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This article reports the complete chloroplast genome of Achnatherum ine-

brians, a poisonous herb that is widely distributed in the rangelands of

Northern China. The genome is 137 714 bp in total and consists of a large

single-copy (81 758 bp) region and small single-copy (12 682 bp) region

separated by a pair of inverted repeats (21 637 bp). The genome contains

130 genes, including 84 protein-coding genes, 38 tRNA genes and 8 riboso-

mal RNA genes, and the guanine + cytosine content is 36.17%. We subse-

quently performed comparative analysis of complete genomes from

A. inebrians and other Poaceae-related species from GenBank. Thirty-eight

simple sequence repeats were identified, further demonstrating rapid evolu-

tion in Poaceae. Finally, the phylogenetic trees of 37 species of Poaceae

and 2 species of Amaranthaceae were constructed by using maximum like-

lihood and Bayesian inference methods, based on the genes of the complete

chloroplast genome. We identified hotspots that can be used as molecular

markers and barcodes for phylogenetic analysis, as well as for species iden-

tification. Phylogenetic analysis indicated that A. inebrians is a member of

the genus Stipa rather than Achnatherum.

Achnatherum inebrians is a common and widespread

perennial toxic grass in the semiarid grassland regions

of northern China [1]. In earlier classification, A. ine-

brians was named as Stipa inebrians, but Geng [2,3]

revised its classification from Stipa to Achnatherum

(Gramineae, Pooideae, Stipeae), which is still used

today. Chu and Yang [4] identified A. inebrians as the

section [sect. Achnatheropsis (Tzvel.) Q.G.Chu.-

comb.nov.] according to the external morphology of

the genus Achnatherum in 1990. This grass is majorly

involved in reverse degradation and loss of biodiversity

of overgrazed grasslands, while it serves as a diversity

refuge for the soil fungal community [5,6]. In North-

western China, almost all the plants of A. inebrians are
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infected by a symptomless fungal endophyte, Epichlo€e

(Epichlo€e gansuensis or Epichlo€e inebrian) [7–9]. Ach-

natherum inebrians is commonly referred to as drunken

horse grass because of the presence of two alkaloids

produced in Epichlo€e endophyte-infected A. inebrians

plants, ergonovine and ergine, which cause toxicity or

death to horses and other livestock [10–12]. The pres-

ence of Epichlo€e endophytes in aboveground tissues

can regulate the metabolic processes of host grasses,

including promoting plant growth and enhancing the

tolerance of host plants to various biotic and abiotic

stresses, such as heavy metals, low temperature,

drought and salinity [13–19].
Chloroplasts are small photosynthetic machinery

and carbon fixation organelles that are present in algae

and plant cells. Most chloroplast-encoded proteins are

responsible for photosynthesis and the synthesis of

fatty acids and amino acids [20,21]. Chloroplasts have

their own genetic system, consisting of a closed circu-

lar structure ranging from 115 to 165 kb in length, a

small single-copy (SSC) region, a large single-copy

(LSC) region and a pair of inverted repeats (IRs) [22–
25]. Compared with nuclear genomes, chloroplast gen-

omes have fewer nucleotide substitutions and rear-

rangements of genome structures, moderate genome

size, and desirable collinear properties among different

species, providing an ideal model to decipher genomic

evolution and phylogenetic relationships in angios-

perms [26,27]. High-throughput sequencing technology

has stimulated the rapid development of chloroplast

genome sequencing [28] and enabled the study of evo-

lutionary dynamics at a more taxonomically complex

level (species or lower level) [29].

Achnatherum species are poorly studied from a geno-

mic perspective. To date, chloroplast genomes are

available for only one representative, Ach-

natherum splendens [30]. This study for the first time

reports the complete chloroplast genome sequence of

A. inebrians, including a description of its general fea-

tures, IR contraction and expansion, codon usage and

analysis of simple sequence repeats (SSRs). In addi-

tion, we compared the gene contents, organization,

and phylogenetic relationships with other chloroplast

genomes in Poaceae, which will help improve the

understanding of chloroplast genome characteristics,

structural diversity and evolution within Poaceae.

