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Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that is
difficult to diagnose due to its discriminating epidemiology and obscure metabolome. For
the first time, 3D spatial and chemometric analyses uncover the unique lipid metabolome
of TNBC under the tandem modulation of two key metabolites – insulin and methionine -
using non-invasive optical techniques. By conjugating heavy water (D2O) probed Raman
scattering with label-free two-photon fluorescence (TPF) microscopy, we observed
altered de novo lipogenesis, 3D lipid droplet morphology, and lipid peroxidation under
various methionine and insulin concentrations. Quantitative interrogation of both spatial
and chemometric lipid metabolism under tandem metabolite modulation confirms
significant interaction of insulin and methionine, which may prove to be critical
therapeutic targets, and proposes a powerful optical imaging platform with subcellular
resolution for metabolic and cancer research.

Keywords: stimulated Raman scattering, heavy water, TPF, lipid metabolism, methionine, insulin, breast cancer,
DO-SRS
INTRODUCTION

Breast cancer is the most reported form of cancer in biological women, but the pathophysiology is
rife with subtypes that have material consequences on patient outcomes. Triple negative breast
cancer (TNBC) is a particularly aggressive cancer subtype that accounts for approximately 15% of
all breast cancer cases and its epidemiology reveals a discriminating predilection for non-Hispanic
African women (1, 2) (Figure S1). Although the genomes and proteomes of these breast cancer
subtypes are distinguishable, little is known about their metabolic phenotypes and the consequential
prognoses they manifest.

Recently, lipid metabolism has emerged as a major indicator of cellular stress, phenotypic state, and
disease status in biological research and medicine. Dysregulation of lipid metabolism and heightened
lipid synthesis are hallmarks of cancer, as varying demands of lipids for energymaintenance, metastasis,
and angiogenesis warrant transcriptional changes that contribute to the metabolic phenotype (3–5).
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Fung et al. Breast Cancer Lipid Droplet Metabolism
The quantity and diversity of lipids and their functions have been
instrumental in profiling cancers as well. For example, membrane
lipid compositions of cholesterol, phosphatidylcholine (PC), and
phosphatidylethanolamine (PE) are essential to cell membrane
fluidity, which has become a target for cancer treatments (6–9).
Additionally, the degree of saturation of lipid content in a cell may
provide further insight into its state of stress, as breast cancer cells
may produce more saturated and monounsaturated membrane
lipids to guard against oxidative stress (10–12). To interrogate lipid
metabolism, lipid droplets (LD) were the primary organelle of
interest since their ubiquitous structures not only serve as energy
stores, but are also involved in protein folding and trafficking,
signaling pathways, and have diverse spatial and chemical
information that may reflect oxidative stress, metabolic flux, and
disease status (10–18). However, direct visualization of LD
metabolism manipulated by tandem nutritional interventions at a
subcellular level has not yet been reported in TNBC cells, which is
partially due to a lack of spatial resolution in conventional
lipidomic modalities. Optical techniques such as spontaneous
Raman spectroscopy and SRS imaging microscopy are well
suited to both the chemometric and spatial dimensions for
imaging LD metabolism; they can analyze not only the size,
Frontiers in Oncology | www.frontiersin.org 2
number, and distribution of LDs, but also their protein and lipid
diversity and metabolism at subcellular resolution.

