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Abstract
Background: Allopolyploidy is a preeminent process in plant evolution that results from the
merger of distinct genomes in a common nucleus via inter-specific hybridization. Allopolyploid
formation is usually related to genome-wide structural and functional changes though the
underlying mechanisms operating during this "genomic shock" still remain poorly known. The aim
of the present study was to investigate the modifications occurring at the proteomic level following
an allopolyploidization event and to determine whether these changes are related to functional
properties of the proteins. In a previous report, we applied comparative proteomics to synthetic
amphiploids of Brassica napus and to its diploid progenitors B. rapa and B. oleracea. Although several
hundred polypeptides displayed additivity (i.e. mid-parent values) in the amphiploids, many of them
showed non-additivity. Here, we report the in silico functional characterization of the "non-additive"
proteins (the ones with a non-additive pattern of regulation) in synthetic B. napus.

Results: The complete set of non-additive proteins (335 in the stem and 205 in the root), as well
as a subset of additive polypeptides (200 per organ), was identified by mass spectrometry. Several
protein isoforms were found, and most of them (~55%) displayed "different" or "opposite" patterns
of regulation in the amphiploids, i.e. isoforms of the same protein showing both up-regulation and
down-regulation in the synthetic B. napus compared to the mid-parent value. Components of
protein complexes were identified of which ~50% also displayed "different" or "opposite" patterns
of regulation in the allotetraploids. In silico functional categorization of the identified proteins was
carried out, and showed that neither functional category nor metabolic pathway were
systematically affected by non-additivity in the synthetic amphiploids. In addition, no subcellular
compartment was found to be over- or under-represented among the proteins displaying non-
additive values in the allopolyploids.

Conclusion: Protein identification showed that functionally related polypeptides (isoforms and
complex subunits) could be differentially regulated in synthetic B. napus in comparison to its diploid
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progenitors while such proteins are usually expected to display co-regulation. The genetic
redundancy within an allopolyploid could explain why functionally related proteins could display
imbalanced levels of expression. No functional category, no metabolic pathway and no subcellular
localization was found to be over- or under-represented within non-additive polypeptides,
suggesting that the differential regulation of gene products was not related to functional properties
of the proteins. Thus, at the protein level, there is no evidence for the "genomic shock" expected
in neo-polyploids and the overall topology of protein networks and metabolic pathways is
conserved in synthetic allotetraploids of B. napus in comparison to its diploid progenitors B. rapa
and B. oleracea.

Background
Polyploidization is a widespread phenomenon in eukary-
otes, especially in plants where most or all angiosperms
are current polyploids or have polyploid origins [1-3]. The
last few years have witnessed new insights into the evolu-
tionary and ecological significance of both auto- and allo-
polyploidy in plants [4-8], and these attributes have been
related to structural and functional genomic changes [9-
12]. In particular, the analyses of synthetic allopolyploids
have revealed extensive modifications in gene expression.
According to the "additivity" hypothesis, newly-synthe-
sized allopolyploids are supposed to display mid-parent
expression patterns. Many exceptions were found in syn-
thetic allopolyploids (e.g. Arabidopsis [11], Senecio [13],
Brassica [14], Triticum [15], and Gossypium neo-polyploids
[16]), suggesting that the differential regulation of gene
expression is a common feature of plant allopolyploids.
Although the phenomenon of non-additive expression in
inter-specific hybrids and allopolyploids is now well
described, the underlying mechanisms are still poorly
understood. Several approaches may be developed to
decipher the mechanisms of gene regulation in poly-
ploids. The investigation of candidate causal processes,
such as epigenetic mechanisms or RNA inactivation
[17,18], may give valuable information. Another main
research strategy is based on the characterization of the
whole set of genes displaying non-additive expression to
understand if gene regulation is related to functional or
structural properties of the corresponding proteins. This
question was addressed to some extent in synthetic
allotetraploids of Arabidopsis suecica, at the transcript level
using microarrays to identify the genes displaying expres-
sion divergence from the mid-parent value [11]. However,
since mRNA abundances and protein amounts are poorly
related [19], it is difficult to infer over- or under-represen-
tation of some protein functions and/or metabolic path-
ways from transcriptomic data alone. Thus, proteomic
approaches constitute an alternative to determine if some
functional categories or metabolic networks are over- or
under-represented, or if the subcellular localization of the
proteins is modified in an allopolyploid context.

