Fresh EMO media was added to the wells for
subsequent culture and measurement at later timepoints. Fluorescence was corrected for
background-using wells that were devoid of cells and was calculated as the fold change of
the reading at day 1.
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2.5. Flow Cytometric Analysis

The expression of cell surface markers EpCAM, Neural-cadherin (N-cadherin, NCAD,
a marker of endometrial epithelial progenitor cells, eEPC), and Stage Specific Embryonic
Antigen-1 (SSEA-1, a putative eEPC marker) were determined by flow cytometry as pre-
viously described [9]. Briefly, Passage 3 day 7 organoids were dissociated to clusters
mechanically [7] and subsequently to single cells with TryplE Express Enzyme (12604-021,
Invitrogen). Cell suspensions were blocked (FcR; 2 µL/106 cells, Miltenyi Biotec and Rat
IgG; 4.4 µg/106 cells, Jackson ImmunoResearch, PA USA) on ice for 10 min and were
incubated with antibody-fluorochrome conjugates (Supplementary Table S2) for 25 min in
the dark at 4 ◦C. Stained cells were washed, resuspended in 2% FBS/phosphate-buffered
saline (PBS), and stained with propidium iodide (PI; 31.25 ng/mL; BD Biosciences). A
Compensation Plus Particle Set (60 µL/test; BD Biosciences) was utilised for single-stain
controls. Cells were analysed (LSR-Fortessa X-20 flow cytometer; FACS DIVA software,
BD Bioscience) and compensated using FlowJo Software (Version 10, FlowJo, LLC). Elec-
tronic gating using single-stain and fluorescent minus one (FMO) control tubes and the
percentage of viable endometrial cells was determined for EpCAM+, EpCAM+NCAD+,
EpCAM+SSEA-1+, and EpCAM+NCAD+SSEA-1+ cells, as described previously [9].

2.6. Immunofluorescence

The localisation of cell surface marker SSEA-1 was determined on wholemount Pas-
sage 3 day 7 organoids fixed with paraformaldehyde (30 min, room temperature), washed
with PBS, and stored in PBS at 4 ◦C until staining using an adapted method [14]. All of the
washes and incubations were performed with gentle horizontal agitation (30–50 rpm), and
the organoids were allowed to settle for 3min prior to the removal of wash/supernatant.
Precoated tips were used at each step to avoid organoid loss.

Briefly, the organoids were permeabilised and blocked for 1 hr at room temperature
(PBS containing 0.5% Triton X-100, 1% bovine serum albumin (BSA), and 1% goat serum)
and were then washed twice (1 mL PBS-BSA 0.1%) for 3 min each. The organoids were
then incubated with mouse anti-SSEA-1 (Merck MAB4301, 1:50) or IgM isotype control
(Caltag MGM00) in PBS containing 0.05% Triton X-100, 0.1% BSA, and 0.1% goat serum,
for 3 days at 4 ◦C. The primary antibody was removed, and the organoids were washed in
1 mL PBS-BSA 0.1% (5 × 3 min then 2 × 15 min). The organoids were then incubated at
4 ◦C in the secondary antibody (goat anti mouse AF488, 1:250, Abcam Ab11001) in PBS
containing 0.05% Triton X-100, 0.1% BSA, and 0.1% goat serum for 24 hr in the dark. Nuclei
staining was performed by adding 500 µL of Hoechst 33342 (0.4 µM in stock solution PBS
containing 0.05% Triton X-100, 0.1% BSA, and 0.1% goat serum) and incubating for 2 h at
4 ◦C. The secondary antibody/Hoechst solution was removed, and the organoids were
washed in 1mL PBS-BSA 0.1% (5 × 3 min then 2 × 15 min). The organoids were stored in
PBS at 4 ◦C until the day of imaging, when they were transferred in 50 µL PBS per well
into a 96-well flat bottom plate.

Confocal images were acquired with using an FV1200 Olympus confocal microscope.
Z stacks were acquired at X20 at 2 µm intervals for a minimum of 15 images. All 2D images
were acquired at X20 + the zoom function. Images and Z stacks were adjusted linearly for
brightness/contrast using ImageJ.