Despite the many mysteries of TNBC, a documented hallmark
is its hyperactivity of mammalian target of Rapamycin (mTOR)
pathways, which play important roles in glucose, protein, and lipid
metabolism (19–23). Insulin and L-methionine (an essential
amino acid involved in protein translation, genetic/epigenetic
control, nutrient sensing, and redox homeostasis) (24) are both
involved in mTOR pathways but have not been directly studied in
tandem to date (25–30). This is due, in part, to previous studies
that observed MDA-MB-231 cells to be insulin insensitive to
mitogenic effects, despite having many receptors that bind
insulin (31). Other studies observe insulin effects in the same
cell line, and there is currently no consensus on the independent
effects of insulin. With respect to TNBC, insulin and methionine
both independently drive cancer proliferation (32–35) and affect
lipid metabolism (25, 34, 36–40), and separate studies indicate
insulin metabolism directly affects the uptake of amino acids in
yeast and dogs (41, 42). Given the well-documented relationships
between insulin, methionine, and mTOR, it is possible that
TNBC’s mTOR hyperactivity exhibits a unique lipidomic
response to insulin and methionine manipulation. The
FIGURE 1 | Hypothesized pathway illustrating a potential methionine and insulin interaction mediated through mTOR. Bi-directional control of methionine and
mTORc1 depicts general mechanisms by which methionine is sensed by and activates mTORc1. Insulin also activates mTORc1 by phosphorylating TSC2, and
consequently affecting mTORc1 regulation of methionine. Insulin stimulates SREBP mediated lipid synthesis and metabolism. Methionine stimulates SAM PC and PE
membrane lipid synthesis. Increased production of reduced glutathione via SAM is thought to reduce the extent of lipid peroxidation.
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conceptual pathway detailing macroscopic mTOR-mediated lipid
response to insulin and methionine (Figure 1) highlights the
points discussed in this paper. Lipid peroxidation, de novo
synthesis, and chemical diversity can all be investigated using
optical techniques that provide subcellular spatial and chemical
information. Given that TNBC has been an archetype for
methionine dependence (35), and that PI3K/AKT/mTOR is a
key driver of the aggressive biology of TNBC (23), the interplay
between methionine and insulin, coupled with the perspective of
lipid biology, may illuminate promising directions for future
therapeutic research.

Non-linear optical techniques such as coherent Raman
scattering microscopy and two-photon fluorescence (TPF)
microscopy have been used to profile breast cancer metabolism
by revealing correlations between cancer metastasis and cellular
redox state, and lipid metabolism (43). Recent studies have
identified several metabolites implicated in tumorigenesis and
lipid metabolism in cancer, such as glutamine (44–46) and serine
(47) dependence. Raman spectroscopy/microscopy coupled with
D2O probing allows for direct visualization of metabolic
dynamics of a variety of biomolecules including lipids, protein,
and DNA in cells, C. elegans, zebrafish, and rodents by
highlighting the newly synthesized macromolecules (48). In
this study we first employed spontaneous Raman spectroscopy
to differentiate molecular signatures within LDs between TNBC
and normal cells. Using D2O probing and SRS (DO-SRS)
imaging we then examined the impacts of methionine and
insulin on lipid metabolism in cancer cells. The effects of
methionine and insulin on cellular respiration and lipid
peroxidation were also examined by using TPF microscopy. To
analyze the rich chemometric dataset and inspire targeted image
analyses, we applied a relative entropy approach to Raman
spectra for the first time. This method can quickly highlight
distinct or tandem effects of independent variables in any Raman
spectroscopy study.
Frontiers in Oncology | www.frontiersin.org 3
RESULTS

Lipid Droplet Metabolism
We first examined the effects of methionine on LDmetabolism in
TNBC cells (MDA-MB-231), luminal A breast cancer cells
(MCF-7), and normal breast epithelial cells (MCF10A, as a
control) by adding excess (20x) methionine to the growth
media supplemented with 50% D2O. Cells were scanned by
using a spontaneous Raman spectroscopy, and revealed that
TNBC cells most starkly contrasted MCF10A cells with respect
to overall lipid content (CH2 stretching at 2850cm-1). This
attenuated lipid:protein ratio difference between excess and
physiological methionine concentrations is shown in
Figure 2A. This absence of marked differences is also
personified by poorer ReLu neural network classification
between TNBC cells with and without excess methionine
(Figure S3). Despite the absence of insulin in TNBC cell
culture growth media recipes (49), we then added various
concentrations of insulin (1mg/L, 10mg/L, and 20mg/L,
correspondingly, 0.1x, 1x and 2x) to the media and evaluated
its interaction with methionine in both cell lines. In this second
part, insulin concentration in growth media was modulated in
tandem with methionine, and augmented effects in several
Raman spectral regions were observed, including the C-H
stretching region, which illustrates the relative contents of CH2

(lipid) and CH3 (protein) (Figure 2B). TNBC contrasted
MCF10A cells which exhibited decreased lipid:protein ratios in
the presence of excess methionine at all insulin concentrations.
Importantly, it was found that the difference in lipid:protein ratio
between excess and physiological methionine increased with the
addition of insulin in TNBC. Figure 2C highlights this effect,
marked by orange arrows in Figure 2B, and supports potential
interactions between insulin and methionine. A significant
interaction term was confirmed by 2-way ANOVA (Table S1)
in TNBC.
A B C

