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Abstract

Background: The phenome represents a distinct set of information in the human population. It has been explored
particularly in its relationship with the genome to identify correlations for diseases. The phenome has been also
explored for drug repositioning with efforts focusing on the search space for the most similar candidate drugs.
For a comprehensive analysis of the phenome, we assumed that all phenotypes (indications and side effects) were
inter-connected with a probabilistic distribution and this characteristic may offer an opportunity to identify new
therapeutic indications for a given drug. Correspondingly, we employed Latent Dirichlet Allocation (LDA), which
introduces latent variables (topics) to govern the phenome distribution.

Results: We developed our model on the phenome information in Side Effect Resource (SIDER). We first developed a LDA
model optimized based on its recovery potential through perturbing the drug-phenotype matrix for each of the
drug-indication pairs where each drug-indication relationship was switched to “unknown” one at the time and then
recovered based on the remaining drug-phenotype pairs. Of the probabilistically significant pairs, 70% was successfully
recovered. Next, we applied the model on the whole phenome to narrow down repositioning candidates and suggest
alternative indications. We were able to retrieve approved indications of 6 drugs whose indications were not listed in SIDER.
For 908 drugs that were present with their indication information, our model suggested alternative treatment options for
further investigations. Several of the suggested new uses can be supported with information from the scientific literature.

Conclusions: The results demonstrated that the phenome can be further analyzed by a generative model, which can
discover probabilistic associations between drugs and therapeutic uses. In this regard, LDA serves as an enrichment
tool to explore new uses of existing drugs by narrowing down the search space.

Keywords: Drug repositioning, Bayesian methods, Latent dirichlet allocation, Data mining, Phenome, Side effects,
Indications
Background
The phenome, which can be defined as the comprehensive
collection of phenotypic information [1], has been studied
intensively to provide solutions for disease-centric bio-
logical problems [2]. Most studies in this area aim to dem-
onstrate the correlation between genome and phenome,
where various approaches have indicated the usefulness of
the phenome to arrive at conclusions about diseases [3-5].
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For example, a global comparison of the human interac-
tome and phenome through network alignment has also
shown that genome-phenome associations can explain
causalities on a larger scale [6]. These studies demonstrate
that the phenome can be mined by appropriate tools to
discover new treatment opportunities for diseases.
Drug repositioning often involves a process of using

knowledge accumulated about a drug during the de novo
drug discovery process, clinical trial, and/or post-marketing
surveillance to identify new therapeutic purposes other
than the originally intended purpose. Examining drugs with
known safety profiles and pharmacokinetic properties can
lead to new therapeutic indications more quickly and with
less risk. The history of successful drug repositioning is
comprised mostly of serendipitous findings, such as alter-
native indications for sildenafil and thalidomide, but a
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more systematic approach is advocated to explore the full
benefit of this approach. Interest in drug repositioning is
increasing and has attracted researchers from academia,
government, and industry, many of whom have developed
in silico solutions to assist repositioning research. These in
silico approaches demonstrate the potential of systematic
study to improve drug repositioning efforts. In general,
the reported studies can be classified as either disease-
centric or drug-centric approaches [7]. Most of them used
molecular, genomic, or phenotypic data [8-14].
As an example of a molecular study for drug reposi-

tioning, Keiser et al. measured the chemical similarities of
drugs consisting of both US Food and Drug Administration
(FDA)-approved and investigational drugs and linked the
results to drug targets. They reported thousands of poten-
tial drug-target associations and experimentally validated
23 of them that may add alternative therapeutic options
for diseases [10]. Using genomic data, Iorio et al. assessed
drug similarity based on drug-elicited gene expression in
cell lines with a network analysis approach. Their work
suggested that Fasudil would be effective in the treatment
of autophagy, which is a major process in cancer, and this
was confirmed experimentally [9]. In a separate study with
genomic data, Sirota et al. compared the gene expression
profiling elicited by drugs and that profiled for diseases.
They considered a drug effective for a disease if the
expression profiles reversely matched. A supporting animal
study verified that citemedine could be effective for lung
cancer [15]. In a follow up study using the same approach,
they reported that anticonvulsant topiramate was effective
in the treatment of Inflammatory Bowel Disease (IBD) [16].
On the other hand, the use of the phenome to identify