Materials and methods

Sample collection and DNA extraction

Fresh A. inebrians leaves were collected from alpine grass-

land in Tianzhu county (37°110N, 102°470E), Gansu

province, China. For chloroplast genome DNA extraction,

the collected fresh pieces were immediately placed in liquid

nitrogen and stored at �80�C until chloroplast genome

DNA was extracted. The voucher specimen was stored at

the Official Herbage and Turfgrass Seed Testing Centre,

Ministry of Agriculture, Lanzhou, China. Total genomic

DNA was extracted using the hexadecyltrimethyl ammo-

nium bromide method, and the quality of chloroplast gen-

ome was measured by NanoDrop 2000 (Thermo Scientific,

Wilmington, NC, USA) and agarose gel electrophoresis.

The quantified DNA (260/280 value is 1.6–1.8, and the

concentration is >20 ng�lL�1; the band is about 5K) was

used for library construction.

Library preparation and sequencing and genome

assembly

The qualified library was sequenced with Illumina Nova-

Seq (Wuhan Benagen Tech Solutions Company Limited,

Wuhan, China). The raw sequencing data were filtered

with low-quality data to obtain effective data. SOAPNUKE

(Version: 2.1.0; Wuhan Benagen Tech Solutions Com-

pany Limited, Wuhan, Hubei, China) was used as the

filtering software for the project, and the filtering stan-

dards were as follows: (a) remove reads with N base

content exceeding 5%, (b) remove reads with low mass

(Q score ≤ 5) and the number of bases reaches 50%,

and (c) remove the adapter sequence contained in reads.

The Illumina NovaSeq sequester was used for paired-end

sequencing, and the reads length was 150 bp, which in

pieces was done by nucleic acid shear (Covaris M220;

USA) apparatus [centrifuge at 3000 g (relative centrifugal

force) for 1 min].

Chloroplast genome assembly was performed using NOVO-

PLASTY software (version 3.2; parameter: k-mer = 39;

https://github.com/ndierckx/novoplasty), and the published

gene sequence of the target species was selected as the seed

sequence (JF698225.1) to splice chloroplast genomes. The

joining together with the relative chloroplast genome

(NC_029390.1) was blastn (version: BLAST 2.9.0+; parame-

ter: �e value, 1e�5; ftp://ftp.ncbi.nlm.nih.gov/blast/exec

utables/blast+/LATEST/) alignment, which adjusts the

order of target sequences based on alignment with related

species. If the connected sequence contains gap (including

N sequence), then GAPCLOSER (version 1.12; https://github.c

om/aquaskyline/SOAPdenovo2) was used to further fill the

hole to obtain the final stitching result.

Genome annotation and comparative genome

analyses

Chloroplast genome functional annotation includes encod-

ing gene prediction and noncoding RNA annotation

(rRNA and tRNA annotations). Gene annotation was per-

formed using CPGAVAS2 [31], and the map of the circular

1705FEBS Open Bio 11 (2021) 1704–1718 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

X. Wei et al. Complete chloroplast genomes of A. inebrians

https://github.com/ndierckx/novoplasty
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast%2B/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast%2B/LATEST/
https://github.com/aquaskyline/SOAPdenovo2
https://github.com/aquaskyline/SOAPdenovo2


A. inebrians chloroplast genome was drawn through the

online tool Chloroplot [32].

The distribution of codon usage was detected by using

CODONW (version 1.4.4; https://sourceforge.net/projects/cod

onw/) with the relative synonymous codon usage (RSCU)

ratio [33]. The codon of A. inebrians chloroplast was visu-

ally compared among species of 17 Poaceae with R lan-

guage and TBTOOLS [34].