In a previous work, we applied comparative proteomics to
newly synthesized oilseed rape: Brassica napus allotetra-
ploids were synthesized de novo from inter-specific hybrid-
ization between B. oleracea and B. rapa, followed by
colchicine-induced chromosome doubling [14]. The
additivity hypothesis (predicting a mid-parent proteome
for the amphiploids) was tested in two distinct organs, the
stem and root (see [14] for details). Most spots (519 in
stem and 583 in root) displayed a mid-parent value in
synthetic B. napus ("additive" polypeptides), while
numerous others (335 in stem, 205 in root) displayed
non-additive amounts [14]. Only a subset (~150) of these
non-additive polypeptides were identified by mass spec-
trometry and submitted to in silico analyses [14]. In the
present study, it is the whole set of non-additive proteins
in synthetic B. napus (335 in the stem and 205 in the root,
that is to say almost four hundreds supplementary "non-
additive" polypeptides) that has been identified by mass
spectrometry, as well as an additional two hundred "addi-
tive" proteins per organ that constitute the "control"
group. Only such numerous data could allow an accurate
and relevant analysis of the functional properties of the
proteins in the synthetic allopolyploids. Thus, we report
the thorough in silico analysis of protein functions, iso-
forms, complex subunits and subcellular localizations of
the additive and non-additive proteins in synthetic
amphiploids of B. napus.

Results
Comparative proteomics was applied to the stem and the
root of synthetic B. napus and its diploid progenitors B.
rapa and B. oleracea. The whole set of spots displaying
non-additivity (i.e. spots whose abundance differed from
the mid-parent value in the amphiploids) were excised
(335 in stem, 205 in root, Table 1), as well as a subset of
"additive" polypeptides randomly cut out (200 in stem,
200 in root). MALDI-TOF or nanoHPLC-MS/MS mass
spectrometry allowed the identification of ~70% of the
excised spots in both organs (see also complete protein
identification results in Additional file 1).
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Protein isoforms can be differentially regulated
Protein identification from two-dimensional electro-
phoresis gels usually allows the detection of several iso-
forms [20,21]. Protein isoforms may be i- the results of
post-translational modifications (PTMs) of the same gene
product, ii- gene products of paralogous genes, iii- gene
products of homeologous genes (i.e. orthologous genes
from the two distinct parental species merged in a com-
mon nucleus via hybridization) and iv- a combination of
these different origins. Since the expression of isoforms
may be controlled by partially shared or conserved regula-
tory pathways, it can be hypothesized that they should
display an identical regulation within the same organ (for
example, a proportional increase in their quantity). This
hypothesis was tested in synthetic Brassica napus: the iden-
tification of spots (displaying additivity and non-additiv-
ity) allowed the detection of groups of isoforms in both
organs: 104 groups of isoforms in the stem and 82 in the
root (Table 2). Among these groups, 42 to 48% comprised
spots that all displayed an identical regulation within one
organ (all isoforms up-regulated, or all isoforms down-
regulated in the synthetic amphiploids compared to the
mid parent value), in accordance with the above hypoth-
esis. Interestingly, 15 to 24% of the groups included iso-
forms with "opposite" regulation patterns, resulting in
partial or complete compensation: for example, in the
stem, spots #1352 and #1353 were respectively B. olera-
cea- and B. rapa-specific and were both identified as puta-
tive fructokinases (Figure 1). These proteins were likely
encoded by homeologous genes, and both displayed non-
additive patterns in synthetic Brassica napus: spot #1352
was up-regulated compared to the mid parent value, and
such an increase was partially balanced by the down-reg-
ulation of spot #1353. The differential regulation of
homeologous gene products in allopolyploids appeared
as a relatively frequent mechanism, since 7 out of 14 of
the putative pairs of homeologous proteins displayed
contrasting patterns of regulation.

