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Tonal working memory load refers to the number of pitches held in working

memory. It has been found that different verbal working memory loads have

different neural coding (local neural activity pattern). However, whether there

exists a comparable phenomenon for tonal working memory load remains

unclear. In this study, we used a delayed match-to-sample paradigm to evoke

tonal working memory. Neural coding of different tonal working memory

loads was studied with a surface space and convolution neural network

(CNN)-based multivariate pattern analysis (SC-MVPA) method. We found that

first, neural coding of tonal working memory was significantly different from

that of the control condition in the bilateral superior temporal gyrus (STG),

supplement motor area (SMA), and precentral gyrus (PCG). Second, neural

coding of nonadjacent tonal working memory loads was distinguishable in

the bilateral STG and PCG. Third, neural coding is gradually enhanced as the

memory load increases. Finally, neural coding of tonal working memory was

encoded in the bilateral STG in the encoding phase and shored in the bilateral

PCG and SMA in the maintenance phase.

KEYWORDS

tonal working memory load, SC-MVPA, cortical activation pattern, neural coding,
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Highlights

– The neural coding differences between tonal working memory and the control
condition was detected in the bilateral STG, PCG, and SMA.

– Neural coding differences between different tonal working memory loads were
detected in the bilateral STG and PCG.

– Neural coding is enhanced as the memory load increases.
– Neural coding of tonal working memory was encoded in the bilateral STG and stored

in the bilateral PCG and SMA in the maintenance phase.
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Introduction

Working memory describes the ability to temporally
maintain and manipulate information in the mind and is
important for high-level cognitive functions such as reasoning
and decision-making (Baddeley, 2003, 1992). In the auditory
working memory domain, verbal and tonal working memory
have attracted much attention because of their association with
the cognition of language and music (Schulze and Koelsch,
2012; Kaiser and Brosch, 2016). During the past two decades,
the neural basis of verbal and tonal working memory has been
well studied with numerous neuroimaging methods, such as
functional magnetic resonance imaging (fMRI) (Linke et al.,
2011; Schulze et al., 2011), electro-/magnetoencephalography
(EEG/MEG) (Leiberg et al., 2006; Guimond et al., 2011), local
field potential (LFP) (Bigelow et al., 2014; Yu et al., 2021), and
functional near-infrared spectroscopy (fNIRS) (Jeong and Ryu,
2016; Rovetti et al., 2021).

In verbal working memory studies, it has been found that
Broca’s area, premotor areas (PMC), the STG, the inferior
parietal lobule (IPL), the superior parietal lobule (SPL), insula,
and the cerebellum are involved in the processing of verbal
working memory (Paulesu et al., 1993; Awh et al., 1996; Fiez
et al., 1996; Bamiou et al., 2003; Gruber and von Cramon,
2003; Crottaz-Herbette et al., 2004; Ravizza et al., 2004; Chen
and Desmond, 2005; Kirschen et al., 2005; Koelsch et al., 2009;
Cowan et al., 2011; Huang et al., 2013; Li et al., 2014; Fegen
et al., 2015; Majerus et al., 2016; Emch et al., 2019; Ghaleh et al.,
2020; Hoddinott et al., 2021). In the tonal working memory
domain, relevant activations were found in the intra parietal
sulcus (IPS), inferior frontal gyrus (IFG), cerebellum, dorsal
lateral prefrontal cortex (DLPFC), supramarginal gyrus (SMG),
STG, insula, and hippocampus (Zatorre et al., 1994; Holcomb
et al., 1998; Griffiths et al., 1999; Gaab et al., 2003; Foster and
Zatorre, 2010; Linke et al., 2011; Schulze et al., 2011; Albouy
et al., 2013, 2015, 2017; Foster et al., 2013; Kumar et al., 2016;
Czoschke et al., 2021; Erhart et al., 2021). Despite the differences,
these studies converged to form a consensus that verbal and
tonal working memory share a similar frontoparietal network
as neural basis (Schulze and Koelsch, 2012).

Working memory load refers to the number of items held
in working memory (Nolden et al., 2013). The neural basis
underlying working memory load has been widely studied in
the visual and verbal domains. By testing BOLD signal strength
(Cowan et al., 2011) found that the left IPS had load-dependent
activity for both verbal and visual working memory. In a visual
change detection study with monkeys, (Pinotsis et al., 2019)
modulated the number of objects (1–3 objects) remembered
by monkeys and found that changes in working memory load
influenced the connections between the lateral intraparietal area
(LIP), prefrontal cortex (PFC), and frontal eye field (FEF). In
an fMRI study distinguishing the neural basis between verbal
working memory load and attention, (Huang et al., 2013) found

that activities in the DLPFC, SMA, IPL, SMG, and right anterior
insula increased with increasing verbal working memory load.
When distinguishing the neural basis of verbal working memory
load and rehearsal rate, (Fegen et al., 2015) manipulated the
memory load and rehearsal rate and designed a long 45 s delay
period. They found that during early delay (2–16 s) and middle
delay (16–30 s), activities in the IFG, PMC, middle frontal gyrus
(MFG), and SPL were linearly correlated with memory load.
Using fMRI and a delayed visual letter recognition task, Zarahn
et al. (2005) found that BOLD signals in the precentral gyrus
(PCG), MFG, IPL, SPL, and some other areas showed a linear
relationship with memory load. In addition to these studies,
some other studies (Nystrom et al., 2000; Ravizza et al., 2004;
Todd and Marois, 2004; Todd et al., 2005; Xu and Chun, 2006;
Majerus et al., 2012) also reported load-related neural activity
when studying verbal and visual working memory.