2.7. RNA Sequencing

Gene expression was determined on Passage 3 organoids grown to day 7 and snap
frozen until RNA extraction (Qiagen microRNAeasy, 74004). RNA samples with an RIN
scores > 8.5 were selected for library generation (Trio RNA-Seq library preparation, Tecan)
and sequencing (Illumina next Seq550, 150 bp PE). Read quality was checked using FastQC
v0.11.7 [15] and MultiQC v1.6 [16]. The first 5 bp on the 5′ end of each read, along with low
quality reads, were trimmed using Trimmomatic v0.39 [17]. HISAT2 v2.2.1 [18] was used
to map trimmed reads to the Ensembl Homo sapiens GRCh38 release 84 reference genome
followed by the assembly of the known transcripts (Ensembl Homo sapiens CRCh38 release
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91 reference assembly) and counting using StringTie v.2.1.6 [19,20]. Transcript counts for
each sample were expressed in “fragments per kilobase of transcript per million mapped
reads” units, and the raw gene counts were extracted using a Python script that was
provided by StringTie.

2.8. Normalisation of Gene Counts

The genes were filtered to remove those that were expressed at a low level (genes
with counts per million (CPM) <0.48 (~10 counts) and that were expressed in <2 samples)
and to remove the mitochondrial genes (mtGenes) that remained after library genera-
tion. Raw counts were normalised using the Trimmed Mean of M (TMM) [21] method in
edgeR R package v.3.34.1 [21], which corrects for composition bias and library size. Post
normalisation counts were converted to CPM.

2.9. Gene Expression Analysis

Principle component analysis (PCA) was performed on normalised counts using
the “prcomp” function in R. We investigated variation in the expression of the genes in
pathways of interest from the GO Biological Pathways and those that were previously
defined by Cindrova-Davies et al. between organoids using hierarchical clustering and
heat maps generated using the “Heatmap” function in the ComplexHeatmap R package.

2.10. Statistics

The proportion of cells determined by flow cytometry are reported as mean ± SEM
(95% CI). Descriptive statistics were used due to low sample numbers.

3. Results
3.1. Organoids Can Be Generated from MF and Endometrial Tissue from Women Taking Hormonal
Medication

We found that organoids could be generated from the menstrual fluid and from en-
dometrial tissue of women taking hormonal contraceptives with high efficiency (80–100%).
Organoids could be cultured for up to 8 (MFO) or 5 (EMO-H) passages as a minimum
(further passaging is ongoing). The amount of glandular material that was available for
organoid generation was often lower in the menstrual fluid (MFO) and endometrium from
the women who were on hormones (EMO-H) compared to the endometrial biopsies from
the women who were not on hormones. Once the organoids were generated, the number
and size of the organoids appeared to be similar for MFO compared to EMO; however, the
number of organoids appeared to be greater in the EMO-H samples (Figure 1).
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3.2. MFO and EMO-H Show Similar Proliferation, Cell Surface Phenotype and eEPC Marker
Localisation as Standard EMO

The organoids from all three sources showed a similar proliferation rate on day 7 of
culture (fold change of 2.31 ± 0.77 (0.43–4.19)) (Figure 2a). The proliferation of EMO, MFO,
and EMO-H were not significantly different from one another. However, there was a trend
for a greater rate of cell proliferation of the EMO-H from women taking OCP (open green
triangles; Figure 2b) compared to EMO (red circles), MFO (blue squares), and EMO-H from
women with a Mirena® IUD (solid green triangle).
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closed EMO-Mirena®.