The A. inebrians chloroplast genome was compared with

the other five chloroplast genomes using the Shuffle–Lagan
model of the MVISTA program [35]; Alopecurus japonicus

served as the reference. IRSCOPE was used to visualize the

boundaries between the IR and SC regions of A. inebrians,

and the results were compared and analyzed with three

other Poaceae species [36]. The four chloroplast genomes of

Poaceae were initially compared using MAFFT [37] and then

manually adjusted using BIOEDIT [38]. Variable sites and

nucleotide variations (Pi) in the entire chloroplast genome

and LSC, IR and SSC regions of four species were calcu-

lated using DNASP [39].

Repeat sequence analyses

The SSRs of A. inebrians and three other chloroplast

genomes were identified using the online web tool MISA

(version 2.1) [40]. The parameter sets of the minimum

number of repetitions of SSRs for mononucleotides, din-

ucleotides, trinucleotides, tetranucleotides, pentanu-

cleotides and hexanucleotides were 10, 5, 4, 3, 3 and 3,

respectively.

Phylogenetic analyses

Phylogenetic relationships were reconstructed by using the

complete A. inebrians chloroplast genome and 36 other

Poaceae chloroplast genomes submitted in the National

Center for Biotechnology Information (NCBI); Cyperus ro-

tundus and Eleocharis dulcis were used as outgroups. All

species and accession numbers of the chloroplast genomes

in NCBI are listed in Table S1. Phylogenetic analysis was

conducted on the PHYLOSUITE version 1.2.2 platform [41].

The nucleotide sequence of the whole chloroplast genome

was aligned in MAFFT based on default parameters [37].

Ambiguously aligned fragments were removed using

GBLOCKS [42], with the following parameter settings: mini-

mum number of sequences for a conserved/flank position

(20/20), maximum number of contiguous nonconserved

positions (6), minimum length of a block (11) and allowed

gap positions (0). ModelFinder [43] was used to select the

best-fit model using Akaike information criterion.

Maximum-likelihood (ML) phylogenies were inferred using

IQ-TREE [44] under the GTR+R4+F model for 5000 ultrafast

[45] bootstraps, approximate Bayes test [46] and the Shi-

modaira–Hasegawa-like approximate likelihood-ratio test

[47]. Bayesian inference (BI) phylogenies were inferred

using MRBAYES 3.2.0 [48] under the GTR+I+G+F model

(two parallel runs and 1 000 000 generations), in which the

initial 25% of sampled data were discarded as burn-in. The

generated trees were visualized using the online web tool

iTOL [49].

Results

Chloroplast genome assembly and genome

features

The genome size of the complete chloroplast genome

of A. inebrians was 137 714 bp in length, with chloro-

plast circular molecules having quadripartite structures

composed of IRa (21 637 bp) and IRb (21 637 bp)

regions, separated by the LSC (81 758 bp) and SSC

(12 682 bp) regions (Table 1; Fig. 1). The gua-

nine + cytosine (GC) content of the complete chloro-

plast genomes was 38.8%, while LSC, SSC and IR

regions showed 36.8%, 33.1% and 44.1% GC con-

tents, respectively.

Table 1. Summary of complete chloroplast genomes for Achnatherum inebrians, Achnatherum splendens, Stipa hymenoides, and

Stipa purpurea.

Item Achnatherum inebrians Achnatherum splendens Stipa hymenoides Stipa purpurea

Total size (bp) 137 714 136 876 137 742 137 370

LSC size (bp) 81 758 80 958 81 709 81 202

SSC size (bp) 12 682 12 640 12 803 12 842

IR size (bp) 21 637 21 639 21 615 21 663

Total GC content (%) 38.8 38.9 38.8 38.8

LSC GC content (%) 36.8 36.7 36.9 36.9

SSC GC content (%) 33.1 33.3 33.6 32.9

IR GC content (%) 44.1 44.2 44.1 44.1

Number of genes 130 130 130 130

Number of protein-coding genes 84 84 84 84

Number of tRNA genes 38 38 38 38

Number of rRNA genes 8 8 8 8
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A total of 130 genes were found in the whole

chloroplast genome of A. inebrians, including 84

protein-coding genes, 38 tRNA genes, 8 rRNA

genes, and 2 pseudogenes (ycf3 and ycf4; Table 1;

