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1  |   INTRODUCTION

Some seizures can be fairly reliably forecasted1 and even 
prevented.2 This usually requires the placement of in-
tracranial electrodes and a responsive neurostimulation 
system. While non-invasive forecasting of seizures may 
be feasible in some patients with a combination of neu-
rophysiological and clinical data,1,3,4 a systemic, chemical 
marker of seizure propensity is not available. We suggest 
that a complementary and potentially less invasive ap-
proach modeled on the closed-loop systems for release 
of insulin in response to continuously monitored blood 

glucose levels might achieve the goals of forecasting and 
intervention.5

In light of evidence that some seizures are associated 
with inflammation identified peripherally,6–15 we suggest 
that a closed-loop system that identifies rising concentra-
tions of an inflammation indicator in a body fluid and de-
livers an anti-inflammatory agent (either highly specific 
or broad-spectrum) or more anti-seizure medication16–18 
might be more acceptable than closed-loop electroenceph-
alographic systems requiring a neurosurgical procedure, 
and may complement other means of non-invasive seizure 
forecasting, such as clinical information, seizure diaries, 
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Abstract
People with diabetes can wear a device that measures blood glucose and delivers 
just the amount of insulin needed to return the glucose level to within bounds. 
Currently, people with epilepsy do not have access to an equivalent wearable 
device that measures a systemic indicator of an impending seizure and delivers 
a rapidly acting medication or other intervention (e.g., an electrical stimulus) to 
terminate or prevent a seizure. Given that seizure susceptibility is reliably in-
creased in systemic inflammatory states, we propose a novel closed-loop device 
where release of a fast-acting therapy is governed by sensors that quantify the 
magnitude of systemic inflammation. Here, we review the evidence that patients 
with epilepsy have raised levels of systemic indicators of inflammation than con-
trols, and that some anti-inflammatory drugs have reduced seizure occurrence 
in animals and humans. We then consider the options of what might be incorpo-
rated into a responsive anti-seizure system.
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and non-invasive neurophysiological data. We provide 
more detail about this option.

2  |   PREDICTION

We envision two time scales of probability assessment. 
The shorter time frame is likely seconds or minutes, and 
the presumed best early indicator of state shift is the 
EEG.

The longer time frame is likely hours or days, and the 
frame of reference is “forecasting.”19–21 This orientation 
takes advantage of the increasing availability of online 
seizure diaries allowing “cycles” (circadian, multi-day) to 
be identified,3,22–25 and machine-learning to be applied to 
identifying correlates of increased seizure propensity,4,26,27 
similar to what has been done for predicting the likelihood 
of sustained hypoglycemia.28 Identification of the trajec-
tory that best describes a child's pre-ictal course would 
allow an intervention minutes to hours before seizure risk 
rises rapidly.

3  |   PROOF OF CONCEPT

Proof of concept that seizures can be forecasted for up to 
3 days comes from a study of EEG and clinical data of 157 
adults with drug-resistant focal epilepsy followed at 35 US 
medical centers.19 Proof of principle/concept that seizures 
can be aborted within a very short time through a closed-
loop system after receipt of a signal of heightened seizure 
propensity comes from documentation of the success of 
neurostimulation.2,29,30

4  |   INFLAMMATION

A plethora of recent reviews has linked inflammation and 
epilepsy.6–15,31,32 Although elevated body temperature is 
probably the best-known indicator of inflammation that 
provides predictive information about increased risk of a 
seizure, we do not know of any study that has assessed 
how well serum/plasma levels of inflammation-related 
proteins convey information about impending seizures.

Inflammation-associated hereditary characteristics33–36 
can contribute to epileptogenesis. Later inflammation-
related exposures probably account for some of the sei-
zures associated with auto-immune encephalitides,37 
febrile infection-related epilepsy syndrome (FIRES), and 
new-onset refractory status epilepticus (NORSE),15 as 
well as the late seizures that follow head trauma.38,39 In 
addition, some/many children and adults with seizures 
of presumed idiopathic origin are more likely than others 

to have genetic propensities to inflammation and other 
immune-related processes.40,41

4.1  |  Both “chicken and egg”?