The cell surface marker profiling of mature organoids (day 7) demonstrated that
almost all cells were EpCAM+ epithelial cells (90.0 ± 3.29% (82.0–98.0); Figure 1b). Rare
cells were EpCAM+NCAD+ (0.43 ± 0.12% (0.14–0.72)) and or double positive for the
endometrial epithelial stem/progenitor markers EpCAM+NCAD+SSEA-1+ (0.47 ± 0.25%
(1.66–7.13)). In comparison, the organoids contained a greater proportion of EpCAM+SSEA-
1+ (4.39 ± 2.96% (1.66–7.13)). The remaining cells were EpCAM+NCAD−SSEA-1− mature
epithelial cells (91.8 ± 1.84% (87.3–96.3); n = 7), and there was also some variation in
the expression level between different patient-derived lines that did not correlate with
proliferation rates. The organoids from all of the sources showed the localization of SSEA-1
(Figure 3), often at the luminal surface, albeit with varying frequency.
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3.3. MFO, EMO-H and EMO Have Overlapping Gene Signatures

Gene expression analysis revealed no obvious clustering of organoid types (Figure 4a).
There was a moderate degree of control clustering compared to endometriosis, adeno-
myosis, and cystic hyperplasia. One sample, 33_20, was distinct from all of the others
in terms of both PCA and participant characteristics (likely due to being a hysterectomy
sample containing basalis glands, Mirena®). Of the top 1000 most highly expressed genes,
876 were shared between all of the organoid types (Figure 4b). The levels of normal-
ized SSEA-1 mRNA levels (Figure 4c) were variable, particularly for participants with
endometriosis, two of which (14_21, 5096141) showed higher SSEA-1 compared to the
other five participants (including two with endometriosis, 33_20 and 29_20). There was no
correlation between the normalized SSEA-1 mRNA levels (Figure 4c) and the % SSEA-1+
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PCA did not show the clear separation between organoid types; however, the analysis
of individual gene sets showed that EMO clustered moderately separately from EMO-H
and MFO for Progesterone Receptor Signaling and Pregnancy Hormones (Figure 5a,b).
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MFO clustered together (Supplementary Figure S2a) for Response to Progesterone, but
they were not substantially different to one EMO.
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3.4. EMO-H Do Not Exhibit a Significantly Different Gene Expression Profile Compared to
Organoids from Untreated Women

Hormonal treatments suppress circulating estrogen concentrations and can have a
significant influence on endometrial biology, including both target and non-target receptors.
As such, we used curated gene sets from the GO Biological Pathways to determine the
influence on response, signaling pathway, and metabolism of the hormone receptors that
are associated with organoids that are derived from the endometrium and menstrual fluid
or those that are derived from the women who were taking hormonal treatments.

While EMO-H rarely clustered separately from other organoid types, ccasionally
EMO-OCP clustered together—for example, Response to Progesterone (Supplementary
Figure S2a), Mineralocorticoid Metabolic Processes, and Organoid Epithelial Gland De-
velopment (Figure 6a,b). All of the EMO-H belonged to the same cluster for Response to
Progesterone (Supplementary Figure S2a) and Regulation of Androgen Receptor Signaling
(Figure 7c); however, this cluster also contained an EMO. There was no obvious clustering
of MFO or EMO-H for any of the GO terms or curated sets that were analysed, indicating
that for the small sample size that was analysed, MFO are similar to EMO and EMO-H,
and EMO-H are similar to EMO and MFO.
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3.5. Disease State Gene Expression Profiles

The individual gene expression profiles also clustered based on disease state for sev-
eral gene sets. A number of GO gene sets as well as curated gene sets generated by us and
others [22] showed the clustering of two control participants (23_20 and MR041B) com-
pared to the other five participants. This included Epithelial Secretory Activity (Figure 7a)
and Androgen Receptor Signalling and both the Regulation and Negative Regulation of
Androgen Receptor Signalling (Figure 7b–d). These gene sets also showed the moderate
clustering of endometriosis organoids, although at times, endometriosis clustered with
cystic hyperplasia or one endometriosis participant clustered with controls (Regulation
of Androgen Receptor Signaling). There was no association the between the proportion
of EpCAM+ cells determined by flow cytometry (Figure 2b) and EpCAM mRNA levels
(Supplementary Figure S2b).
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4. Discussion