In recent years, the neural encoding of different memory
loads has begun to attract researchers’ attention in the verbal
and visual domains. In a decoding study (Majerus et al., 2016)
of verbal and visual working memory, different memory loads
were found to have distinguishable neural coding in the superior
frontal and posterior parietal regions of the dorsal attention
network. In an fMRI study (Weber et al., 2016) studying
the interaction between working memory load and precision
of working memory, memory load-related neural coding was
found in the superior IPS. In a decoding study (Bååth, 2009)
using an artificial neural network, the PFC was found to carry
verbal working memory load-dependent neural coding.

Relatively, the amount of research on tonal working memory
load is small and even less for decoding research. Using
fNIRS (Tseng et al., 2018) studied neural correlates of tonal
working memory load in high-anxiety participants and patients.
A stronger signal was observed in the right orbital prefrontal and
ventrolateral cortex when attending to high load tonal stimuli
(Guimond et al., 2011; Lefebvre et al., 2013). Studied tonal
working memory with EEG and found that the amplitude of a
component named the sustained anterior negativity increased
as the tonal working memory load increased. In an MEG
study, using pure tones as acoustic materials (to minimize
non-tonal working memory activity), (Grimault et al., 2014)
found that response amplitude in parietal, frontal, and temporal
cortices increased with increasing tonal working memory load.
In another MEG study, with one or two tones as stimuli (Nolden
et al., 2013) found that right parietal structures, IFG, inferior
temporal gyrus and bilateral STG showed stronger activity
when maintaining higher tonal working memory load. To our
knowledge, no decoding study has been done to tonal working
memory load.

In this study we focused on the neural coding differences
between different tonal working memory loads. We proposed
a surface space and CNN-based MVPA method to better study
this problem. Carrying out MVPA in surface space has some
advantages. First, analyzing in surface space can avoid noise
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from white matter and other non-gray matter tissues. Second,
for areas located near the longitudinal fissure, analyzing in
surface space can avoid interference from the other hemisphere.
Third, neural coding is easier to display in surface space. In
addition to the choice of space, which classifier to choose is
also important. When implementing MVPA in surface space,
the searchlight (local pattern space) is a curved surface, which
can be easily flattened into a 2D image. As one of the most
shining technologies in image recognition (Gu et al., 2018),
CNN is an ideal classifier for 2D image classification, and is thus
suitable for the surface space based MVPA method. Using this
SC-MVPA method, we found that the neural coding of different
tonal working memory loads was different in the bilateral STG
and PCG.

Materials and methods

Subjects

We recruited 23 student participants (12 male, age range 18–
23, right handed) at Southwest University. Participants reported
that they had normal hearing and did not have absolute pitch.
Except for general school education, subjects had no extra music
training. Subjects signed informed consent forms and were paid

approximately 20 dollars for their participation. The local ethics
committee of Southwest University approved this experimental
protocol (item number: H21053).

Experimental paradigm

A delayed match-to-sample paradigm was implemented
accompanied by fMRI scanning. As illustrated in Figure 1, a
trial began with 1 s of quietness. After that, a series of piano
tones (1–4 tones, randomly selected), i.e., the sample, were
presented to the subjects. After a 20 s delay, another series of
tones (same length) were presented as the probe. In 50% chance,
one tone (in random position) of the probe was changed in two
natural tones. Subjects had 4 s to answer whether the sample
and the probe were the same with two buttons. Twelve subjects
pressed the buttons with the left index finger, while 11 subjects
pressed the buttons with the right index finger. Materials of
tones were selected according to the key of C major from C1 to
D2. To minimize interference from other musical aspects, such
as rhythm and tempo, all stimuli materials were 4/4 meters and
240 bpm. Tones were presented through headphones. We set up
a BOLD scanning run (1 min, after T1 scanning, to simulate the
experimental environment) to adjust the system volume. A piece
of music was played in this run and subjects were asked to adjust

FIGURE 1

Experimental paradigm. A series of tones (1–4 tones) were presented and after 20 s, another series of tones (same in length) were presented.
There was a 50 percent chance that there was a tone change. Subjects were asked to answer whether these two series of tones were the same
within 4 s.
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the system volume as large as possible on the premise of feeling
comfortable. The sound level of this music and the tones were
normalized with Adobe Audition CS6.1

During the first second and the 20 s delay period, subjects
were asked to focus on the central cross on the screen. There
were 100 trials in total, with 20 trials for each experimental
condition (load 1–4) and 20 trials for the control condition
(load 0). In the control condition, no tone was presented and
subjects were asked to press the button represent the same in
the answering period. The control condition mainly served as
a comparison and baseline in the data analysis. Trials were
presented in random sequence. There were five scanning runs in
total. Delayed match-to-sample tasks were implemented in the
last three runs, with 33 trials in the third and fourth runs and
34 trials in the fifth run. Subjects were trained with a simulation
experiment before entering the scanning room.