Some of the inflammation associated with seizures might 
be compensatory, reflecting the recruitment of the “clean-
up squad” (e.g., microglia, astrocytes) to remove debris 
and initiate repair.42 On the other hand, some reactive 
glia can contribute to epileptogenesis.10 Although ster-
ile inflammation of the brain need not require white cell 
infiltration,43–46 activated peripheral mononuclear im-
mune cells can contribute to seizure generation.47

In addition, pre-clinical studies document that the 
inflammation can come before, during, and after the 
seizure.48 Studies in humans are needed to determine to 
what extent inflammation precedes seizures, and what 
biomarkers of inflammation are an appropriate signal for 
intervention. While inflammation may not be the sole pre-
dictor of seizures in all patients, evaluation of the contri-
bution of inflammation, including the gain of additional 
predictive information for seizures, is crucial.

4.2  |  NLRP3 inflammasome

Inflammasomes are multiprotein complexes that promote 
the availability of pro-inflammatory cytokines, such as 
interleukin-1β and interleukin-18.49,50 Among various 
inflammasome complexes, the NOD-like receptor family 
pyrin domain-containing 3 (NLRP3) inflammasome can 
contribute to secondary brain damage51 and is activated in 
rodent models of epilepsy,52–57 and in humans with a sei-
zure disorder.36,57–61 A recently-published review provides 
additional details,62 and another suggests inflammasomes 
might be good targets for therapeutic intervention.63

4.3  |  Non-inflammatory stimuli 
that induce inflammation-related 
epileptogenesis

Support for the hypothesis that inflammation contributes 
to ictogenesis comes from rodent models of pilocarpine-
induced, kainic acid-induced, and pentylenetetrazole-
induced seizure propensities that include a robust 
inflammatory response.64–70 Anti-inflammatory approaches 
involving inhibition of prostaglandin EP2 receptors,65,66 
inhibition of mTOR signaling,64 and inhibition of neu-
rotensin receptor 2 reduce the inflammation-associated 
phenomena (including seizure occurrence) attributed to 
pilocarpine, and thus offer support for the hope that these 
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anti-inflammatory approaches might reduce seizure occur-
rence in humans.

5  |   MEASUREMENT OF 
INFLAMMATION—WHAT TO 
MEASURE?

The first decision point is whether the biomarker should 
be a general indicator of inflammation or one more spe-
cific to an individual patient.

If a general indicator will do, perhaps the least inva-
sive way to identify a systemic inflammatory process con-
tributing to seizure onset is to measure body temperature 
continuously with a wearable device. We are not aware of 
any assessments of the value measuring body tempera-
ture continuously. Most likely this reflects the previous 
unavailability of non-invasive wearable devices capable of 
measuring a surrogate for body temperature. Wristbands 
are now available that can continuously measure and 
record skin temperature.1,4 Their usefulness for identify-
ing heightened risk of a seizure, however, remains to be 
determined.

Tables  1 and 2, which list inflammation-related bio-
markers that have been measured in human peripheral 
blood near the time of a seizure, include broad-spectrum 
indicators of inflammation along with specific cytokines, 
chemokines, adhesion molecules, growth factors, and 
other biomarkers of inflammation.

5.1  |  High-sensitivity C-reactive protein

Serum levels of high-sensitivity C-reactive protein, (hs-
CRP), apparently the most frequently studied inflammation 

biomarker in people with epilepsy,71 not only convey in-
formation about acute inflammation but can also provide 
information about chronic processes.103–108

The five identical monomers (mCRP) of the circu-
lating pentameric (pCRP) are capable of activating the 
complement cascade, and thereby able to amplify in-
flammation.109 This recognition has led to the explora-
tion of ways to minimize the inflammatory capabilities of 
mCRP.110

A meta-analysis of 16 case-control studies (comprised 
1918 individuals) found that the CRP blood levels “were 
significantly increased in epileptic patients compared to 
healthy controls, indicating a significant association be-
tween inflammation and epilepsy.”71 Subsequent individ-
ual studies have confirmed this.72–75,111

5.2  |  Procalcitonin

Procalcitonin (PCT), another frequently studied in-
flammation biomarker of seizures,112,113 is now con-
sidered superior to CRP for evidence of infection and 
inflammation.114–116 Nevertheless, its specificity is also 
less than desired.114,117 Decreases in elevated PCT levels 
were once thought to mirror improvement so well that 
they could be a source of information for decisions about 
whether or not to discontinue antibiotic treatment.118 
This approach, however, is now viewed with some 
skepticism.119