new therapeutic treatments has also been explored in
the research community. For instance, Campillos et al.
hypothesized that drugs having common side effects can
also treat the same disease and examined 20 drug-drug
pairs, of which nine were experimentally verified for alter-
native therapeutic uses [17]. Yang et al. also studied side
effects to assess their associations with diseases through
statistical tests [13]. They further focused on the drugs
that showed a particular side effect but was not mentioned
with the strongly associated indication.
Current in silico methodologies in drug repositioning,

including phenome-based techniques [17,18], mostly rely
on drug-drug similarity measurements which can lead to
guilt-by-association [12]. In other words, the search space is
often restricted to the most similar drug without taking full
advantage of the information embedded in the entire data-
set. We proposed that the phenome should be explored
with a probabilistic generative model for a comprehensive
analysis. Such an analysis may reveal further links between
drugs and diseases.
One important consideration for use of the phenome

data is its quality. Although a drug’s phenome (i.e., its
side effects and indications) should be consistent within
a specific population, the information recorded in some
sources, may still remain partial. The missing information
could be due to the lack of studies and resources to
comprehensively and accurately record all the possible
side effects and indications of a drug. Given the challenges
to gather a reliable phenome collection, SIDER (Side Effects
Resource) [19] stands as a well-credited data source with a
room to exploit partial knowledge. In other words, some of
alternative indications of a drug that are not yet captured in
the existing phenome database are ready for discovery,
which is the objective of this study.
This study is built on two premises: (1) the allocation

of phenotypes in a phenome arising through both on-target
and off-target methods follow a probabilistic distribution in
which the therapeutic indications of drugs are embedded
and (2) the inherent probabilistic relationship of a drug’s
phenome is insensitive to the incompletion of the phenome
source. Thus, a probabilistic graph model can be built using
the partial phenome and used to identify repositioning
opportunities.
To build probabilistic associations between existing

drugs and possible indications, we used a Bayesian model,
Latent Dirichlet Allocation (LDA), which was primarily
developed for topic modeling of text documents. With its
probabilistic nature, LDA can link documents and words
through latent variables known as topics. LDA achieves
such relations by manipulating words, which are the only
observed variables, in a Bayesian setting where documents
are assumed to be a weighted mixture of multiple topics
[20]. By analogy, we have extended this procedure to
drugs and phenotypes since phenotypes are observable
outcomes of drugs after they hit intended/unintended tar-
gets. In other words, this mode of action (MOA) mimics
like a latent process where therapeutic effects occur along
with side effects due to unknown cellular mechanisms.
Since we cannot holistically observe the mechanism caus-
ing both effects, we may rely on hidden variables that play
a role in the observed outcomes. Therefore, phenotypes
are said to be probabilistically distributed across drugs by
hidden variables and the same distribution can be utilized
to complete missing information. More specifically, these
hidden variables (topics) can let us discover the poten-
tial links between drugs and phenotypes, specifically
indications.
LDA has previously been applied in biological studies

such as discovering relationships in PubMed articles,
mining relational paths in the biomedical data, and group-
ing FDA approved drugs based on their therapeutic uses
and safety concerns [21-23]. However, its ability to suggest
potential associations has yet to be investigated for drug
repositioning.
In this study, we applied LDA to the SIDER database

to approximate the phenome distribution of drugs. To
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develop a criterion for suggesting new uses of drugs, we
first observed the recovery potential of the model by
predicting each “missing” indication from the phenome
that was deliberately switched to unknown. In doing so,
we took the advantage of not only remaining indication
information, but also the whole side effect profile, which
is another descriptive feature of a drug. Then, we required
a prediction to be both significant and ranked within the
top-k positions, where k is equal to the number of known
indications for a given drug. We refer to this last charac-
teristic as being within the indication space (IS) of a drug.
Imposing the same criteria to our initial drug-phenome
matrix without any perturbation, we further employed this
procedure for drug repurposing. In other words, we
attempted to make use of our partial knowledge about
side effects and indications to systematically cut down the
possible number of drug-indication pairs that can suggest
alternative indications. Finally, we both examined several
suggested uses by supportive evidence in the literature
and captured the original indications of some drugs whose
indications were not recorded in SIDER.