Functional magnetic resonance
imaging data acquisition

We acquired structural (T1-weighted) and functional BOLD
images with a 3T Siemens Prisma_fit scanner. Structural
data were acquired first, followed by 4 runs of BOLD data
acquisition. The parameters of structural scanning were as
follows: Resolution (1 × 1 × 1 mm3), TR (2,530 ms), TE
(2.98 ms), TI (1,100 ms), flip angle (7 deg), acceleration
factor PE (2), slice per slab (192), FoV read (256 mm). The
parameters of functional scanning were as follows: Resolution
(2.5 × 2.5 × 2.5 mm3), TR (1,000 ms), TE (30 ms), flip angle (73
deg), acceleration factor slice (4), slices (56), FoV read (195 mm).

Data preprocessing

fMRI data were preprocessed with FreeSurfer.2

Preprocessing included two stages, and each stage corresponded
to an encapsulated function offered by FreeSurfer. The first
stage was cortical reconstruction using structural data. This
stage includes many steps, including motion correction and
conform, non-uniform intensity normalization, Talairach
transform computation, intensity normalization, skull strip,
remove neck, white matter segmentation, tessellation, smooth,
inflate, spherical mapping, spherical registration, cortical
parcellation (labeling), cortical parcellation mapped to ASeg
and some other steps. Although very complicated, all these steps
were encapsulated in the function “recon-all,” and researchers
can easily implement this stage by calling this function. The
second stage was preprocessing the functional data. This stage

1 https://www.adobe.com/cn/products/audition.html

2 https://www.freesurfer.net/

included steps such as registration template creation, motion
correction, slice-timing correction, functional-anatomical
registration, mask creation, intensity normalization, resampling
raw time series to mni305, lh, and rh surface space, spatial
smoothing (only for general liner model (GLM) analysis, MVPA
uses data without spatial smoothing) and some other steps. All
these steps were encapsulated in the function “preproc-sess.”
By preprocessing, functional data were resampled into surface
space (lh, rh) and a mni305 2 mm template. Common MVPA
analysis is generally conducted at a resolution of approximately
3 mm (Lee et al., 2011; Linke and Cusack, 2015; Uluç et al.,
2018). To be consistent with these studies and reduce the
amount of calculation, we downsampled the preprocessed
volume data into a mni305 3 mm template using the function
“reslice_nii,” which was offered by NIFTI.3

SC-MVPA

To better analyze and display the local neural coding
of tonal working memory loads, we proposed an SC-MVPA
method in this paper. The analysis pipeline of SC-MVPA
is illustrated in Figure 2. SC-MVPA implemented analysis
in the spherical space offered by FreeSurfer. This space has
163842 vertices for each hemisphere. The unfolded human
cerebral cortex (each hemisphere) has a total surface area
of approximately 0.12 square meter (Toro et al., 2008).
Thus, each vertex occupies an area of approximately 0.73
mm2. Considering the thickness of the cerebral cortex of 2-
4 mm (Ribeiro et al., 2013), each vertex occupies a volume
of approximately 2 mm3, which is approximately an order
of magnitude smaller than the resolution of the original
functional data (2.5 × 2.5 × 2.5≈15.6 mm3). If SC-MVPA
was directly implemented in the original spherical space, it
would cause repetitive calculation and increasing amount of
calculation. Thus, the first step of SC-MVPA is downsampling
the spherical template space. As illustrated in Figure 2A, we
first constructed an icosahedron. The edges of the icosahedron
were equally divided into 40 sections. The points on adjacent
edges were connected and formed new points of intersection.
The center of the icosahedron was connected with these points,
and the connections were projected onto the surface of the
circumscribed sphere of the icosahedron. Based on this method,
a total of 16,002 points were on the circumscribed sphere.
These points were projected to the template spherical space and
formed a downsampled spherical space.