One of the great advantages of comparative proteomics is
the possibility to observe post-translational modifications
(PTMs) of the same gene product. Although it is not obvi-
ous to demonstrate formally whether multiple isoforms

correspond to PTMs or to products of homologous/home-
ologous genes, proteins with post-translational modifica-
tions such as phosphorylation usually appear on the 2-DE
gels as horizontal rows of spots, resulting in characteristic
"trains of spots". Figure 2 shows a train of four spots
(#370, #374, #382 and #383) for which analysis by mass
spectrometry led to the identification of one single acces-
sion, namely an Hsp70-like protein. Moreover, previous
studies have described post-translational modifications of
HSP 70-related proteins [22,23] so that the four detected
spots most likely corresponded to different PTMs of HSP
70. Quantitative proteomic analysis revealed that spot
#374 was additive in the synthetic B. napus, while isoform
#370 was less abundant in amphiploids than expected
under the additivity hypothesis whereas spots #382 and
#383 were more abundant. Other examples of trains of
spots with contrasting patterns of regulation were
detected (26/44 for both organs), suggesting that the dif-
ferential regulation of PTMs was not a rare event in the
synthetic amphiploids of B. napus.

In order to know whether the distribution of the isoforms
was similar between polypeptides displaying additivity
and non-additivity, we counted the number of isoforms
(Table 3). In both organs, significantly more isoforms
were found among non-additive spots than among spots
displaying additivity (χ2 tests, P-values = 3.76e-6 and 1.42e-

10 in the stem and the root respectively, both inferior to
the p-value = 0.05 limit). Such a difference might reflect
the experimental bias due to the differential sampling of
additive and non-additive spots. Since we analyzed by
mass spectrometry all the spots with non-additive values,
we detected all the groups within which at least two iso-
forms displayed non-additive patterns. On the other
hand, we identified only a random subset of the additive
spots (two hundred spots per organ while we found 519
and 583 additive spots in the stem and root respectively),
so we may have underestimated the number of groups of
isoforms within the additive group.

Complex subunits can be differentially regulated
Most metabolic pathways are driven by protein com-
plexes. Thus, the stoichiometry of the different subunits

Table 1: Protein identification in synthetic Brassica napus.

Stem Root

Spots displaying additivity Spots displaying non-additivity Spots displaying additivity Spots displaying non-additivity

Number of picked spots 200 335 200 205
Number of identified spots 143 71.5% 234 69.9% 140 70.0% 126 61.5%

Spots were excised from two-dimensional electrophoresis gels and were identified by mass spectrometry (MALDI-TOF or nanoHPLC-MS/MS).
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might be a critical issue for cell processing, and the com-
ponents of a protein complex are expected to display par-
allel variations of their respective amounts. These
supposed co-regulation and coordinate expressions are
known as "the balance hypothesis", and it has been sug-
gested that both under-expression and over-expression
(imbalance) of subunits shall be deleterious [24,25].
Hence, the "balance hypothesis" was tested in the syn-
thetic amphiploids of Brassica napus: protein complexes
with at least two identified distinct subunits were studied.
Eleven and nine complexes were found in the stem and
root respectively, and the pattern of regulation of their
components was investigated (Table 4). For example,
analysis of the stem proteome led to the identification of
the alpha, beta, delta and gamma subunits of the chloro-
plastic ATP synthase, and all of these four subunits dis-
played non-additive up-regulation in B. napus synthetic
amphiploids compared to the mid parent value. On the
contrary, two subunits of the ribosomal complex, the 40S
ribosomal protein SA (RPSaA) and the 60S acidic ribos-
omal protein P0 (RPP0A) [26], were found to be differen-
tially expressed in the root, but with opposite patterns of
regulation: two isoforms of RPSaA subunit were down-
regulated while RPP0A was up-regulated in the amphip-
loids (Figure 3). Finally, only 5/11 complexes in stem and
2/9 in root encompassed subunits with identical patterns
of regulation, demonstrating that the different subcompo-
nents of a complex can be differentially regulated in neo-
synthetized B. napus. These results suggest that the balance
hypothesis might not be a general rule for the regulation
of different complex subunits in synthetic allopolyploids.