Results
As depicted in Figure 1, this study consists of the following
steps: (A) building a drug-phenome matrix with the data
profile obtained from SIDER; (B) determining the optimal
number of topics by using an information loss criterion to
derive a LDA model; (C-D) determining the criteria of the
model for application with a procedure that assumed the
absence of each indication in a one-by-one fashion; (E-F)
applying LDA on the drug-phenome matrix to get
probabilities for empty cells, validating the approach
by finding known indications mislabeled in SIDER; and
predicting new indications for given drugs and validating
them through various sources.

Number of topics
We computed the optimal number of topics for the drug-
phenotype matrix by using an information loss criterion
(Figure 1B) [18]. When the objective function is minimized,
the corresponding number of topics is considered to be the
optimal. The information loss reached its minimum when
the number of topics hit 64.

Developing decision criteria
As shown in Figure 1C, a total of 11,183 cases were
tested to assess the recovery rate for the masked indi-
cations. Specifically, an entry of “1” in the matrix was
replaced by “0” one at a time, and then LDA was con-
ducted on the remaining entries and the conditional
probability of the indication for the given drug p(I|d)
along with the position of the indication in a ranked
list based on probabilities for all indications p(I|d) were
calculated. In order to develop a decision criterion before
suggesting alternative indications, we considered the prob-
ability of a prediction against chance as well as its location
depending on a drug’s IS.
First, as shown in Figure 1D, we rejected predictions

below random chance (0.005), which identified 5,516
cases that correspond to bars above 0.005 in Figure 2.
Next, the 5,516 cases were further analyzed against each
drug’s IS. In 3,844 out of 5,516 cases, the held indication
was recovered correctly to be within the drug’s IS, yielding
an average success rate of 70% (s = 3,844/5,516) within the
portion of pairs that has greater probability than the
random chance.
Of note, the individual success rate (s) varied on a

drug’s IS; the rate was lower in the case of drugs with
fewer known indications. For example, we calculated the
success rate by incrementally removing the drugs with
the lower number of indications. An increasing success
rate from 70% to 100% was observed for recovering indi-
cations. The results demonstrated that high rates were
mostly associated with drugs that have a higher number
of indications.

Retrieving original indications
After developing the criteria, which gave a success rate
of 70% for the masked indications, we ran LDA on the
drug-phenome matrix in order to discover new links be-
tween drugs and indications. This section reports findings
for the retrieval of original indications and alternative in-
dications for drug repositioning.
The SIDER database has indication information for

most drugs along with side effect profiles. However, 39
of the drugs in the database were not associated with
any indications, even though 28 of them had known
therapeutic uses. We suspected that these 28 compounds
should have multiple indications. Therefore, we employed
our model to suggest the missing indication(s). We
relied on the same decision criteria, but assumed that
the IS = 13, which was the average number of indications
in the data set. For each of the 28 drugs, we examined the
top 13 indications whose probabilities were higher than
the threshold. In order to verify drug-indication pairs, we
reviewed the reports from the FDA-approved drug labels,
DrugBank [24], and the scientific literature. We confirmed
that 14 drugs were shown to be effective for at least one
indication suggested by the model. In fact, for 6 of these,
the model captured the original approved indications
(Table 1).

Suggesting alternative indications for drug repositioning
Containing 996 drugs with 2,276 indications, SIDER
provides a sparse representation of drugs and their indi-
cations, which implies that there are many unknown,
but possible, drug-indication associations (2,254,830) to
be investigated. In that regard, our model worked as a