5.3  |  Other biomarkers of inflammation

Among the more interesting candidates are microRNA 
(miRNA)120–123 and circular RNA (circRNA),124,125 which 

T A B L E  1   Products of inflammation documented repeatedly in the peripheral blood of patients with recurrent seizures in reports 
published since a 2016 review7

CRP Various seizure disorders Case-control Children, adults [71–76]

IL-6 Various seizure disorders Case-control Children, adults [58, 72, 77–81]

HMGB-1 Various seizure disorders Case-control Children [82–85]

IL-1β Various seizure disorders Case-control Children, adults [58, 77, 82, 85]

TNF-α Various seizure disorders Case-control Children, adults [82, 86, 87]

interferon-γ Various seizure disorders Case-control Children, adults [80, 87, 88]

miRNAs Temporal lobe epilepsy Case-control Children, adults [84, 89, 90]

IL-17A Various seizure disorders Case-control Adults [80, 87]

MMP-9 TLE + Generalized Seizures Case-control Children, adults [72, 73]

prolactin TLE and febrile seizures Case-control Children, adults [73, 91]

Caspase 3 Generalized Seizures Case-control Adults [77, 86]

Abbreviations: CRP, C-Reactive Protein; HMGB-1, High Mobility Group Box 1; IL, Interleukin; miRNA, micro-ribonucleic acids; MMP, Matrix-MetaloProtein; 
TLE, Temporal Lobe Epilepsy; TLE-hs, Temporal Lobe Epilepsywith hippocampus sclerosis; TNF-α, Tumor necrosis factor-alpha.
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can play a prominent role in regulating the immune sys-
tem.121,126,127 In vivo measurement capabilities are not yet 
available.

Transfer RNAs (tRNAs) constitute another group of 
candidates.128,129 tRNAs function as adaptor molecules that 

help ribosomes decode messenger RNA (mRNA), transfer 
amino acids, and synthesize proteins,130 and are therefore 
capable of influencing inflammatory processes. Pre-seizure 
plasma samples obtained from patients with focal epilepsy 
had higher levels of three tRNA fragments than did plasma 

T A B L E  2   Products of inflammation measured in peripheral blood reported since publication of a review7 in 2016. Elevated 
concentrations of these analytes have been associated with seizures in single reports only

IL-R1 Refractory seizures Case-WCE control Children [82]

IL-5 drug-resistant TLE Case-control Adults [79]

IL-8 Generalized Seizures Case-control Adults [92]

IL-10 (lower levels) TLE-hs Case-other sz Adults [93]

IL-18 + IL-18BP Generalized Seizures Case-control Adults [94]

IL-22 Drug-resistant epilepsy case-WCE control Adults [87]

IL-33 Epilepsy Case-control Adults [95]

sTNFr2 Epilepsy Case-control Adults [96]

TRAIL Generalized Seizures Case-control Teens, adults [13]

TLR4 Refractory seizures Case-WCE control Children [82]

NLRP3a  Febrile Seizures Case-feb control Children [97]

ICAM-1 Generalized Seizures Case-control Teens, adults [13]

MCP-2 Generalized Seizures Case-control Teens, adults [13]

Eotaxin (CCL11) Refractory seizures Case-control Children [98]

NFκB mRNAa  Focal seizures Case-control Adults [58]

tRNA Focal epilepsy Case-control Adults [99]

BDNF Epilepsy Case-control Adults [96]

GMCSF Drug-resistant epilepsy Case-WCE control Adults [87]

NGF Epilepsy Case-control Adults [96]

NT3 Epilepsy Case-control Adults [96]

Caspase 1 Generalized Seizures Case-control Adults [77]

AACT New onset epilepsy Case-control Children [85]

homocysteine Symptomatic epilepsy Case-control Adults [72]

kallikrein Temporal lobe epilepsy Case-control Adults [74]

bradykinin Temporal lobe epilepsy Case-control Adults [74]

α-synuclein Generalized seizuresb Case-control Children [100]

CD4 + CD38+c  drug-resistant TLE Case-control Adults [79]