FIGURE 2 | (A) Average CH stretching region spectra for TNBC with highlighted CH2 and CH3 (2850cm
-1 and 2935cm-1) levels ascribed to total lipid and protein

content, respectively. Regular and excess methionine groups refer to 0.03g/L and 0.6g/L respectively. Of note, TNBC did not exhibit significant relative lipid and
protein changes in the presence of excess methionine. One standard deviation is indicated by shaded areas surrounding the lines. (B) With tandem insulin control
CH2:CH3 peak ratios at each insulin and methionine concentration group are shown. 2-way balanced ANOVA results for TNBC cells highlights significance of
methionine and insulin-methionine interaction term in lipid:protein ratios. Error bars indicate one standard deviation. (C) The difference in CH2:CH3 ratios for the 15x
methionine and 1x methionine groups of the MDA-MB-231 subtype is negligible at the lower insulin concentration but is increased ten-fold in the 2x insulin case.
Error bars are propagated in quadrature from (B). **P < 0.01.
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In TNBC cells, the ratio of total lipid-to-protein did not change
with the increase of methionine concentration alone, but slightly
decreased in normal cells (Figure 2B). With the addition of
insulin, this difference was augmented with higher
concentrations of insulin (Figure 2C). At this point, it is still
unclear whether de novo lipid synthesis increased alone, or if
protein synthesis decreased, or some combination of both.
Perhaps de novo lipid synthesis decreased, but not as much as
protein synthesis. This clarity entails DO-SRS, which provides
insight into de novo synthesis. As cells incorporate deuterium from
heavy water into macromolecules such as lipids and proteins, the
C-D bonds in the newly synthesized molecules become visible in
the cell silent region around 2150 cm-1. Even though lipids and
proteins are the main biomolecular constituents of cells, the CH2

and CH3 peaks may only paint part of the picture. Figures 3A, B
shows average Raman spectra of both cell lines treated with D2O
and different concentrations of methionine and insulin. These
spectra are consistent with previous LD studies using Raman
spectroscopy, which display minute protein peaks in the
fingerprint region such as the phenylalanine peak at 1000cm-1

and amide I-III peaks at 1660cm-1, 1450cm-1, and 1200-1300cm-1,
respectively, as well as elevated CH2 stretch at 2850cm

-1, saturated
CH2 stretch at 2880cm

-1 (typical of cholesterol and other saturated
lipids) (50), and H-C= stretch at 3010cm-1 (typical of unsaturated
lipids) (51). Common lipid components of LD are shown in
Figure 3C in descending order of prevalence. The structure of
LDs is such that a phospholipid monolayer surrounds a core of
neutral lipids such as cholesterols and TAGs. Less prevalent lipid
species such as ceramides, sphingolipids, and their metabolites
only account for a small percentage of LD composition, but have
gained increasing significance in LD physiology and diseases (52).
Furthermore, there are hundreds of apo-lipoproteins on or near
the surface of LDs, which may contribute to the observed Raman
spectra of LDs. The presence of the C-D peak in the spectra
confirm de novo synthesis. Some Raman shifts of interest are
shown, but minute differences may be difficult to discern by raw
visual inspection alone.

Although the delineated Raman shifts in Figures 3A, B
highlight several aspects of lipid and protein metabolism, there
are others ascribed to lipids and other important molecules as
well. Principal component analysis (PCA) shows that 12
principal components (PCs) account for nearly all the variance
in the 6 groups of MDA-MB-231 LD spectra. To visualize this
while avoiding over-fitting, a t-SNE diagram of the top 10 PCs is
shown in Figures 4A, B. There exists at least one dimension that
discriminates insulin effects and methionine effects on Raman
spectra of TNBC LD. Importantly, this demonstrates that LD,
alone, contain sufficient chemometric data to discriminate cell
phenotypes. This confirms the ability of LDs to reflect cellular
state. To date, label-free chemometric demonstrations of this
ability are sparse. PCA initialization can be a robust step to
reduce dimensions, denoise data, and preserve global structure in
t-SNE visualizations, but even though PCA can vectorize these
values, the PCs themselves do not take the form of Raman peaks
suitable for direct assignment of methionine and insulin
effects individually.
Frontiers in Oncology | www.frontiersin.org 4
Statistical quantification of independent variable effects at
every Raman shift entails a new measure in which the separation
of insulin and methionine effects, as well as relative significance
in class attribution is shown. To quickly rank and visualize all the
wavenumber variables that may have been influenced by a
particular treatment, the Kullback-Leibler divergence (DKL), a
metric for the distance between two distributions for
classification problems (53), at each Raman shift is plotted for
each metabolite manipulation (Figure 4C). This method is also
known as relative entropy.