No functional categories are under- or over-represented 
among proteins displaying non-additivity in synthetic B. 
napus
One of the major goals of protein identification of both
additive and non-additive spots was to find whether some
functions or metabolic pathways were preferentially
affected by allopolyploidization. Thus, the functional cat-

egorization of the identified polypeptides was carried out
using the MIPS FunCat database available on line [27].
Since the proportion of isoforms was significantly imbal-
anced between additive and non-additive spots, we did
not consider the isoforms individually but we counted
each group of isoforms as a single protein. Figure 4 shows
the distribution of additive and non-additive spots into
functional categories. In both organs, the identified pro-
teins were mainly involved in metabolism (26% to 37%)
and energy (14% to 21%), which was congruent with pre-
vious proteomic data [21,28]. Protein fate, transport,
defense and biogenesis of cellular components were other
well represented functional categories (5% to 10%), while
an important proportion of the identified polypeptides
were not assigned to any known function (30% to 42%).
No functional category was found over- or under-repre-
sented for spots displaying non-additivity compared to
"additive" spots (χ2 tests, p-values > 0.05), suggesting that
differential regulation of gene products in synthetic
Brassica napus was not related to the function of the pro-
teins.

In addition, we used the KEGG PATHWAY database [29]
to identify the proteins involved in the same metabolic
pathways (Table 5). No pathway was particularly altered
by differential gene expression, since no proteins involved
in the same pathway were found all up-regulated, or
down-regulated in the synthetic amphiploids compared
to the mid parent value. Moreover, the proteins involved
in the same pathway could display different patterns of
regulation: for example, most of the glycolytic enzymes
were identified in stem proteome (Figure 5). Some of
these proteins were up-regulated in the amphiploids (like
the phosphoglucoisomerase), others were down-regu-
lated (enolase) or displayed an additive pattern (phos-
phoglyceromutase). Taken together, these results
indicated that neither functional category nor metabolic
pathway were particularly targeted by differential regula-
tion of gene expression in the amphiploids.

Table 2: Regulation of protein isoforms in synthetic Brassica napus.

Stem Root

Group of isoforms showing identical patterns of regulation 44 42.3% 39 47.6%
Group of isoforms showing opposite patterns of regulation 25 24.0% 12 14.6%
Group of isoforms showing different patterns of regulation 35 33.7% 31 37.8%

Total 104 82

For each organ, protein identification data were used to assess isoforms. Groups of isoforms that comprised spots sharing the same pattern of 
regulation (i.e. all spots up-regulated compared to the mid parent value, all spots down-regulated or all spots displaying additivity) were designated 
as "Group of isoforms showing identical pattern of regulation". Groups of isoforms that encompassed up-regulated and down-regulated spots were 
designated as "Group of isoforms showing opposite patterns of regulation". Groups of isoforms that included additive and non-additive spots 
(amongst which non-additive spots shared identical patterns of regulation, i.e. up-regulation or down-regulation) were designated as "Group of 
isoforms showing different patterns of regulation".
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Opposite patterns of regulation between probable homeoallelic gene productsFigure 1
Opposite patterns of regulation between probable homeoallelic gene products. 2-DE gels of B. oleracea HDEM, B. 
rapa Z1, and synthetic B. napus stem proteomes. A coelectrophoresis of HDEM:Z1 stem extracts was added (mid-parent pat-
tern). Spots #1352 and #1353 were HDEM- and Z1-specific respectively, and were both identified as putative fructokinases 
(At1g06020). These probable homeoallelic gene products displayed ''opposite'' patterns of regulation in synthetic Brassica napus 
in comparison to the mid-parent pattern: spot #1352 was up-regulated while spot #1353 was down-regulated.
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Opposite patterns of regulation between probable post-translationally modified isoformsFigure 2
Opposite patterns of regulation between probable post-translationally modified isoforms. Two-dimensional and 
three-dimensional view of 2-DE stem gels. Spots #382, #383, #374 and #370 were identified by mass spectrometry as isoforms 
of heat shock protein 70-7 (At5g49910) and were probable post-translational modifications of the same gene product. Spot 
#374 displayed additivity in synthetic B. napus, while spot #370 was down-regulated and spots #382 and #383 were up-regu-
lated compared to the mid parent value.
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Proteins displaying non-additivity in synthetic B. napus are 
not from a peculiar cellular localization
The subcellular localization of the proteins was assessed
using the Gene Ontology GO annotations [30]. As for the
functional categorization of the proteins, each group of
isoforms was taken into account only once in order to cor-
rect for the bias between additive and non-additive spots.
Figure 6 shows the distribution of the identified proteins
within cellular compartments: in both organs, most of the
polypeptides were located in the organelles (chloroplast
and mitochondria), in accordance with the main func-
tional categories previously found, namely Energy and
Metabolism. The fact that ~10% of the root proteins were
located in the "chloroplast" actually indicate that these
proteins were located in the plastids, and particularly in
the amyloplasts, which are very abundant in root tissues
[31]. Other cellular localizations, such as cytosol, mem-
brane and nucleus, were well represented in both organs,
indicating that comparative proteomics allows the analy-
sis of all the compartments of the cell. The comparison
between non-additive and additive spots showed no spe-
cific subcellular localization (χ2 tests, p-values > 0.05),
which suggests that the regulation of gene products in the
amphiploids was not related to subcellular localization.