Fig. 1). The protein-coding genes include 11 genes

for large ribosomal proteins [rpl32, rpl14, rpl22,

rpl33, rpl20, rpl36, rpl23 (92), rpl16, rpl2 (92)], 16

for small ribosomal proteins [rps3, rps16, rps8, rps11,

rps12 (92), rps18, rps2, rps14, rps19 (92), rps15

(92), rps7 (92), rps4], 5 for photosystem I (psaJ,

psaA, psaB, psaC, psaI), 15 for photosystem II

(psbB, psbK, psbH, psbL, psbA, psbI, psbM, psbJ,

psbT, psbC, psbZ, psbF, psbD, psbE, psbN) and 6

for ATP synthase (Table 2).

In the chloroplast genome of A. inebrians, eight

protein-coding (rps19, rpl2, rpl23, ndhB, nadH, rps7,
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rps12 and rps15), four rRNA (rrn16, rrn23, rrn4.5 and

rrn5) and eight tRNA genes (trnA-UGC, trnH-GUG,

trnI-GAU, trnI-CAU, trnL-CAA, trnN-GUU, trnR-

ACG and trnV-GAC) were duplicated in the IR regions

(Fig. 1).

Introns play an important role in gene expression

regulation. Many introns have the ability to enhance

the high expression of exogenous genes at specific

times and locations of plants, thus producing the

desired agronomic traits. The chloroplast genome of

A. inebrians includes 15 intron-containing genes

(Table S2). The pseudogene ycf3 has two introns,

while all other genes contain a single intron. The

intron of the trnK-UUU gene is largest (2488 bp), and

matK is located within its intron. The nadH gene is a

transspliced gene with a 50 exon located in an SSC

region and two 30 exons located in IR regions, as pre-

viously reported in other chloroplast genomes [50,51].

Nucleotide sequences of protein-coding genes usu-

ally start with ATG. However, there are some excep-

tions in the A. inebrians chloroplast genome in which

the first nucleotide is changed from A to G or C, the

second nucleotide is changed from T to C, and the

third nucleotide is changed from G to C, such as

rps19, which starts with GTG, rps12, starts with ACT,

and rpl2, starts with ATA (Table S3). This is similar

to the common features of many homologous genes

reported in the chloroplast genomes of other plants

[52–58].

Codon usage

The codon usage frequency and RSCU were analyzed

based on the sequences of 84 protein-coding genes in

the A. inebrians chloroplast genome (Fig. 2). The high-

est frequency codon is ATT (leucine), which is the

most abundant universal amino acid. The code usage

pattern is similar to the reported patterns in other

chloroplast genomes, with high A/T content. The

codon used in the chloroplast genomes of 18 plants,

including A. inebrians, was compared among all spe-

cies to better understand the codon preference in Poa-

ceae plants. As shown in Fig. 3, the distributions and

the visualization of codon usage in the form of a heat-

map of 18 species of Poaceae suggested that approxi-

mately one-third of the codons was not frequently

Table 2. List of annotated genes in the chloroplast of Achnatherum inebrians.

Group Gene group Gene name

Self-replication Ribosomal proteins (LSU) rpl32, rpl14, rpl22, rpl33, rpl20, rpl36, rpl23a (92), rpl16,b rpl2a,b (92)

Ribosomal proteins (SSU) rps3, rps16,b rps8, rps11, rps12a,b (92), rps18, rps2, rps14, rps19a (92), rps15a (92),

rps7a (92), rps4

RNA polymerase rpoC2, rpoC1, rpoB, rpoA

rRNA gene rrn23a (92), rrn5a (92), rrn16a (92), rrn4.5a (92)

tRNA genetrnC-GCA trnI-CAUa (92), trnS-GGA, trnT-GGU, trnC-GCA, trnF-GAA, trnN-GUUa (92), trnA-UGCa,b

(92), trnP-UGG,trnL-CAAa (92), trnI-GAUa,b (92), trnS-GCU, trnG-UCC,trnL-UAG, trnR-