KL divergences of Raman spectra were plotted on the same
axes for MCF10A and MDA-MB-231 with selected
wavenumbers labeled for clarity (Figure 4C). From Figure 4C,
it is apparent the lipid peak of MCF10A cells at 2850cm-1 was
heavily influenced by both insulin and methionine
concentrations, while the protein peak at 2940cm-1 seems to be
more heavily influenced by insulin concentration. This contrasts
with the MDA-MB-231 TNBC cells in which divergences at most
wavenumbers were dominated by the delineation of methionine
concentration. Although these representations are not perfect
(see Supplementary Material), this is especially useful when
simultaneous treatment groups have both compound and
independent effects . For example, MCF10A spectra
(Figure 4A) exhibit changes in the unsaturated lipid peak
(3010cm-1) under either insulin or methionine manipulation,
while the TNBC spectra (Figure 4B) exhibit changes here
(3010cm-1) mainly under methionine manipulation. This can
be easily seen though the relative entropy at that Raman shift in
Figure 4C, in which MCF10A has high relative entropy at
3010cm-1 when examined along either the insulin or
methionine dimension, while TNBC shows a higher relative
entropy when examined along the methionine dimension.

While excess methionine appears to decrease the lipid-to-
protein ratio in MCF10A cells and increase the ratio in MDA-
MB-231 cells, the results do not necessarily indicate discrepant
rates of de novo lipogenesis since these values are affected by both
synthesis and degradation of lipid and protein. For instance, the
decreased lipid-to-protein ratio might be due to enhanced lipid
utilization. To explore how much lipid and protein were
synthesized, we quantitatively examined the carbon-deuterium
(CD) peaks at 2135cm-1 (de novo synthesized lipids, CDL)
relative to 2180 cm-1 (de novo synthesized proteins, CDP), and
2850cm-1 (total lipids, CH2) for each treatment group (48)
(Figures 5A, B). Figure 5C shows that excess methionine
stimulates de novo lipogenesis in TNBC. Together, Figure 5
illustrates both direct and relative de novo lipid and protein
synthesis and metabolism, and informs the potential reasons for
the discrepant lipid:protein effects of excess methionine on
TNBC and normal-like breast cells.

Two-way ANOVA (Table S2) confirms a significant
interaction term for methionine and insulin concentrations in
TNBC for the de novo synthesized lipids relative to the total
lipids (Figures 5A, B Right). Contrarily, only the insulin
independent variable was significant for the MCF10A in the de
novo synthesized lipids relative to the total lipids (Figures 5A, B
Right), but no interaction term, or even a significant methionine
March 2022 | Volume 12 | Article 858017
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A