Adiponectin Febrile seizures Case-control Children [81]

Copeptin Febrile seizures Case-control Children [81]

GDF-15 Status with fever Case-control Children [101]

Zfas1 Temporal lobe epilepsy Case-control Adults [102]

P2X7R Temporal lobe epilepsy Case-control Adults [76]

Note: blood CD14+ mononuclear cells. AACT α1-antichymotrypsin. Zfas1 long non-coding RNA Zfas1. P2X7R P2X7 receptor.
Abbreviations: BDNF, Brain-Derived Neurotrophic Factor; GDF-15, Growth/differentiation factor-15 (macrophage inhibitory cytokine-1); GMCSF, 
Granulocyte-Macrophage Colony-Stimulating Factor; ICAM-1, intercellular adhesion molecule 1; IL, Interleukin; MCP-2, monocyte chemoattractant protein-2; 
mRNA, micro-ribonucleic acids; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells mRNA measured in peripheral; NGF, Nerve Growth 
Factor; NLRP3, nucleotide-binding domain, leucine-rich repeat family, pyrin-domain containing 3 inflammasome; NT3, Neurotrophic Factor-3; sTNFr2 
soluble TNF-α, Tumor necrosis factor-receptor; TLE, Temporal Lobe Epilepsy; TLE-hs, Temporal Lobe Epilepsy with hippocampus sclerosis; TLR4, Toll-Like 
Receptor-4; TRAIL, Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand; tRNA, transfer RNA; WCE, well-controlled epilepsy.
ameasured in peripheral blood mononuclear cells and not in serum or plasma.
band an acquired demyelinating disorder.
cT and B regulatory cells.
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from healthy controls.99 A point-of-care electrochemical sys-
tem that measures three specific tRNA fragments is likely to 
be available to patients and their families very soon.131

6  |   MEASUREMENT OF 
INFLAMMATION—HOW TO 
MEASURE IN VIVO?

To identify changes in seizure propensity as soon as they 
happen requires continuous surveillance. The surveillance 
we consider most appropriate for the most rapid identifi-
cation of a change in seizure propensity is an EEG.132,133 
Integrating EEG and inflammation signals has the poten-
tial to enhance progress in working out the best signals for 
initiating prophylaxis.

Forecasting for less urgent intervention might not need 
to rely on electrophysiologic indicators. Surveillance for 
this task might do as well, or potentially better, relying on 
frequent assessments of a circulating indicator of inflam-
mation. The closest analogy of the ideal we envision is the 
continuous measurement of blood glucose by a sensor at-
tached to an insulin pump worn by some people who have 
relatively unstable diabetes mellitus.134 By adjusting drug 
release in response to a biosignal, such closed-loop delivery 
strategies are designed to approximate homeostasis.16–18

Although frequent intermittent static assessments 
(“snapshots”) might be adequate, they are less desirable 
than continuous assessments (“video”), which can iden-
tify fluctuations over time from a given baseline, and also 
identify periodic patterns.135 The best candidate for this 
task remains to be determined.

Proof of concept that systemic inflammation is asso-
ciated with seizure propensity comes from literature re-
views6–15 and Tables 1-3, which were prepared to provide 
more recently published support for inflammation in pe-
ripheral blood accompanying or soon following seizures.

Proof of concept that “prodromal biomarkers” … 
[might] be used to predict seizure risk comes from a report 
that concentrations of a marker of systemic inflammation 
(e.g., tRNA fragments) are higher before a seizure than 
afterward.99

Proof of concept that seizures can be predicted based 
on rising concentrations of an inflammation biomarker is 
not yet available.

7  |   TIMING

Almost all the reports documenting circulating indica-
tors of inflammation in people with epilepsy provide 
measurements after a recent or remote seizure. Indeed, 
ongoing systemic inflammation (elevated CXCL8 [IL-8] 

concentrations) has been documented in adults a week 
after the last overt seizure,75 and even months later.92

Levels of tRNA fragments were higher in pre-seizure 
plasma than in plasma collected soon after the seizure.99 
This is the only evidence that suggests inflammation pre-
dates seizure onset in humans. But even this would not be 
enough. Documentation is needed that levels of inflam-
mation indicators increase prior to seizure onset.