For each point on the downsampled spherical space,
the following operations were performed. As illustrated in
Figure 2B, assuming that the spherical coordinate of a point
p was (α, β), the sphere was rotated to move point p to point
z (0,0). Then, around point p (0,0), an 11 × 11 grid was

3 http://nifti.nimh.nih.gov
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FIGURE 2

Analyzing stream of SC-MVPA. (A) Dividing algorithm used to divide the template surface space. (B) Analyzing stream of SC-MVPA. For any point
p (α,β) in the downsampled sphere space of fsaverage, the sphere is rotated to rotate p to z (0,0). After that an 11 × 11 grid around p (0,0) is
acquired. The BOLD signal in cells are averaged, forming an 11 × 11 searchlight. A circle (with a radius of 11/2) is applied to the 11 × 11 grid,
forming a circular searchlight. The circular searchlight then entered into the CNN.

constructed along the longitude and latitude (1/35 radian per
cell). The BOLD signal of vertices in each cell was averaged and
formed an 11 × 11 image. A circular searchlight template (with
a radius of 5.5) and z-score normalization were applied to this
image. The normalized image is then entered into a CNN as
input data. This CNN consisted of an input layer (11 × 11),
a convolution layer (11 × 11, padding 11), a relu layer, a max
pooling layer (2,2), a fully connected layer (equal to the number
of categories to be classified), a softmax layer and a classification
layer. There were three experimental runs in total. A threefolded
cross validation, with two runs serving as the training data and
one run serving as the classifying data, was performed. The
recognition rates of these three times were averaged and entered
into the group level analysis.

In group-level analysis, the recognition rate across subjects
of each point was compared with chance probability with a
one-sample t-test (right tail). Multicomparison correction was
performed using non-parameter permutation tests (Nichols and
Holmes, 2002; Oosterhof et al., 2010; Czoschke et al., 2021;
Erhart et al., 2021). The permutation simulation tests simulate
the process of generating active clusters from random noise. To
simulate clusters generated from random noise, the recognition
rate of each subject and point was subtracted by the chance
probability. The sign of the resulting differences was randomly
flipped. These randomly flipped results constitute random noise.

Then, the flipped differences across subjects of each point were
compared with zero with a one-sample t-test (right tail). This
process was permutated 10,000 times. For each permutation,
the size of the largest cluster was recorded. If the size of the
active cluster is larger than 95% of the simulated clusters, the
probability that the active cluster is generated by random noise
is less than 5% [corresponding to a familywise error rate (FWE)
of 0.05]. The sizes of the largest simulated clusters were sorted
(from large to small), and the size of the 500th largest cluster
was recorded as a criterion. The cluster sizes of the group-level
analysis results were compared with the size of the criterion,
and only the clusters larger than the criterion were reported
(corresponding to FWE < 0.05). All these SC-MVPA steps were
implemented in MATLAB 2022a.4

Training and classification

We first implemented five-category classification analysis,
during which all conditions (load 0–4) entered the training and
classification process. The main purpose of the five-category
classification was to first, test whether there was a neural

4 https://ww2.mathworks.cn/products/matlab.html
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coding difference underlying these five conditions; second, make
a comparison between SC-MVPA and the traditional MVPA
method; and third, observe the results of classification and
analyze the extent to which these five conditions differ on neural
coding. A threefolded cross validation, with two runs serving
as the training data and one run serving as the classifying
data, was performed. There are 66∼67 trials in the training set
and 33∼34 trials in the testing set. The training parameters of
the CNN of the five-category classification were solver name
(“sgdm”), max epochs (400), and initial learning rate (0.01). In
the group-level analysis, the recognition rate was compared with
20% (significance p < 0.001, FWE < 0.05). In the five-category
classification, we also implemented a traditional volume space-
based MVPA (MNI) to make a comparison. This method is
based on volume space and a support vector machine (SVM),

using a spherical searchlight with a radius of three voxels
(Lee et al., 2011). The threefolded cross validation and FWE
correction were the same as those for SC-MVPA. Besides,
we also performed the surface space- and SVM-based MVPA
(SSVM-MVPA) for five-category classification. The classifier of
SC-MVPA is replaced with SVM, and other settings remain
unchanged. For comparison, the results of SC-MVPA and
traditional MVPA (5, 7, 9, 11 s) are shown in Figure 3, the results
of SSVM-MVPA and traditional MVPA (5, 7, 9, 11 s) are shown
in Figure 4B. The remaining results of SC-MVPA are shown in
Figure 5. The coordinates of Figure 3 are shown in Tables 1, 2;
the coordinates of Figure 4 are shown in Table 3.

We then implemented four-category classification (load 1-
4, SC-MVPA) to explore whether the neural coding of different
tonal working memory loads was distinguishable. The training

FIGURE 3

Comparison of SC-MVPA and the traditional volume space-based MVPA method. The significance of the classification of the five categories of
SC-MVPA is shown in the left part, and traditional MVPA is shown in the right part.
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FIGURE 4

GLM results of load 1 2 3 4 vs. load 0 and comparison between SSVM-MVPA and volume space-based MVPA. (A) Traditional contrast analysis
between the experimental conditions and the baseline condition. (B) Comparison between SSVM-MVPA and MVPA (MNI). The figures of MVPA
(MNI) are the same as Figure 3.

parameters were the same as in the five-category classification.
The three-folded cross validation and FWE correction were the
same as those for five-category classification. Since the stimuli
were presented randomly, the size of the training and test sets
varied. The results of the four-category classification showed

that no brain area’s recognition rate was significantly higher than
the chance level (25%, significance p < 0.001, FWE < 0.05).