Discussion
The differential regulation of isoforms and complex 
subunits modifies the equilibrium between functionally 
related proteins in synthetic Brassica napus
Protein identification in synthetic amphiploids of B.
napus allowed the discovery of several isoforms that could

display different patterns of regulation. In particular,
probable homeoallelic products were found with "oppo-
site" regulation (up- and down-regulation in the synthetic
allotetraploids compared to the mid parent value), sug-
gesting that differential expression of homeologous genes
could occur. Unequal contributions of homeoalleles to
the transcriptome have already been evidenced in syn-
thetic allotetraploids of Gossypium [12,32]. Here, we have
shown that such a phenomenon was detectable at the pro-
teomic level and was not a rare event. Moreover, our pro-
teomic data suggest that the post-translational
modifications of the same gene product could also be dif-
ferentially regulated in the amphiploids. Differential reg-
ulation of PTMs has been described in a few proteomic
analyses [33], but no data was available in the context of
allopolyploidy. PTMs play a key role in the cell as the
same gene product may have different activities, modified
turn-overs, distinct subcellular locations, or altered inter-
actions with proteins or nucleic acids depending on its
PTMs. Thus, variation of amounts among protein iso-
forms (PTMs, but also homeoalleles or paralogous genes)
may establish a novel metabolic equilibrium in synthetic
Brassica napus in contrast to its diploid progenitors.

Complex subunits are usually supposed to present co-
ordinate expressions [24,25]. Such a statement was sup-
ported by some experimental data showing that genes
encoding subcomponents of a complex displayed the
same pattern of regulation of their expressions [34,35]. In
contradiction with this assumption, we have shown that
the different subunits of a protein complex could be dif-

Table 3: Protein isoforms amongst spots displaying additivity and non-additivity in Brassica napus.

Stem Root

Spots displaying additivity Spots displaying non-additivity Spots displaying additivity Spots displaying non-additivity

Number of identified spots 143 234 140 126
Number of protein isoforms 37 25.9% 117 50.0% 46 32.9% 91 72.2%

Significantly more isoforms were found amongst spots displaying non-additivity than amongst spots displaying additivity (χ2 tests, P-values < 0.05, P-
value = 3.76e-6 in the stem and P-value = 1.42e-10 in the root).

Table 4: Regulation of complex subunits in synthetic Brassica napus.

Complexes with at least two identified subunits Stem root

Complexes with subunits showing identical regulation patterns 5 2
Complexes with subunits showing opposite regulation patterns 1 3
Complexes with subunits showing differing regulation patterns 5 4