Missing are reports of increasing concentrations of an 
inflammation indicator preceding a seizure.121 Without 
this type of information everything presented here is rather 
indirect support for the putative benefits of a closed-loop 
system. Consequently, studies documenting increasing 
concentrations of a biomarker of inflammation is essential.

8  |   HOW BEST TO INTERVENE

8.1  |  Closed-loop systems

8.1.1  |  The sensor

The first closed-loop system for seizures we know of de-
livered an anti-seizure medication in response to EEG 
discharges.179 The closed-loop system we envision will 
work best if measurements of inflammation indicators are 
made continuously in vivo.

Although cytokines and other proteins are now mea-
sured ex vivo as part of a panel,13,180,181 potentially wearable 
nanosensors offer the promise of continuous measurement 
in vivo.182,183 The availability of fluorescence sandwich im-
munoassays for continuous measurements/detection of 
cytokines and other proteins in the blood184 adds to the 
hope of being able to continuously measure what conveys 
helpful information about seizure propensity.

Just as efforts are underway to create a bionic pan-
creas,185 in which beta cells sense glucose levels, the hope 
is that implanted inflammation-sensitive cells that sense 
inflammation might be able to function as the ideal sen-
sors and responsive interventions.

8.1.2  |  Set points

The level of inflammation that best triggers prophylaxis 
probably needs to be determined for each patient individ-
ually. Some propose variable setpoints, at least initially.186

The information collected by a sensor provides current 
data, but does not provide any information about the oc-
currence of a subsequent event. The closed-loop system 
we consider most appropriate also needs to have the capa-
bility of taking the sensor-collected data and anticipating 
a delayed future event.
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Most attempts to predict seizure occurrence utilize in-
formation extracted from electroencephalograms.187 We are 
not aware of any report of efforts to predict seizure occur-
rence based on the concentration of any blood component. 
Consequently, the most appropriate model for doing so 
would seem to come from the literature about predicting 
sustained hypoglycemia based on blood glucose levels col-
lected continuously by an in situ sensor.188,189 In essence, 
machine-learning algorithms would determine the magni-
tude or slope of concentration changes of the inflammation 
biomarker that best predicts/anticipates the next seizure.190

9  |   CANDIDATES FOR DELIVERY

9.1  |  Broad spectrum

Anti-inflammatory treatments are applied in clinical prac-
tice, and albeit the working mechanism may not be solely 
tied to anti-inflammatory properties, reduction of inflam-
mation may play a role. This includes steroid application 

in epilepsy syndromes such as infantile spasms, Landau-
Kleffner Syndrome, Continuous Spikes and Slow Waves 
during Sleep, or Lennox Gastaut syndrome,191 potential 
anti-inflammatory properties of vigabatrin192 and met-
formin64 through their effects on the mTOR pathway, 
anti-inflammatory properties of the ketogenic diet,193 or 
use of (broad-spectrum) immunomodulatory drugs (as 
outlined in Table 3).194

9.2  |  Specific anti-inflammatory drugs

Recent reviews and Table 3 document inflammation path-
ways activated in drug-resistant epilepsy,11 and provide 
proof of concept that anti-inflammatory agents and strate-
gies can reduce seizure occurrence.48

The more specific, the more personalized the ap-
proach,195,196 the closer the realization of “precision medi-
cine.”197 In the spirit of “one size does not fit all,” we offer 
as candidates the anti-inflammatory agents first those 
listed in Table 2, but consider other options that have yet 

T A B L E  3   Potential anti-inflammation therapies intended to reduce seizure occurrence reported since a 2016 review7

Focus Drug Disorder Recipients Reference

Human

IL-1 Anakinra NORSE, FIRES Children [136–144]

Rasmussen's Children [145]

Rilonacept CAPS Children [34]

Canakinumab CAPS Children [35, 36]

IL-6 Tocilizumab FIRES Children [146–154]

IL-6, CRP Statins Post-stroke szs Adults [155–159]

IL-6, IL-2, CRP VPA + LEV Epilepsy Children [160]

TNF-α Adalimumab Rasmussen's Children [161]

HMGB1 Melatonin Epilepsy Adults (+rodents) [162]

α-4 integrin Natalizumab Drug-resistant Adults [163]