Figure 1 (See legend on next page.)
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Figure 1 Overview of the study. A) Integrating side-effects and indications to complete phenome; B) Determining the number of topics by
using information loss; C) Hiding known indications one by one to see the recovery potential for decision criteria; D) Developing the decision
criteria considering recovered indications with significance; E-F) LDA is applied to the drug-phenome matrix. Observing the decision criteria, real
indications were recovered for drugs without indication information and new indications suggested for remaining drugs.
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screening technique that might help to reduce the number
of candidates for further explorations. As a matter of fact,
relying on the established criteria (i.e., beyond random
chance and within the indication space of a drug), our
model brought up 5,586 potential drug-indication pairs
(Additional file 1: Table S1) that correspond to 0.2 % of
the total number of possible pairs. For the suggested 5,586
drug indication pairs, the relationship between indication
space (IS) and p(indication|drug) is illustrated in Figure 3.
The figure also provides the number of drug-indication
pairs for the drugs, which were grouped based on the IS
bins they fall in. These two illustrations show that the
number of pairs and probabilities for the pairs with lower
IS are greater. This observation implies that for the drugs
with smaller IS, the model can suggest alternative indi-
cations that are being highly probable and worth to in-
vestigate, although it was a challenging task to recover
masked indications for the same drugs.
The model offered new treatment options to be inves-

tigated for 908 drugs for which two criteria mentioned
earlier was satisfied. When the alternative indications
were examined, some of the suggestions were confirmed.
Table 2 shows a partial list of these confirmations with
supportive sources for the new indications that were
Figure 2 Binned probabilities for known indications in 11,183 cases. p
pair. Each bar denotes the number of known pairs falling into the probabil
and we have 5,516 drug-indication pairs satisfying this condition.
ranked within the top 15 among 2,276 indications. For
instance, amantadine is currently used as medication for
influenza A virus and our model suggested alternative
uses including the treatment of epilepsy. We conducted
a literature search for this suggested treatment option
and found that amantadine had been studied and had
been beneficial in reducing seizures [33]. Additionally,
atazanavir was suggested for use in HIV infection, which
is an FDA-approved indication [34] but is not mentioned
in SIDER.

Discussion
Experimentally evaluating alternative therapeutic uses
of all marketed drugs is time-consuming and labor-
intensive. Thus, developing an in silico methodology
for drug repositioning is a cost-effective way to move
the field forward. In this study, we proposed an in silico
framework which aims to elaborate the entire observed
phenome of the available drugs by a probabilistic graphical
model. Using LDA, we identified the probabilistic associa-
tions of drugs and phenotypes through a latent variable
(topic). Under two established decision criteria, we applied
the method to infer the probability of new indications
for a given drug. The methodology quantifies the nature
(i|d) stands for the probability of the indication in a drug-indication
ity intervals. Blue bars show the cases over random chance (q = 0.005),



Table 1 Indications retrieved by the model

Findings supported by drug labels

Drug Indication Rank Reference

Thioridazine Schizophrenia 1 DB00679

Mesoridazine Schizophrenia 1 DB00933

Bromazepam Insomnia 4 DB01558

Nitrazepam Insomnia 3 DB01595

Pipotiazine Schizophrenia 1 DB01621

Nilotinib Leukemia 6 DB04868

Findings supported by literature

Drug Indication Rank Reference

Apomorphine Anxiety 6 [25]

Metyrapone Cancer 6 [26]

Prilocaine Analgesia 3 [27]

Sevoflurane Sedation 1 [28]

Remifentanil Sedation 1 [29]

Methohexital Muscle relaxation 2 [30]

Isoflurane Sedation 3 [31]

Disulfiram Ulcer 1 [32]
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of a possible relationship that is not previously known.
Furthermore, it does not require any a priori information
because of its unsupervised nature. Another notable
advantage of LDA is its flexibility to link a drug with
multiple latent variables (topics) through which drugs
can be linked to various indications, including those
that do not exist in SIDER.
We first established the criteria for the use of LDA on

whole phenome by first assuming the absence of each
Figure 3 Binned 5,586 suggested pairs based on IS along with probabi
the number of cases (Right-Y-axis) including drugs with that many indications
suggested drug-indication pairs.
known drug-indication pair and making predictions for
that particular indication. For each case, we checked
whether the probability (p(i|d)) was greater than ran-
dom chance (p > 0.005) and the indication was ranked
within the range of known indications for the given
drug (IS). Since q = 0.05 is a deterministic threshold for
all predictions, it is not allowed to vary with the
success ratio that may lead to overfitting. Indeed, its
impact remains more unbiased with respect to higher
thresholds (Additional file 2: Figure S1). On the other
hand, we primarily employed IS as a parametric meas-
ure to determine a drug-specific degree of freedom,
which enabled us to assess the validity of the model for
known pairs and to make a fair comparison. The
results show that success rate of the model mostly de-
pends on the number of known indications, with
higher rates of success for drugs with many known in-
dications. This is likely because the greater amount of
information increased our ability to identify hidden re-
lationships. Nonetheless, the model performed well
even on those drugs with fewer indications, with a
minimum of 70% success for drugs with at least one
known indication.
The capacity of the model to retrieve held-out indica-