Total 11 9

For each organ, complexes with at least two distinct subunits identified were detected. Those complexes were differentiated on the basis of the 
regulation patterns of the subunits that could either display an identical pattern of regulation (all subunits up-regulated compared to the mid parent 
value, or all subunits down-regulated), or show opposite regulation patterns (for example, one subunit up-regulated, the other one down-
regulated). Complexes comprising subunits with non-additive patterns and subunits with additive patterns were designated as "Complexes with 
subunits showing differing regulation patterns".
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Opposite patterns of regulation between RPSaA and RPP0A, small and large ribosome subunitsFigure 3
Opposite patterns of regulation between RPSaA and RPP0A, small and large ribosome subunits. Spots #1122 
and #1146 were identified by mass spectrometry as isoforms of 40S ribosomal protein SA RPSaA (At1g72370). Both spots 
were down-regulated in synthetic B. napus compared to the mid parent value. Spot #1303 was identified as a 60S acidic ribos-
omal protein P0 RPP0A (At2g40010) and was up-regulated in the amphiploids. RPSaA and RPP0A were respectively small and 
large ribosome subunits [26].
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Functional categorization of the proteins identified in synthetic Brassica napusFigure 4
Functional categorization of the proteins identified in synthetic Brassica napus. Each group of isoforms was counted 
once: in the stem, among the 143 proteins displaying additivity in the amphiploids, 126 were non-redundant and were taken 
into account. For non-additive spots, 155/234 non-additive spots were non-redundant and analyzed. In the root, 115/140 addi-
tive and 89/126 non-additive spots were non-redundant and were taken into account. Functional categorization was made 
using the MIPS FunCat database [27]. The "transport" category covers cellular transport, transport facilitation and transport 
routes.
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ferentially regulated in newly synthesized B. napus. This
result may reflect the instability of protein regulation in
the very first step of allopolyploidization, and it will be of
particular interest to investigate the evolution of such
imbalance in the further generations of allotetraploids.
Moreover, although the synthetic B. napus plants we ana-
lyzed were viable and morphologically "normal", neither
phenotypic analyses nor relative fitness studies were
undertaken. Thus, the imbalanced levels of isoforms and
subunit complexes may have an impact on the fitness
and/or the phenotype of the neo-allopolyploids that
remains to be quantified. One can also suppose that, due
to genetic and proteomic redundancies, expression con-
straints are relaxed within an amphiploid, allowing previ-
ously constrained genes to be differentially regulated and
to evolve in a different way.

Differential regulation of gene products is not related to 
functional properties of the proteins
During the last few years, several synthetic allopolyploids
have been investigated at the transcriptional level using
various approaches (cDNA-SSCP in synthetic Gossypium
allotetraploids [12], AFLP- cDNA in synthetic wheat allo-
polyploids [15], microarray in synthetic Senecio allopoly-
ploids [13] and synthetic Gossypium allotetraploids [32],
etc.). Non-additive transcription in hybrids and allopoly-
ploids is now well documented, yet the genes concerned
by non-additive expression are not well characterized.
Recently, a transcriptional analysis of Arabidopsis allotetra-
ploids showed that genes involved in "hormonal regula-
tion" and in "cell defense and aging" were more
susceptible to expression changes [11]. In addition, the
ethylene biosynthesis pathway was found globally
repressed in two distinct lineages of synthetic A. suecica

[11]. In this report, we have described a thorough in silico
functional analysis of proteins in synthetic B. napus, and
we have shown that neither specific functional category
nor metabolic pathway were over- or under-represented
among non-additive proteins. This discrepancy between
Arabidopsis transcriptional results and oilseed rape pro-
teomic data may be explained by the fact that mRNA
abundance and protein amounts are poorly related [19])
or by the reference used (we compared the functional cat-
egorizations of non-additive proteins to additive ones,
while Wang et al. compared the distribution among func-
tional categories of non-additive genes to the whole set of
26,000 annotated genes in Arabidopsis [11]). Moreover,
differential regulation of gene expression may vary from
one biological model to an other (Arabidopsis vs. Brassica).

Finally, this is the first in silico analysis of proteins in syn-
thetic allotetraploids. Although in silico prediction is not a
perfect process and may give erroneous information for
some genes considered individually [36], bioinformatic
tools are particularly relevant for genome-wide analysis
and global consideration of the data. We have shown that
non-additive and additive polypeptides could not be dif-
ferentiated on the basis of their function nor subcellular
localization, indicating that the regulation of gene prod-
ucts following allopolyploidization is not related to any
functional feature of the proteins.