The main findings of our study are that organoids can be readily derived from men-
strual fluid (MFO) and endometrial tissue from women who are taking hormonal med-
ication (EMO-H) and can be cultured for multiple passages. The recent generation of
endometrial organoids have generated a new, rapidly expanding field of research, re-
sulting in 60 publications since endometrial epithelial organoids were first described in
2017. Endometrial organoids have already improved our understanding of endometrial
biology [23,24], including interactions with the stromal niche [25], endometrial cancer [7],
endometriosis [6], and polycystic ovarian syndrome [26]. Improvements in diagnosis and
treatments for gynecological diseases are likely to be expedited by the study of early disease
states from large numbers of women. Thus, in order to capture samples from such women,
most of whom do not require an endometrial biopsy or who are currently taking hormonal
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medication, we have shown that organoids can be generated from menstrual fluid or from
endometrial tissue from women taking hormonal medication. The efficiency of organoid
generation was higher for EMO and EMO-H than it was for MFO. This may reflect both
the quantity and quality of endometrial epithelial tissue that is available in menstrual fluid,
where endometrial epithelial tissue fragments are less abundant and undergo tissue break-
down. MFO and EMO-H show similar rates of proliferation and endometrial progenitor
cell surface marker expression to EMO.

We did note an effect of the type of hormonal medication on organoid characteristics.
In particular, EMO-OCP tended to exhibit slightly greater rates of cell proliferation and
a slightly lower percentage of EpCAM+ epithelial cells compared to all other organoids,
including EMO-Mirena®. Apparent higher rates of cell proliferation in EMO-OCP are not
unexpected, as OCP results in atrophic or inactive endometrium, similar to a menopausal
state, which we have previously shown contains clonogenic epithelial progenitors [12]
and N-Cadherin+ and SSEA-1+ epithelial cells in the basalis of hysterectomy tissue [3,27].
Therefore, it is likely that the proportion of clonogenic cells from OCP endometrium seeded
into organoids will be higher compared to endometrium from women who are not taking
hormones or from endometrial tissue fragments from menstrual fluid. In contrast, the pro-
liferation rate of EMO-Mirena® was not elevated despite progesterone-only contraception,
which also causes atrophic or inactive endometrium. This may be explained by a lack of
estrogen priming in progesterone-only Mirena® compared to OCP [28] and the exposure
of the epithelial cells to high levels of continuous progesterone. The estrogen priming
of endometrial epithelial cells is important for endometrial epithelial proliferation [29].
Progesterone differentiates estrogen-primed, proliferating endometrial epithelial cells into
non-cycling, histotroph-secreting cells [30,31].

The relevance of a reduced proportion of EpCAM+ cells in EMO-OCP (two of the
four participants with endometriosis) is unclear and is worthy of further investigation.
EpCAM regulates cell division—the extracellular domain (detected by flow cytometry) is
cleaved by ADAM 10/17 and shed into the extracellular space. The intracellular domain is
cleaved by γ-secretase and translocates into the nucleus and is together with adapters, and
transcription factors bind the promoters and regulate the expression of the genes that are
involved in cell division, pluripotency, and epithelial mesenchymal transition (reviewed
in [32]). Thus, the lower proportion of EpCAM+ cells in EMO-OCP may indicate EpCAM
cleavage and cell division.

Our method of generating MFO involves selecting EpCAM+ gland fragments by
magnetic beading. A recent work [22] that was completed at the same time as ours
confirms our initial observations that MFO can also be derived from unbeaded endometrial
epithelial fragments from a small fraction of cells obtained from previous studies [9]. On
the other hand, methods for standard EMO (and therefore EMO-H) generate EMO from
fragments of unbeaded endometrial tissue that are separated by filtration and therefore
may contain stromal tissue fragments or other cell types. There may be benefit in EpCAM
beading to purify gland fragments for generating organoids from all of the different sources:
endometrial tissue that has or has not been exposed to exogenous hormones or not and
menstrual fluid.

Our data also showed variable proportions of cells that were positive for the surface
marker SSEA-1 and for N-cadherin+SSEA-1+cells in some organoids. There were also
variable mRNA levels of SSEA-1, which tended to be elevated in endometriosis, supporting
our previous findings of SSEA-1 in functionalis endometrium [4].