NMDAR antibody Rituximab NMDARE Children + adults [164, 165]

COX-2 Aspirin Sturge-Weber Children [166–171]

Focal seizures Adults [172]

Pre-clinical

microRNA ASOs Drug-resistant Rats + mice [173]

HMGB1 mAb Epilepsy Rats + mice [174]

PGE2 PGE2 RA Status epilepticus Rats + mice [171]

IL-1β and IL-6 Lacosamide LPS + pilocarpine Mice [175]

IL-1β and IL-6 serotonin PTZ-induced Rats [176]

PEA Multiple models Mice and rats [177]

Minocycline Multiple models Mice and rats [178]

Abbreviations: ASOs, Anti-Sense Oligonucleotides (antagomirs); CAPS, Cryopyrin-Associated Periodic Syndrome; CD20, Cluster of differentiation 20; 
FIRES, Febrile Infection-Related Epilepsy Syndrome; LEV, levetiracetam; mAb, monoclonal antibody; NMDAR, N-methyl-d-aspartate receptor; NMDARE, 
N-methyl-d-aspartate receptor (NMDAR) antibody encephalitis; NORSE, New Onset Refractory Status Epilepticus; PEA, palmitoylethanolamide; PGE2 RA, 
Prostaglandin EP2 Receptor Antagonist; PTZpentylenetetrazole; VPA, valproate.
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to be tested. This personalized approach may also entail 
application of anti-seizure or anti-inflammatory inter-
ventions only when needed. Some might appear to target 
specific steps in the inflammatory process. However, in-
flammatory cascades are complex incorporating intercon-
nected sets of networks.50,198 Consequently, interfering in 
the function of just one component can sometimes appre-
ciably reduce the extent and severity of inflammation.199

More than a decade ago, antibodies that neutralize a sin-
gle cytokine were known to have broad anti-inflammatory 
effects.199,200 More recently, small-molecule kinase in-
hibitors were shown to have broad anti-inflammatory ef-
fects.201 With the multiple effects of inflammasomes,202,203 
anti-inflammasome drugs have the potential to affect 
several targets,63 each with some potential to initiate an 
inflammatory cascade.49,204 Thus, single-target drugs, or 
those expected to have limited effects sometimes/often 
achieve their broad potential by limiting inflammation in 
multiple ways.205

Because some/many of the inflammation-related 
biomarkers of seizure risk are not specific, and because 
some/many children with epilepsy might not have appre-
ciable change in any of them as seizure risk rises, our vi-
sion might have limited application.

9.3  |  The future

A recently proposed roadmap for biomarker research has 
five phases.206 Tables 1 and 2 and related text document 
some of the progress made in four of the phases in iden-
tifying and quantifying circulating biomarkers of seizure 
diathesis. These four phases include preclinical explora-
tory studies (phase 1), initial clinical assessments (phase 
2), retrospective studies of data in repositories (phase 3), 
and prospective studies to determine diagnostic accuracy 
(phase 4). The main component of phase five is assessing 
the reduction in mortality, morbidity, and disability associ-
ated with biomarker testing and the therapeutic interven-
tion. Table 3 offers guidance about potential therapeutic 
interventions. However, we are not aware of any study 
that has assessed to what extent an anti-inflammation in-
tervention in response to an elevated blood concentration 
of a biomarker of inflammation before a seizure occurs re-
duces the probability of a seizure.

10  |   CONCLUSION

We have gathered support for our vision that people with 
epilepsy will be able to benefit from a wearable closed-loop 
system similar to those that benefit people with “difficult-
to-control” epilepsy. This has included documentation 

that epilepsy is associated with inflammation, that both 
specific and broad-spectrum anti-inflammatory therapies 
have reduced seizure occurrence, that a wearable closed-
loop system might be capable of identifying increasing 
concentrations of inflammation indicators in the blood or 
other sources, and that machine learning programs have 
the potential to identify the slope of these increasing levels 
of inflammation proteins most predictable of an impend-
ing seizure.

Yet, despite all this support, what is missing is docu-
mentation that circulating concentrations of an inflam-
mation biomarker increase shortly before an impending 
seizure. Until indwelling inflammation biomarker sensors 
are available, this documentation will most likely come 
from animals whose blood is sampled sequentially.
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