UCU, trnV-GACa (92), trnT-UGU, trnQ-UUG, trnY-GUA, trnR-ACGa (92), trnE-UUC,

trnW-CCA, trnS-UGA, trnH-GUGa (92), trnM-CAU, trnK-UUU,b trnD-GUC, trnV-UAC,b

trnG-GCC, trnfM-CAU, trnL-UAAb

Gene for

photosynthesis

Subunits of photosystem I psaA, psaB, psaJ, psaI, psaC

Subunits of photosystem II psbB, psbK, psbH, psbL, psbA, psbI, psbM, psbJ, psbT, psbC, psbZ, psbF, psbD,

psbE, psbN

Subunits of NADH

dehydrogenase

ndhG, ndhBa,b (92), ndhK, ndhD, ndhA,b ndhHa (92), ndhF, ndhC, ndhI, ndhJ, ndhE

Subunits of cytochrome b/f

complex

petA, petG, petB,b petN, petD,b petL

Subunits for ATP synthase atpE, atpH, atpI, atpA, atpB, atpFb

Large subunit RuBisCO rbcL

Other genes Translational initiation factor infA

Maturase matK

Protease clpP

Envelope membrane protein cemA

C-type cytochrome synthesis

gene

ccsA

Hypothetical chloroplast

reading frames (ycf)

ycf3,c ycf4

aGenes located in the IRs.; bGene with one intron.; cGene with two introns.
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used. These codons are shown in blue, which indicates

an RSCU value of less than 1 and weak codon bias.

The results showed the codon usage preferences of the

most chloroplast genome, among which TTA, AGA,

GCT, TCT and ACT are used most frequently

(Fig. 3). Approximately two-thirds of all codons of

A. inebrians that had high RSCU values showed a

high A/T preference in the third codon. This phe-

nomenon is common in the chloroplast genomes of

higher plants [59,60].

Repeat sequences and SSR analyses

SSRs, also known as microsatellites, a section of

DNA in a genome consisting of the basic units of

one to six and repeated many times, are widely dis-

tributed in chloroplast genomes. SSRs are often used

as molecular markers for studying chloroplast genome

evolution and population genetics [61,62]. We investi-

gated the distribution of SSRs in the A. inebrians

chloroplast genome and found a total 38 SSRs, of

which 31 were in the LSC region (82%), 3 were in

the SSC region (8%) and 4 were in IR regions (10%;

Fig. 4A). In total, four categories of SSRs, that is,

mononucleotide, dinucleotide, trinucleotide and

tetranucleotide, were detected. Mononucleotide repeti-

tion is most prevalent in each chloroplast genome,

followed by dinucleotide, trinucleotide and tetranu-

cleotide repetition. The most dominant SSRs are A/T

mononucleotides (18%) from the frequency of the

classified repeat types (Table S4). The SSR motifs in

the A. inebrians and three other chloroplast genomes

(A. splendens, Stipa hymenoides, Stipa purpurea) that

are closely related to A. inebrians were analyzed

(Fig. 4B). The study results showed little differences

in the distribution pattern and number of SSRs

among the four chloroplast genomes except the

tetranucleotide repetition AAAG, which was detected

in only A. inebrians (Fig. 4C).

Comparative genome analyses

In this study, the chloroplast genomes of eight Poaceae

were analyzed using the MVISTA program, with S. hy-

menoides serving as a reference (Fig. 5). These species

have considerable similarities in genome composition

and size. The coding regions of the eight Poaceae spe-

cies were almost identical, whereas the noncoding

regions were more variable. The highly divergent

regions were found among the intergenic spacers,

including matk-rps16, rps16-trnQ-UGG, trnG-UGG-

trnT-GGU, psbM-petN, rbcl-psal, ndhF-rpl32, rps2-

rpl23 and psbE-petL in LSC, and ndhF-rpl32 and

psaC-ndhE in SSC, which might be regarded as
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Fig. 2. Codon content of 20 amino acids

in all protein-coding genes of the

Achnatherum inebrians chloroplast

genome.
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potential molecular markers for Poaceae plants. In the

whole chloroplast variable region, the A. inebrians

share high sequence identity with those of S. purpurea

more than A. splendens and relatively lower identity

with those of Cynosurus cristatus and A. japonicus.