We also performed two-category classification for adjacent
memory loads (i.e., load 1 vs. load 2, load 2 vs. load 3, load 3
vs. load 4) to see whether neural coding of adjacent memory
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FIGURE 5

Significance of the classification of the five categories of SC-MVPA. The neural coding of the five conditions are distinguishable in bilateral STG
in 4, 6, and 8 s, in left SMA in 6, 8, 10, and 15 s, in right SMA in 6 and 8 s, in left PCG in 6, 8, 10, and 12∼14 s, and in right PCG in 6, 8, 10, and 12 s.

loads was distinguishable. As the categories to be classified
were decreased to two kinds, the max epochs were adjusted
to 100, and the group-level t-test was compared with 50%
(significance p < 0.001, FWE < 0.05). After the adjacent load
classification, we also performed two-category classification for
nonadjacent memory loads (i.e., load 1 vs. load 3, load 2 vs. load
4, and load 1 vs. load 4) to determine whether neural coding of

non-adjacent loads was distinguishable. The threefolded cross
validation and FWE correction were the same as those for
five-category classification. Since the stimuli were presented
randomly, the size of the training and test sets varied. Parameters
in non-adjacent load analysis were the same as in adjacent
load analysis. The classification results of non-adjacent loads are
shown in Figure 6.
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TABLE 1 Results of volume space based MVPA (Figure 3 right).

Time Peak intensity Number of voxels Region MNI coordinates

x y z

5s 9.6 575 Superior temporal gyrus left –55 –16 4

8.0 431 Superior temporal gyrus right 53 –19 10

6.2 70 Supplement motor area –7 –1 61

7s 8.3 642 Superior temporal gyrus right 59 –12 4

7.5 870 Superior temporal gyrus left –52 –7 7

7.4 314 Precentral gyrus left –52 2 43

6.2 134 Precentral gyrus right 50 –1 46

4.6 56 Superior parietal lobule left –25 –70 49

7.6 444 Supplement motor area –4 –7 64

9s 6.0 118 Superior temporal gyrus left –58 20 –5

5.8 215 Precentral gyrus left –37 5 40

6.2 75 Precentral gyrus right 47 –1 49

8.4 354 Supplement motor area –2 –2 62

11s 5.6 120 Precentral gyrus left –43 –13 49

5.6 166 Supplement motor area –1 –7 52

TABLE 2 Results of SC-MVPA (Figure 3 left).

Time Peak intensity Size of cluster (mmˆ2) Region Talairach coordinates

x y z

5s 7.9 1,552 Superior temporal gyrus left –43 –23 –2

6.4 1,444 Superior temporal gyrus right 62 –6 –2

4.2 170 Supplement motor area left –6 20 55

4.4 85 Precentral gyrus right 50 –1 44

7s 9.2 1,408 Superior temporal gyrus right 50 –13 3

7.3 1,888 Superior temporal gyrus left –54 –10 1

8.6 734 Precentral gyrus left –44 4 41

4.0 48 Precentral gyrus left –58 5 20

7.5 465 Precentral gyrus right 46 –1 44

9.0 876 Supplement motor area left –11 9 60

6.2 340 Supplement motor area right 11 9 61

9s 6.2 101 Superior temporal gyrus right 52 –9 –2

7.4 468 Precentral gyrus left –53 –4 39

5.2 371 Precentral gyrus right 50 2 41

6.6 624 Supplement motor area left –8 13 51

4.1 74 Rostral middle frontal gyrus left –35 38 24

5.3 289 Supplement motor area right 8 10 53

4.5 90 Superior temporal gyrus right 63 –35 10

11s 6.2 436 Precentral gyrus left –48 –2 43

6.3 241 Supplement motor area left –6 7 59

4.6 153 Precentral gyrus right 46 1 42

Local neural coding of tonal working
memory loads

To further analyze the neural coding of tonal working
memory loads, we averaged the BOLD signal of three

searchlights (STG-L, SMA-L, PCG-L) of each condition across
trials and subjects. The three searchlights (without applying
a circular searchlight) were selected according to the peak
locations of the five-category classification results in 7 s. The
averaged local neural coding of loads 1-4 was subtracted by
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TABLE 3 Results of SSVM-MVPA and GLM analysis.