tions demonstrates its applicability in real-world scenarios.
Thus, we made an attempt to retrieve indications for
drugs that had been mistakenly omitted in the original
dataset from SIDER. Of the 28 drugs with known thera-
peutic uses in this group, the model was able to identify
an indication that had supporting evidence for 14 of them;
for 6 of these 14, the indication identified was the approved
indication for the drug.
lities. X-axis denotes the number of indications and the bars represent
. Box plots summarize the probability distribution (Left-Y-axis) of



Table 2 Verification of suggested uses through literature

Drug IS Indication (source) Rank of indication (p(i|d))

Atazanavir 6 HIV infection [34] 3 (0.045)

Aripiprazole 15 Dementia [35] 11 (0.033)

Amantadine 18 Epilepsy [33] 7 (0.018)

Itraconazole 15 Meningitis [36] 11 (0.012)

SMS 201-995 36 Migraine [37] 13 (0.015)

Celecoxib 26 Migraine [38] 9 (0.013)

Mefenamic acid 3 Rheumatoid arthritis [39] 3 (0.076)
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The final goal of the model is to identify novel uses for
existing drugs. This model identified 908 drugs from
SIDER with new potential indications for further inves-
tigations. Similar to the earlier studies, we provided
potential pairs that might require an exhaustive search
for evidence to verify that the pairs were promising.
Therefore, we performed a co-occurrence search in
PubMed for the drug-indication pairs and observed
that 75% of the pairs were mentioned together in an
abstract at least once (Additional file 1: Table S1). Even
though co-occurrence cannot be a proof of therapeutic
effect alone, it implies the relatedness of many such
pairs. Then, since we could not go through the whole
list, we made an effort to examine several of the proposed
repositioning opportunities to determine if any supporting
evidence for the indication existed. We examined the
scientific literature, clinical trial data, and approved
drug labels to find supportive evidence for the suggested
use. The prediction of alternative indications for a drug
summarized in Table 2 is based on one Bayesian measure,
i.e., the conditional probability of a particular alternative
use for a given drug (i.e., p(indication|drug)).
The Bayesian characteristics also allow ranking drugs

for queried indications; drugs can be ordered based on
the conditional probability p(drug|indication). Using the
same strategy, drugs falling within the top k positions (k
is the number of drugs that treat a given disease) hold
the potential for treatment of a queried disease. One rare
disease, Cystic fibrosis, was queried for a candidate drug.
Our model suggested ceftazidime for the treatment op-
tion, which was indicated earlier in the literature, but
was mentioned in neither drug labels nor SIDER [40].
Of note, the p(indication|drug) measure failed to identify
the alternative use of ceftazidime for cystic fibrosis, but
such an association was uncovered by using the p(drug|
indication) measure. The results indicate the utility of
both measures for revealing repositioning opportunities.
Among the drugs meeting our decision criteria was

thalidomide, a well-known example of a repositioned
drug. The model correctly identified the new indication
of multiple myeloma for thalidomide. The model, how-
ever, is constrained in some respects by our choice of data
source. Although SIDER is intended as a comprehensive
resource for side effects and indications, not all known in-
dications are included, and these missing indications may
affect the performance of the model. For example, bupro-
prion is a well-known example of serendipitous drug re-
positioning. Initially approved as an anti-depressant
(Wellbutrin), clinical observation indicated its potential
for smoking cessation. We were unable to identify this
new indication using LDA, because this indication does
not appear for any drugs in SIDER. This is reasonable
that because no drug in the dataset is associated with
smoking cessation it is not possible to identify that as an
association using only this data set.
Besides the expected uses mentioned above, we analyzed