Allopolyploidy: a genomic shock but not a proteomic 
shock?
Polyploidy is often described as a genomic shock [37,38],
that may induce stress and defense responses. Our study
showed that, in synthetic B. napus, the "cell rescue,
defense and virulence" category was unchanged in the

Table 5: The main metabolic pathways identified in stem and root proteomes.

Stem Spots displaying additivity Spots displaying non-additivity

Glycolysis/Gluconeogenesis 6 4.8% 11 7.1%
Citrate cycle (TCA cycle) 7 5.6% 6 3.9%
Pyruvate metabolism 5 4.0% 8 5.2%
Photosynthesis 5 4.0% 9 5.8%
Carbon fixation 5 4.0% 15 9.7%
Proteasome 4 3.2% 8 5.2%
Number of non-redundant proteins 126 155

Root Spots displaying additivity Spots displaying non-additivity

Glycolysis/Gluconeogenesis 9 7.8% 3 3.4%
Citrate cycle (TCA cycle) 9 7.8% 6 6.7%
Pyruvate metabolism 8 7.0% 4 4.5%
Carbon fixation 7 6.1% 5 5.6%
Number of non-redundant proteins 115 89

For both organs, the main molecular networks were identified using the KEGG PATHWAY database [29]. No bias was found between spots fitting 
additivity and spots displaying non-additivity in synthetic B. napus (χ2 tests. P-value > 0.05).
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Patterns of regulation of glycolytic enzymes in synthetic Brassica napusFigure 5
Patterns of regulation of glycolytic enzymes in synthetic Brassica napus. Enzymes up-regulated in synthetic B. napus 
compared to the mid parent value are colored in red, enzymes down-regulated are marked by blue scripts, and enzymes dis-
playing an additive pattern are green in color. The hexokinase and the phosphofructokinase were not identified. The fructose-
biphosphate aldolase was globally down-regulated, since four isoforms were found: one being up-regulated, the three others 
being down-regulated. For the triosephosphate isomerase, two isoforms were found, both of them being down-regulated. For 
the other enzymes, only one isoform was identified.
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Cellular localization of the proteins identified in synthetic Brassica napusFigure 6
Cellular localization of the proteins identified in synthetic Brassica napus. Each group of isoforms was counted once: 
in the stem, 126/143 additive and 155/234 non-additive spots were non-redundant and were taken into account. In the root, 
115/140 additive and 89/126 non-additive spots were non-redundant and were taken into account. The cellular localization of 
the proteins was assessed using the Gene Ontology GO annotations [30].
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stem and root. In addition, Wang et al. showed that the
"defense" class was under-represented when analyzing
differential gene transcription in leaves and flower buds of
synthetic Arabidopsis allotetraploids [11]. These results
suggest that neither stress nor defense responses were par-
ticularly enhanced following a recent polyploidy event for
these two Brassicaceae species. Moreover, although stem
and root proteomes were extensively modified in syn-
thetic B. napus, the patterns were reproducible in inde-
pendent amphiploid lineages [14] and our data indicated
that, globally, the distribution of the proteins into meta-
bolic pathways, functional categories and subcellular
localizations was not disturbed. Thus, at the protein level,
there is no evidence for a chaos or a large disorder follow-
ing the merging of two genomes. Instead, a novel order
establishes quickly and may evolve in further generations
of synthetic B. napus. Hence, allopolyploidy can be seen as
a mechanism making new from old: new expression pat-
terns from old genomes, and perhaps this feature explains
in part why polyploidy is such an undeniable evolution-
ary success.

Differential gene expression: what are the underlying 
mechanisms?
The thorough in silico analysis of the non-additive pro-
teins in synthetic B. napus indicated that the differential
regulation of gene products was not related to functional
properties of the proteins. The molecular mechanisms
however remain to be investigated, such as the possible
implication of transposable elements: more and more
data suggest that transposable elements have played a key
role in polyploid evolution such as Gossypium or Arabidop-
sis [9,39], and that their transcriptional activation could
alter the expression of adjacent genes (like in wheat allo-
polyploids [40]). Epigenetic mechanisms (changes in
chromatin structure, histone modification, DNA methyla-
tion, etc.) are described in synthetic allopolyploids
[41,42] and may be responsible for the modification of
gene expression in polyploids [43,44]. Furthermore, RNA
interference, action of siRNAs and miRNAs and their
implication in gene regulation, are thus good candidates
to explain nonadditive gene expression [45]. Finally, allo-
polyploidy not only induces the merger of homeologous
genomes in a common nucleus, but also the juxtaposition
of divergent regulatory networks. The interaction and the
coordination of such homeologous networks in a newly
synthesized allopolyploid may also explain the genome-
wide modification of gene expression, as well as the main-
tenance at a viable level, in successful individual plants, of
the equilibrium between the different functions, meta-
bolic pathways and cellular localizations.