Time/GLM Peak intensity Size of cluster (mmˆ2) Region Talairach coordinates

x y z

5s 8.5 1,227 Superior temporal gyrus left –43 –23 –2

6.4 985 Superior temporal gyrus right 52 –9 –2

5.4 228 Supplement motor area left –6 15 56

6.2 110 Precentral gyrus right 50 –3 44

7s 7.0 1,648 Superior temporal gyrus right 60 –16 –1

9.2 2,379 Superior temporal gyrus left –54 –10 1

8.9 685 Precentral gyrus left –51 –2 43

4.7 90 Precentral gyrus left –58 –1 15

4.2 81 Insula left –37 –2 4

7.1 451 Precentral gyrus right 46 2 41

7.8 875 Supplement motor area left –6 8 60

5.5 307 Supplement motor area right 12 9 59

9s 7.4 497 Precentral gyrus left –52 –4 42

4.9 58 Precentral gyrus right 43 4 40

7.3 725 Supplement motor area left –8 –6 55

4.5 167 Supplement motor area right 8 6 56

11s 5.6 282 Precentral gyrus left –50 –3 44

5.2 151 Supplement motor area left –6 6 60

4.5 60 Precentral gyrus right 52 2 38

GLM results 9.6 1,757 Superior temporal gyrus left –49 –3 –13

11.2 379 Supplement motor area left –7 0 62

7.1 112 Inferior frontal gyrus left –51 6 0

11.7 2,098 Superior temporal gyrus right 48 –6 –14

8.2 161 Supplement motor area right 7 4 64

6.4 164 Supramarginal gyrus right 49 –42 42

6.0 332 Inferior parietal gyrus right 39 –65 47

5.8 139 Precuneus right 12 –67 35

5.8 112 Lingual gyrus right 5 –90 –9

5.7 169 Precentral gyrus right 51 –1 45

5.3 176 Posterior cingulate gyrus right 4 –19 28

the averaged local neural coding of the control condition and
is displayed in Figure 7. Considering the 4–6 s delayed effect
(Baumann et al., 2010) of the BOLD signal, we chose the local
neural coding of 6 and 12 s as the representations of the
encoding and maintenance phases.

General liner model analysis

To reveal the common activated regions of tonal working
memory, we performed the traditional GLM analysis for load
1 2 3 4 vs. load 0 with FreeSurfer. The stimulus onset
times were convolved with a standard hemodynamic response
function curve and entered the GLM analysis. The head motion
parameters also entered the GLM analysis. The vertex-wise
threshold was set to –log10(p) > 3 and the family-wise threshold
was set to FWE < 0.05. The GLM results are shown in Figure 4A
and Table 3.

Results

General liner model results

As shown in Figure 4A and Table 3, tonal working memory
activate the bilateral STG, SMA, left Inferior frontal gyrus, and
right PCG, lingual gyrus, precuneus gyrus, and SMG.

SC-MVPA vs. traditional MVPA

Five-category classification results of SC-MVPA and the
traditional MVPA of 5, 7, 9, and 11 s are shown in Figure 3.
The time (e.g., 5 s, 9 s) represented which frame of the BOLD
data was analyzed (the first second corresponded to the second
the sample was presented). SC-MVPA and traditional.

MVPA showed highly consistent classification results. For
example, both methods showed that in 5 and 7 s, neural coding
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FIGURE 6

Brain areas that have significant different neural coding for different tonal working memory loads. No brain area has significant different neural
coding for adjacent tonal working memory loads. (A) The left PCG has significant different neural coding for load 1 vs. load 3 in the 10th second.
(B) The left STG has significant different neural coding for load 2 vs. load 4 in the 8th second. (C) The left STG has significant different neural
coding for load 1 vs. load 4 in the 7∼9 s. The right STG has significant different neural coding for load 1 vs. load 4 in the 6∼9 s. The bilateral PCG
has significant different neural coding for load 1 vs. load 4 in the 8∼11 s.

in the bilateral STG was distinguishable and in 7 and 9 s, neural
coding in bilateral PCG were distinguishable. Meanwhile, there
were some differences in detail for these two methods. At 5
and 11 s, SC-MVPA showed that only the left SMA showed
distinguishable neural coding; but in traditional MVPA, it can
be seen that both the bilateral SMA and the longitudinal fissure
were marked as distinguishable. It could also be found that using
SC-MVPA, in 5 and 11 s, the right PCG showed distinguishable
neural coding, but traditional MVPA failed to detect the neural
coding difference in this area.

Five-category classification results of
SC-MVPA

Figures 3, 5, 8 show that there were distinguishable neural
coding differences for the five conditions in the bilateral STG,
PCG, and SMA. To be specific, distinguishable neural coding
differences can be found in the bilateral STG in 4–8 s, in the
right STG in 9 s, in the bilateral PCG in 6–11 s, in the right PCG
in 5 s, in the left PCG in 13–14 s, in the bilateral SMA in 6–9 s,
and in the left SMA in 5, 10, 11, and 15 s.
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FIGURE 7

Neural coding (local BOLD signal pattern) in the left STG, PCG, and SMA. These neural codes were obtained by subtracting the neural codes of
the baseline condition from the neural codes of each load. Considering the 4∼6 s delay of BOLD signal, the neural codes of the encoding phase
were acquired from the 6th second and the neural codes of the maintenance phase were acquired from the 12th second. Bright colors indicate
a strong BOLD signal and dark colors indicate a weak BOLD signal.