the outcome of the model for off-class uses (off-therapeutic
class uses; e.g., using an infection drug to treat obesity).
We examined the agreement between the Anatomical
Therapeutic Chemical (ATC) Classification System codes
of the drugs and the top MeSH (Medical Subject Headings)
disease hierarchy for the suggested indications. For 418
drugs with only one ATC code, we checked whether the
model offered any indication for off-class use. For 66% of
the pairs, we found indications for an additional therapeutic
class (Additional file 1: Table S1). For instance, an antineo-
plastic agent (ATC code: L), thalidomide, was suggested for
the treatment of osteoporosis, which is a musculoskeletal
disease. This new therapeutic class for thalidomide was
supported by earlier studies [41,42].
We also compared our results with those generated by

others. Yang and Agarwal [13] generated alternative in-
dications for 300 drugs based on side effect profiles from
SIDER and indication data from PharmGKB [43]. Of the
300 drugs, 269 were also used in our study, and for 145
of them (54%), the two methods agreed on at least one
indication. Of the 28 drugs whose indications were miss-
ing in SIDER, we found that only 5 were included in the
study by Yang and Agarwal. Among these, 4 had at least
one new indication consistent with our prediction. In
addition, Sirota et al. compared gene expression signa-
tures for 100 diseases and 164 drugs and concluded that a
reverse correlation between expression changes would
help to identify candidate drugs for given diseases [15].
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They predicted valproic acid for the treatment of brain
tumor and esophagus, lung, and colon cancers. Our model
predicted its potential use for tumor and metastases,
which has also been supported by an earlier study [44].
Side effects and indications provide a view to the

mechanism of a drug, and by using LDA we might be
able to use this information to better understand the
hidden relationship between a drug, its therapeutic uses,
and the side effects it causes. This information can then
be used to identify new potential uses for drugs, and our
model provides both a probability and rank order to assess
these uses. This approach shows significant promise
for improving the understanding of identifying new
uses for existing drugs as well as drug-topic-side effect
relationships that could be used for adverse event predic-
tion. However, the latter task requires more exhaustive
procedure and is beyond this study, because the number
of perturbations needed is much higher.
Finally, a number of caveats should be noted regarding

the present study. The most important limitation lies in
the fact that we only have a partial knowledge about the
phenome represented by SIDER. While we are perturbing
the drug-phenome matrix for recovering indications to
observe the potential of partial knowledge, the degree of
perturbation remains an open question. This issue might
be better addressed by conducting a study on a simulated
data set where accuracy can be measured precisely.
Secondly, the indication space (IS) proposed in the study
may limit the real world application of the methodology,
since drug IS is not available. Thirdly, LDA imposes a
multinomial distribution on the phenome and it may work
better with higher accuracies when the real distribution is
close multinomial distribution. Last but not least, our
model does not allow sensitivity and specificity measure-
ments due to the unknown nature of the data set.

Conclusion
In this work, we proposed an in silico framework for
drug repositioning guided by the phenome that can
narrow down candidate indications for given drugs and
applied it to SIDER. We treated the phenotypic infor-
mation of a drug as a fingerprint and assumed it to be
generated in a probabilistic fashion. LDA enabled us to
retrieve conditional probabilities for new indications for
given drugs. Evidence for findings retrieved by the model
suggests new opportunities for repositioning, which sup-
ports the utility of this model in a systematic repositioning
pipeline.

Methods
Data source
In the probabilistic graphical model that we employed in
this work, we wanted to benefit from all the phenotypic
knowledge, i.e., its side effects and indications, associated
with the existing drugs. Therefore, we used the most re-
cently updated SIDER data set, which is publicly available
at (http://sideeffects.embl.de/) and discussed in depth by
Kuhn [19]. SIDER data were collected through Natural
Language Processing (NLP) from drug labels and there-
fore contain some noise. We took all 996 drugs with their
phenotypic collections, which consisted of 4500 side effect
and 2276 indication terms that exist in MedDRA (Medical
Dictionary for Regulatory Activities: http://www.meddra.
org/). Then, the input data for LDA became a 996×6776
drug-phenome matrix, where each entry is either 1 or 0
depending on the existence of that particular indication in
the drug profile (Figure 1A).