Conclusion
The complete set of proteins displaying non-additivity
and a random sample of additive polypeptides were iden-

tified by mass spectrometry in synthetic Brassica napus.
Functionally related proteins, such as isoforms and com-
plex subunits, were detected and some of them displayed
different or opposite patterns of regulation. No functional
category, no metabolic pathway and no subcellular local-
ization was found over- or under-represented for non-
additive polypeptides. These results suggested that the dif-
ferential regulation of gene products was not related to
functional properties of the proteins and that the mecha-
nisms responsible for the regulation of gene expression in
synthetic amphiploids (transposon activation ?, epige-
netic processes?) were not initiated according to any pro-
tein characteristic. To better understand the success of
polyploidy, additional work based on transcriptional
analysis and study of the post-translational modifications
of the non-additive proteins will be necessary. Only such
an integrative study would help in understanding the
molecular and biochemical mechanisms responsible for
the regulation of gene expression which occurs in a poly-
ploid organism.

Methods
Mass spectrometry identification of additive and non-
additive proteins
In a previous report, we applied comparative proteomics
to synthetic Brassica napus (four independent lineages)
and its diploid progenitors B. rapa and B. oleracea (two to
five plants analyzed per genotype) [14]. Our proteomic
analysis showed that several spots (519 in stem and 583
in root) displayed a mid-parent value in synthetic Brassica
napus compared to its diploid progenitors while many
others (335 in stem, 205 in root) displayed non-additive
amounts [14]. About 150 of these non-additive polypep-
tides were identified by mass spectrometry and submitted
to in silico analyses [14]. However, the subset of non-addi-
tive polypeptides analyzed was too small to obtain accu-
rate and relevant data on the functional categorization
and subcellular localization of the non-additive proteins
[14]. Here, the remaining non-additive spots (~260 in
stem and ~130 in root) were excised from 2-DE gels and
submitted to mass spectrometry, so that the whole set of
non-additive proteins in synthetic B. napus was identified.

In our previous study, no accurate "control group" was
available (no additive spot was identified), so that we
used reference proteomic maps of other organisms (Pisum
sativum, Medicago truncatula) [14]. Here, two hundred
spots displaying additivity were also cut out for both
organs (random excision among the 519 and 583 spots
found additive in stem and root [14]). These additive
polypeptides were used as controls for subsequent in silico
analyses. Mass spectrometry analyses were conducted as
described in [14].
Page 13 of 15
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Assessing protein isoforms
Distinct spots were considered as isoforms when they met
the following criteria: 1 – the corresponding identified
protein sequences presented more than 70% identity all
along the sequences; 2 – the corresponding proteins had
the same function (see below) 3 – the polypeptides were
assessed in silico to the same cellular compartment (see
cellular localization below) and 4 – the spots displayed
similar molecular weight on 2-DE gels (to discard degra-
dation or catabolic products).

In silico analyses
Functional categorization and cellular localization of the
proteins were conducted using the MIPS FunCat database
(Version 2.0) available on line [27] and the TAIR's Gene
Ontology (GO) annotations (release of February 2006)
[46,47] as described in [14]. For both organs, the main
molecular networks were identified using the KEGG
PATHWAY database (release of February 2006) [29]. χ2

tests were carried out to test statistical differences between
proteins fitting additivity or displaying non-additivity.

Abbreviations
2-DE: two-dimensional electrophoresis ; PTM: post-trans-
lational modification
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Protein identification in synthetic Brassica napus. Patterns: "addi-
tive": spot displaying a mid-parent value in the amphiploid compared to 
its diploid progenitors ; "positive/negative over-dominance": spot display-
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