The detailed recognition rates (number of correctly
identified trials/total number of trials) of the control condition
and loads 1–4 are displayed in Figure 8. It can be seen that
the recognition rate of the control condition was significantly
higher than the averaged recognition rate of loads 1–4, while

the averaged recognition rate of loads 1–4 was just slightly
higher than the chance level (20%). In addition, some areas
(e.g., SMA-L, PCG-L) showed significant distinguishable neural
coding after 8 s, while neural coding in right STG was hard to
distinguish after 8 s.
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FIGURE 8

Accurate rates (number of correctly identified trials/total number of trials) of the classification of the five categories. The accurate rates of load 0
in 5∼11 s are significantly higher than other conditions. ∗Means p < 0.05; ∗∗means p < 0.01; and ∗∗∗means p < 0.001.

Five-category classification results of
SSVM-MVPA

SSVM-MVPA obtained consistent results with SC-MVPA
when performing five classifications. The difference is that at the
7th second, SSVM-MVPA detected neural coding differences in
the left insula but SC-MVPA did not, and at the 9th second, SC-
MVPA detected neural coding differences in the right STG but
SSVM-MVPA did not.

Four-and two-category classification
results

SC-MVPA showed that no brain area’s neural coding was
distinguishable in the four-category classification and adjacent
load classification. However, in non-adjacent load classification
analysis, distinguishable neural coding was found in the bilateral
STG and PCG. Specifically, distinguishable neural coding was
found in 10 s in the left PCG (load 1 vs. load 3), 8 s in the left
STG (load 2 vs. load 4), and 6–11 s in the bilateral STG and PCG
(load 1 vs. load 4). The results of non-adjacent load classification
can be found in Figure 6.

Local neural coding of tonal working
memory

Overall, different memory loads shared similar neural
coding in the left STG, PCG, and SMA in the encoding and

maintenance phases. One exception is STG-L, the neural coding
in which disappeared in the maintenance phase. In addition,
neural coding showed a tendency to enhance with increasing
memory load. In the encoding phase, the local neural coding of
STG-L was obviously enhanced as the memory load increased.
A similar tendency also existed in SMA-L and PCG-L in both
the encoding and maintenance phases. The exception was also
in STG-L because the local neural coding disappeared in STG-L
in the maintenance phase.

Discussion

SC-MVPA method

In this paper, the SC-MVPA method has been shown
to be a feasible fMRI data analysis method. By comparison,
we found that SC-MVPA has higher spatial resolution and a
higher capability of detecting subtle neural coding differences
compared with traditional volume space and SVM-based
MVPA. SC-MVPA showed that only the left SMA exhibited
distinguishable neural coding in the five-category classification
in 5 and 11 s, while traditional MVPA showed that both the
bilateral SMA and the longitudinal fissure had distinguishable
neural coding. We argue that this is because for areas located
near the longitudinal fissure, traditional MVPA is easily
influenced by signals from the other hemisphere. Therefore,
SC-MVPA has better spatial resolution than traditional MVPA
in areas located near the longitudinal fissure. In addition,
SC-MVPA successfully detected the neural coding difference
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in the right PCG in the five-category classification in 5 s
and 11 s, while traditional MVPA failed to detect this area.
This result indicated that SC-MVPA has a higher ability to
detect subtle neural coding differences than traditional MVPA.
Besides, the results of SSVM-MVPA are consistent with those
of SC-MVPA, which indicates that the advantage of SC-MVPA
is not obtained by classifier, but the acquisition method of
searchlight improves the spatial positioning accuracy of SC-
MVPA.

Five-category classification

The classification results of the five categories showed that
there were distinguishable neural coding differences in the
bilateral STG, PCG, and SMA for the five conditions. However,
this does not mean that the neural coding of different memory
loads (loads 1–4) was distinguishable in these areas. By analyzing
the recognition rate of each condition, we found that the
recognition rate of the control condition was significantly higher
than the averaged recognition rate of loads 1–4, while the
averaged recognition rate of loads 1–4 was only slightly higher
than the chance level. We argue that these results indicated that
first, the neural coding of the control condition was significantly
different from that of loads 1–4 so that it was easy to distinguish
the control condition from loads 1–4 and hence acquired a
high recognition rate of the control condition; second, the
neural coding of loads 1–4 was similar to each other so that
it was difficult to distinguish the neural coding of different
memory loads and that the average recognition rate of loads 1–
4 was low.

This view was supported by the classification results
of four categories and adjacent loads. The four- category
classification showed that the neural coding of loads 1–4 were
not distinguishable. Classification of adjacent loads showed that
the neural coding of adjacent loads was also not distinguishable.
In addition, the neural coding shown in Figure 7 also showed
that different tonal working memory loads have similar neural
coding. All these results supported the view that neural coding of
different memory loads was similar and difficult to distinguish.