Latent dirichlet allocation for phenome
Latent Dirichlet Allocation (LDA) is a generative model
that explains observed data by some latent variables or
parameters that give the reason for distribution of the
data. For instance, the words in documents are observed
and can be explained by unobserved latent variables, i.e.,
topics, which govern the occurrence and distribution of
words within each document. Since LDA assumes each
document is a mixture of topics, it associates each
document with multiple topics. Similarly, the same
setting allows another set of associations between docu-
ments and words even for the words that are not observed
in that particular document. Figure 4A illustrates this con-
cept with a tri-partite network presentation where each
link indicates a conditional probability value and each
path defines the strength of association from drugs to phe-
notypes. In this study, a drug is a “document” while a
phenotype of a drug is a “word”. Thus, LDA utilizes its
latent components, i.e., topics, as intermediate variables
that can discover or suggest such paths even for the unob-
served phenotypes (indications as focused in this study)
for every drug (i.e., drug).
Given the resemblance and the illustration above, we

propose an analogous application of LDA for drugs that
aims to achieve drug-topic-phenome path. It follows that
each phenotype is attributable to one of the drug specific
topics, and each drug represents a document, which
consists of phenotypes emerging through latent variables,
namely, topics. Thus, each drug is linked to multiple
topics as shown in Figure 4A.
To achieve the probability value associated with each

link, LDA employs a fully Bayesian approach which is
shown by the graphical representation in Figure 4B.
Each plate notation is used in lieu of links to simplify
representation in the presence of multiple variables. For
instance, the inner plate indicates there are N phenotypes
(PH) and each of them is linked to multiple topics (T)
which is equivalent to the right-hand side of the graph in
Figure 4A. Furthermore, it carries the information that
phenotypes are assumed to be allocated to the drugs with

http://sideeffects.embl.de/
http://www.meddra.org/
http://www.meddra.org/


Figure 4 Relations between variables in LDA model. (A) Latent variables (topics) are used to construct paths from drugs to phenotypes. P(t|d)
is the probability that drug d is associated with topic t while P(ph|t) defines the probability of phenotype ph associated with topic t. (B) Graphical
representation of LDA for phenome. In this framework, M stands for the number of drugs, and N is the number of phenotypes.
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a multinomial distribution. Likewise, the outer plate repre-
sents multiple links between M drugs (D) and θ, which is
the parameter for a multinomial distribution from which
topics are sampled. Finally, the full Bayesian framework is
achieved by introducing Dirichlet priors (i.e., α and β) over
the multinomial distributions (i.e., Mult(θ), Mult(φ)) from
which T and PH are sampled, respectively. The math-
ematical expression for the joint distribution is given
as follows:

p PH ;T ; θ;φ; α; βð Þ ¼
YK
1¼1

P φi; βð Þ
YM
j¼1

P θj; α
� �YN

k¼1

P Tj;k jθj
� �

P PHj;k jφTj;k

� �

ð1Þ

The ultimate goal of LDA is to compute the posterior
distributions of the hidden variables from the above
expression for given documents. This inference problem
was addressed by Blei et al. [20] by employing a variational
expectation maximization approach, which provides the
distributions, p(T|D) and p(PH|T). As T being common
between two plates and having links to both variables PH
and drug, it can be utilized to construct paths described in
Figure 4A by some algebraic manipulations that will be
explained in the following subsection.
Another parameter of our model, which is to be given

by the user, is the number of topics, K. It can be deter-
mined by maximizing the likelihood as proposed by Blei,
et al. [20] or by minimizing information loss as proposed
by Bisgin et al. [18]. We used information loss as the
measure to determine the optimal number for T in this
study (Figure 1B).