Pis of four Poaceae were calculated to further

demonstrate the differences in the chloroplast genomes

of Gramineae at the sequence level. As shown in

Fig. 6, the divergence values among S. purpurea,

S. hymenoides, A. splendens and A. inebrians ranged

from 0 to 0.06, with a mean of 0.00837, and the IR

regions were more conserved than the LSC and SSC

regions. The most divergent region, rps3-rpl22, showed

a divergence value of 0.06 in the LSC region, while the

ccsA gene showed a high Pi (0.031) value in the SSC

region. The intergenic regions among trnT-GGU-trnT-

GGU and rbcL-psaI also showed a relatively high

divergence value (>0.025). These regions may undergo

rapid nucleotide replacement at the species level. These

hotspots can be used as molecular markers and bar-

codes for phylogenetic analysis and species identifica-

tion of Poaceae.

Fig. 3. Heatmap analysis for codon distribution of all protein-coding genes of 18 Poaceae species. Color key: higher red values indicate

higher RSCU values, and lower blue values indicate lower RSCU values.
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Expansion and contraction at the borders of the IR

regions are common evolutionary events that often

result in genome size variations in chloroplast gen-

omes. We investigated the position of genes at the

junction regions of four chloroplast genomes: S. pur-

purea, S. hymenoides, A. splendens and A. inebrians. In

the A. inebrians plastome, the boundary of IR–LSC
extended into the rps19 gene; the boundary of IR–SSC
extended into the ndhF gene, and 48 bp of ndhF

extended into the IR region a (IRa); and the bound-

aries of IRs region b (IRb)–LSC and IRa–LSC extend

into the rpl22 and psbA genes, respectively. Only 37 bp

of rps22 was duplicated in the LSC region, while

48 bp of rps19 was duplicated in IRb. Similarly, the

ndhH gene was located at the junction of SSC–IRa,

and ndhH is 17, 28, 28 and 31 bp from the SSC and

IRb borders in S. purpurea, S. hymenoides, A. splen-

dens and A. inebrians, respectively. The connections

between IR and SSC regions often vary in chloroplast

genomes of higher plants and have been commonly

reported in previous studies [63,64]. In this study, a

detailed comparison of the borders among the IR,

LSC and SSC regions of the four Poaceae chloroplast

genomes was explored and is presented in Fig. 7. Our

results suggest that the IR–LSC boundary might be

conserved among the chloroplast genomes of closely

related family species.

Phylogenetic analysis

The phylogenetic tree was constructed based on 37

whole-chloroplast genomes from the Poaceae family

using C. rotundus and E. dulcis as outgroups (Fig. 8).

The phylogenetic trees generated by BI (Fig. S1) and

ML methods and their topology were nearly identical.

The tree topology from ML analysis is shown in

Fig. 8. The relevant data of phylogenetic trees are

shown in the supplementary materials (Tables S5 and

S6). According to the trees’ topology, the 37 species

of Poaceae were divided into five subfamilies: Pooi-

deae, Oryzoideae, Chloridoideae, Arundinoideae and

Panicoideae. The ML (bootstraps value = 100) and

BI (posterior probability values = 1) topology both

supported that A. inebrians has a sister relationship

to the genus S. hymenoides. The position of A. inebri-

ans and all other nodes in the topology are supported

with posterior probability values of 1.0, except three

nodes. Our study provides valuable genetic informa-

tion for genome-scale phylogenetic studies in Poaceae

plants.

Fig. 4. SSR analysis of the four Poaceae chloroplast genomes. (A) Presence of SSRs in the LSC, SSC and IR regions (A. inebrians). (B) The

frequency of SSRs in LSC, IR and SSC regions. (C) The frequency of SSRs of different types.
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Discussion

In this study, next-generation sequencing technology

was used to sequence the chloroplast genome of

A. inebrians, and its genetic information was reported

for the first time. The comparative analysis of gene

composition and structure revealed that A. inebrians

has a conserved chloroplast genome like other grass-

land plants [65,66].