Thus, it can be concluded that this was because the
classifier successfully detected the difference between the
control condition and memory loads (rather than distinguishing
memory loads from each other) so that the recognition rate
of the bilateral STG, PCG, and SMA was significantly higher
than the chance probability. This conclusion was supported by
Linke et al. (2011), Kumar et al. (2016), and Uluç et al. (2018),
who also found that the bilateral STG, PCG, and SMA showed
distinguishable neural coding between the control condition and
tonal working memory. Thus, the classification results of the
five categories mainly represented the neural coding difference
between the control condition and tonal working memory
rather than the difference between memory loads.

Classification of non-adjacent loads

The classification results of loads 1–4 and adjacent loads
showed that the neural coding of tonal working memory loads
was not distinguishable. However, classification of non-adjacent
loads showed that neural coding was distinguishable in the
left PCG (10 s, load 1 vs. load 3), left STG (8 s, load 2 vs.
4), and bilateral STG and PCG (6–11 s, load 1 vs. 4). These
results may seem contradictory, but they are actually explicable.
One reasonable explanation is that neural coding of adjacent
loads was indeed hard to distinguish, but as the load difference
increases, the difference between neural coding also increases
and becomes easy to distinguish. This explanation can explain
why neural coding of adjacent loads was not distinguishable and
why neural coding difference between load 1 vs. load 4 was more
obvious than that of load 1 vs. load 3 and load 2 vs. load 4 (as
shown in Figure 6). Beyond that, the neural coding shown in
Figure 7 indeed showed a gradual enhancing process and thus
supported this explanation. Furthermore, this explanation can
explain why neural coding in four categories classification were
not distinguishable—because neural coding of adjacent loads
were too similar and would interfere with the recognition of
each other.

Neural coding of tonal working
memory loads

Partial neural coding of tonal working memory in the
encoding and maintenance phases is shown in Figure 7. Some
meaningful information can be concluded from this figure.
First, the neural coding of different tonal working memory
loads is similar. The left STG, PCG, and SMA exhibited similar
neural coding for different memory loads in the encoding and
maintenance phases, except for the left STG in the maintenance
phase. Second, neural coding is gradually enhanced with the
memory load increasing. This gradual enhancing process is
easy to observe in the left STG in the encoding process and in
the left PCG and SMA in both the encoding and maintenance
phases. Third, the neural coding of different memory loads is
different in the sensory cortex (STG). Figure 6 shows that the
bilateral STG showed distinguishable neural coding for different
memory loads. This finding contradicts the conclusions of some
studies that neural coding in the sensory cortex is load irrelevant
(Ravizza et al., 2004; Todd and Marois, 2004; Todd et al.,
2005; Cowan et al., 2011; Huang et al., 2013; Majerus et al.,
2016). However, some studies have also supported the view that
in the sensory cortex, neural coding is load relevant (Nolden
et al., 2013; Grimault et al., 2014). Finally, neural coding of
tonal working memory was stored in the bilateral PCG and
SMA in the maintenance phase, while neural coding in the
bilateral STG disappeared after 10 s (shown in Figures 3, 4, 6,
8). This finding indicated the encoding role of the STG and
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the maintenance role of the PCG and SMA in tonal working
memory, which suggests a hierarchical model for tonal working
memory. In an mice experiment (Yu et al., 2021), it was found
that optogenetic suppression of neural activity in auditory cortex
during the stimulus epoch and early delay period impaired
auditory working memory performance, whereas suppression
later in the delay period did not. In an auditory delay-match-
to-sample experiment of monkeys, (Bigelow et al., 2014) found
that the firing rate of the primary auditory cortex increased only
when the sound was perceived, but not during the retention
phase. In an meta-analysis study (Kim, 2019) of working
memory, PCG and SMA were found activated during the
maintenance period. Besides, when studying neural bases of
verbal and rhythmic working memory (Hoddinott et al., 2021),
it was found that bilateral STG were activated only during the
encoding period, while the SMA and PCG were activated during
the maintenance period. All these findings support that tonal
working memory has a hierarchical model, in which STG plays
an encoding role, while PCG and SMA play a maintenance role.

Conclusion

In this paper, we used an SC-MVPA method to reveal
the neural coding difference between tonal working memory
loads. We found that tonal working memory has significantly
different neural coding compared with the control condition
in the bilateral STG, PCG, and SMA. Beyond that, we found
that the neural coding of adjacent tonal working memory loads
were similar and hard to distinguish. In addition, we found that
distinguishable neural coding differences existed in the bilateral
STG and PCG for non-adjacent tonal working memory loads.
We argue that as memory load increases, neural coding of
tonal working memory is gradually enhanced. The difference in
neural coding increased with the increase in the difference in
memory load and thus became easy to distinguish. Finally, we
found that the STG played an encoding role, while the PCG and
SMA played a maintenance role in tonal working memory.
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