Assessing phenotype probabilities
Above we described a generative model, LDA, which esti-
mates the hidden parameters for the observed phenotypes
as well as the conditional probabilities that represent the
relationship between hidden (T) and observed variables
(PH, D). Namely, it reveals which latent variables account
for the allocation of phenotypes for drugs, similar to
words in text documents. Likewise, it also identifies the
weighted mixture of the latent variables that constitute a
drug’s phenotypic profile. To quantify these relationships,
we present the conditional probability distributions that
were obtained from the output of the LDA model for
further algebraic manipulations:

i. For a given topic t, the probability that a phenotype
ph is associated with topic t is denoted as p(ph|t)

ii. For a given drug d, the probability that d is
associated with topic t is denoted as p(t|d)

If we sum the products of (i) & (ii) over t, we obtain
the probabilities of phenotypes conditioned on drugs:

XT
i¼1

p ph tiÞp ti dÞ ¼ p ph dÞjðjðjð ð2Þ

The resulting expression refers to the existence prob-
ability of a phenotype for a given drug or to the existence
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potential of the paths illustrated in Figure 4A. The prob-
abilistic values stand for a level of confidence that can be
ranked from high to low in order to assess the reliability
of any potential link. We expected to have high probability
values for the phenotypes already observed in the drugs.
However, our goal was to investigate those phenotypes,
specifically indications that were not currently associated
with given drugs, but yield higher probabilities.
While predicting an indication for drug d, we separated

indication-specific probabilities (p(I|d)) from the whole
matrix of p(ph|d). Then, we normalized the probability
vector p(I|d) within itself to obtain updated values and
compared the probability of a desired indication (p(i|d)) to
the random chance defined in the following sections.

Developing decision criteria
In the drug-phenome matrix, we deliberately switched a
particular indication of a given drug to unknown by chan-
ging the value from “1” to “0” as illustrated in Figure 1C.
There were 883 indications which were associated with
only one drug. For those indications, we did not alter
the corresponding cells because it would remove the in-
dication completely from the dataset. For the remaining
11,183 known drug-indication pairs, we removed and tried
to recover each pair in a one-by-one fashion (Figure 1C).
For instance, Zidovudine has 13 indications, and one
of them is HIV. We removed the Zidovudine-HIV link
by switching the corresponding matrix element from 1 to
0. After running the model with the updated matrix, we
ranked all the indications in the data set for Zidovudine
based on the conditional probability, p(indication|
Zidovudine). The goal here was to see the ability of
model to locate HIV with a probability value more than
random chance and within the top 13 ranked indications,
which we referred as the indication space (IS) of the drug
in an earlier section.
In our framework, we define the random chance, q, as

the probability of choosing an existing drug-indication
pair from the pool of all possible pairs. If N is said to be
the number of known pairs, which will also be used to
develop decision criteria, q can be calculated as follows:

q ¼ N
D :j jIj j ð3Þ

where | D | is the number of drugs, and | I | is the
number of indications in the data set. Thus,

q ¼ 11183
996� 2276

¼ 0:005 ð4Þ

Once we completed all the runs for the 11,183 cases,
we counted the number of cases that had a probability
value greater than the random chance (q = 0.005) and
were successfully found within the given drug’s IS.
Specifically, as illustrated in Figure 1D, the cases that
have probabilities less than 0.005 were first discarded since
they were not considered reliable. For the remaining
portion, we only considered the trials that were ranked
within the IS and the success rate was calculated as
below:

success rate ¼ # of cases i ∈ ISd∧where p ijdð Þ > qð Þ
of cases where p i dj Þ > qð

ð5Þ

In summary, this excise resulted in two criteria to
assess the reliability of a model’s prediction. That is, in
this studied matrix, a new indication of a drug is considered
to be valid only if its existence is beyond random chance
and its ranking by probability is within the IS of a drug.

Retrieving and suggesting indications
The above criteria were subsequently used for predicting
new indications of drugs by applying LDA to the drug-
phenome matrix in Figure 1B. Unlike in the previous
section, we did not make any changes in the matrix and
attained probabilities for the non-existing links between
drugs and indications that correspond to the entries with
“0”. Hence, probabilities and rankings for the indications
were utilized to retrieve original indications of some
drugs that were recorded in SIDER without indication
information. Furthermore, the same procedure along
with the decision criteria proposed alternative treatment
options for the drugs whose indications were mentioned
in SIDER. In total, we identified 5,586 potential drug-
indication pairs in the matrix that met our two criteria
out of the 2,254,830 unknown drug-indication pairs (or
996x2276-(11183 + 883) empty cells). In other words,
this practice curtailed the pairs to focus on a list that
can promise repositioning opportunities.
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