A total of 130 genes were found in the A. inebrians

chloroplast genome, including 84 protein-coding genes,

38 tRNA genes and 8 rRNA genes. The ycf1, ycf2 and
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Fig. 5. Sequence alignment of five Poaceae genomes in MVISTA. The x axis represents the coordinates in the chloroplast genome. The
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Fig. 6. Sliding window analysis of

nucleotide variability among the

chloroplast genomes of four species

(window length: 600 bp; step size:

200 bp).
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accD were lost, which is a common trend in many

Poaceae plants [67], indicating that genetic degenera-

tion occurred during the process of gene evolution.

A total of 38 SSRs were identified in the A. inebri-

ans chloroplast genome. The most dominant SSRs

were A/T mononucleotides (18%) from the frequency

Fig. 7. Comparison of the junction positions between the LSC, SSC and IR regions among the chloroplast genomes of four species.

Lolium arundinaceum NC 011713
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Fig. 8. Phylogenetic tree reconstructed

from the complete chloroplast genome

sequences from 39 species. Statistical

support values above the branches

correspond to Shimodaira–Hasegawa-like

approximate likelihood-ratio test (SH-aLRT)

values/approximate Bayes probabilities/ML

bootstrap values. Asterisks (*) indicate

branches with maximum values of the

indices, except where noted.
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of classified repeat types. SSRs can be regarded as

good markers in plant populations for addressing

genetic diversity among closely related taxa. Therefore,

improved ability to study interspecies differences can

be used in conjunction with SSR markers developed

by nuclear genomes to address phylogenetic relation-

ships among closely related species [68].

During the genome evolution process, the sequence

marginal region of the IR region was changed [69]. With

the expansion and contraction of the IR boundary,

some genes entered the IR region and some entered the

single-copy region, resulting in changes in the number

of genes among different species. The chloroplast gen-

ome size is mainly dependent on the expansion and con-

traction of IR and SSC boundary regions [70].

The comparative analysis of A. inebrians and other

species showed that, except for the high conservation

of complete chloroplast, there are some significant dif-

ferences among them. For example, the MVISTA pro-

gram and Pi analysis both determined that rbcl-psal

and psbE-petL can be used for the development of

phylogenetic markers. A. inebrians share high sequence

identity with those of S. purpurea more than A. splen-

dens and the same as phylogenetic tree. It is a major

finding and will be helpful for researchers in getting

more information about genetic resources.

Phylogenetic studies of plants mainly use the chloro-

plast and nuclear genome to analyze the genome struc-

ture and modifications [66,70]. The Poaceae family not

only has an economic importance but also it is one of

the major families on which international cooperative

molecular phylogenetic studies were conducted [71,72].

Our results support Poaceae being composed by two

big clades: BOP (Bambusoideae, Oryzoideae, and

Pooideae) and PACCAD (Panicoideae, Aristidoideae,

Chloridoideae, Micrairoideae, Arundinoideae, and

Danthonioidea), which is similar to the findings

reported in previous research [72,73]. In this study, for

the first time, we reconstructed phylogenetic trees

based on the chloroplast genome of 37 Poaceae plants,

including A. inebrians. In terms of evolutionary rela-

tionships, our study results strongly support that

A. inebrians belongs to the genus Stipa.

As for the division and classification of Ach-

natherum, there is an unavoidable relationship between

it and Stipa. In the past, many scholars did not recog-

nize or use the genus Achnatherum and still used Stipa

in their studies [74–77]. But at the same time, other

scholars used Achnatherum in their studies [3,78–80].
According to the comparison of the morphological

characteristics (Table S7), A. inebrians is inclined to

the Achnatherum, but there are some (awn, fruit, basal

disc) morphologically similar to Stipa. Our study

provides support only for relevant classification at the

molecular level and does not fully represent the real

classification status. Specific follow-up studies can

make use of mitochondrial genes, nuclear genes and

other genetic markers for further classification.
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