Organoids that retain patient characteristics and that remain genetically stable repre-
sent potentially useful options for diagnosis as well as for understanding disease progres-
sion and response to treatments in individual women. Many women seeking diagnosis
and treatment with endometrial pathologies are likely to be on hormonal medication for
either the control of their symptoms or for birth control. Quality diagnostic and prognostic
methods should not be influenced by these clinical variabilities, which would otherwise
limit their utility. There is also a wide variety of hormonal compounds and concentrations
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that are taken by women that may have subtle effects. In this study, we show that the
organoids derived from women under hormonal treatment are not significantly influenced
in terms of the curated gene sets that are associated with the cellular targets of these
hormones. This suggests the long-term utility of these in vitro models for characterizing
patient response, as the organoids may recover their natural (basal) state once they are
removed from the hormonal environment. This would ensure that potential diagnostic or
prognostic biomarkers are not masked in an endometrium that has been rendered inactive
through hormonal suppression.

There are a number of strengths of the current study. It is the first to demonstrate that
organoids can be generated from both menstrual fluid and from the biopsies of women
who are taking various forms of hormonal contraception. We show novel findings that
compare the behavior and transcriptomes of EMO-H and MFO to standard EMO using
well characterized samples. While organoids have been generated from eutopic and ectopic
tissue (ECT-O) samples of women taking hormonal medication [6], that study did not com-
pare different hormone types (e.g., OCP vs. progesterone only) on organoid characteristics.
This is the first report indicating the potential clustering of EMO (as opposed to ECT-O)
based on endometriosis disease state, a major advantage for minimally invasive precision
medicine. There were some preliminary trends to indicate that endometrial organoids, re-
gardless of their source (EMO, EMO-H, or MFO), may be used to distinguish controls from
disease states. Further work to elucidate endometrium-specific and endometriosis curated
gene sets may reveal previously unappreciated differences. In particular, distinguishing
women with endometriosis from those without endometriosis using MFO would provide
a non-invasive method of screening for a disease that currently depends on laparoscopic
surgical diagnosis. Further work with increased power may reveal the endometriosis
organoid subtypes that underscore clinical heterogeneity and that therefore may predict
responses to new treatments that could be tested in vitro prior to application in vivo.

Conversely, the study is limited by a number of factors including low sample numbers
due to the impact of COVID-19 on sample collection, permitted experiments, and delays in
obtaining reagents. The low sample numbers and number of reads per sample limit the
power of the study to truly detect any differences between either organoid source or disease
state, and therefore, caution must be used in interpreting the findings. Further investigation
in larger cohorts to determine the relevance of heterogeneity in organoid characteristics
is warranted. Furthermore, future sufficiently powered studies that utilise EMO-H to
determine how different clinically administered hormonal treatments influence both the
short- and long-term health and function of endometrial tissue will provide powerful,
clinically relevant data. MFO and EMO-H share similar features to EMO in proliferation,
cellular composition, and gene expression in the limited number that was assessed.

5. Conclusions

This descriptive study highlights the potential for MFO and EMO-H as important tools
for disease modelling and precision medicine. Novel organoids have the added advantage
that MFO can be acquired non-invasively from menstrual fluid or EMO-H from large num-
bers of women who are already under hormonal treatment, respectively, including those
with presumptive endometriosis without the need to cease hormonal medication, which
remains the mainstay of the expectant management for endometriosis, heavy menstrual
bleeding, and pelvic pain. Further work may establish if there are nuanced influences of
different types of hormonal medication on endometrial epithelial behavior. The addition of
the EpCAM+ selection of endometrial epithelial fragments in organoid isolation protocols
may be used more widely to increase the purity of endometrial organoids and to reduce
variation between studies. Together, MFO and EMO-H may widen the application of
endometrial organoids for gynecological research and personalized medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11121314/s1, Figure S1: EMO-H from women taking OCP (open green triangles) showed a
trend for increased proliferation compared to EMO, MFO, and EMO-H from a woman with Mirena®

https://www.mdpi.com/article/10.3390/jpm11121314/s1
https://www.mdpi.com/article/10.3390/jpm11121314/s1
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IUD, Figure S2: Gene expression heatmaps for response to progesterone (a) and epithelial markers of
novel organoids (b), Table S1: Participant details and assays performed on each sample, Table S2:
Flow cytometry reagents.
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