B

C

FIGURE 3 | Average spectra of LD from (A) MCF-10A and (B) MDA-MB-231 cells under various methionine and insulin concentrations. Manual identification of
potential Raman peak targets is highlighted with vertical lines and labels. For example, the CDLipid peak in the cell silent region at 2135cm-1 has a noticeable increase
relative to the CDProtein peak at 2180cm-1 in the excess methionine groups. This could indicate preference for de novo lipogenesis in excess methionine
environments. (C) Raman spectra of common lipid species in LD, in descending order of prevalence.
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FIGURE 4 | LD chemometric data is sufficient to discriminate cell phenotype (A) tSNE separates experimental groups for MCF-10A and (B) MDA-MB-231 tSNE
plots of the top 10 PCs from PCA of LD spectra. Global structure is preserved, and no exaggeration was applied. Each point represents the average of 5 LD spectra
taken from a single cell of the corresponding sample. (C) Relative entropy provides a metric for ranking features (Raman peaks) by their ability to classify the spectra
as belonging to 20x methionine or 1x methionine groups, as well as 0.1x, 1x, 2x insulin groups. Raman peaks that appear to be influential in both classification
schema are denoted in purple text labels for clarity. These cell subtype plots are aligned manually for clarity. Subplots are not generated in such a fashion
automatically.
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term. Only in TNBC did the methionine term have a significant
impact on this ratio, which lead us to believe the discrepant
effects on CH2:CH3 ratios we observed (Figure 2B) might arise
from differential de novo lipogenesis, rather than protein
synthesis and metabolism. Since the excess methionine
stimulated de novo lipogenesis (Figure 5C) and was a
significant term in the ratio of de novo synthesized lipids to
proteins for both cell lines (Figures 5A, B), methionine is likely
to preferentially stimulate lipid production more than protein
production. Despite these findings, the relative proportion of
lipids to proteins in MCF10A still decreases under excess
methionine (Figure 2B). Therefore, either the pool of proteins
must be getting larger, or the lipid utilization must increase.
Excess methionine did not stimulate lipid utilization because
CDL : CH2 did not significantly increase (Figure 5A Right). This
leads us to believe that the protein signal must increase excess
methionine. However, excess methionine did not stimulate
protein production faster to a greater extent than lipid
production since the CDL : CDP slightly increased under excess
methionine (Figure 5A Left). If there was no relative increase in
protein nor decrease in lipids, then MCF10A may not
breakdown proteins as much in the presence of excess
methionine, or uptake and retain the excess methionine itself
more efficiently than TNBC. The hydrophobic amino acid can
interact with the acyl chains of the fatty acids in lipid droplets,
Frontiers in Oncology | www.frontiersin.org 7
and since the excess methionine supplied was not deuterated,
this protein would not appear in the cell silent region. This way,
the excess methionine can affect the CH3 peak without affecting
the CDP peak, and explain the behavior observed in Figures 2, 5.
Excess methionine can also incite endoplasmic reticulum stress
due to complex interactions with cysteine pathways since both
are sulfur containing and are critical in protein folding due to
disulfide bonds. These misfolded proteins may be sequestered by
LDs differently across subtypes.
Morphological Changes in Lipid Droplet
3D SRS images were taken for each individual cell at 2850cm-1

(Figures 6A–D) to assess the size and number of LDs more
accurately. LDs were computationally segmented using
MATLAB (Figures 6E–H) to acquire individual LD volume
and number of LDs per cell. The addition of excess methionine
produced the most noticeable changes in lipid droplet
morphology – a decrease in lipid droplet number but increase
in volume. This effect was observed in both MCF10A and TNBC
cells (Figures 6I, J). Of note is the insulin restricted case in
TNBC cells, which had no discernible change to lipid droplet
number or size. Qualitatively, the lipid droplets also appeared
more clustered in excess methionine cases. Lipid droplet volume
was also observed to slightly increase from restricted insulin
A B D

EC

FIGURE 5 | Quantitative de novo lipid synthesis (A) Normalized CDL intensities show excess methionine stimulates de novo lipogenesis. (B, C) CDL Ratios show
violin box-plots of de novo lipid synthesis CDL ratios for MCF10A and MDA-MB-231, respectively. CDL : CH2 illustrates the relative de novo lipid synthesized to total
ascribable lipid content. Balanced 2-way ANOVA with constrained sum of squares results of CDL ratios shows methionine concentration significantly influenced the
CDL: CDP ratio in both MCF10A and MDA-MB-231 lipid droplet spectra with rejection levels of #P < 0.05 and ####P < 0.0001, respectively. (D, E) CDL: CDP

illustrates the relative de novo lipid and protein synthesized biomolecules for MCF10A and MDA-MB-231, respectively. Values were taken from spectra of lipid
droplets only. while. There was no significant evidence of interactions between these two independent variables for these ratios. Balanced 2-way ANOVA with
constrained sum of squares results of CDL ratios indicate insulin significantly influenced the CDL: CH2 ratio in MCF-10A lipid droplet spectra with a rejection level of
####P < 0.0001, but no significant evidence of interactions between these two independent variables. However, in TNBC insulin, methionine, and the interaction term
significantly influenced the CDL : CH2 ratio in MDA-MB-231 lipid droplet spectra with a rejection level of ####P < 0.0001 and #P < 0.05 for the individual and
interaction terms, respectively.
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(0.1x) to physiological and excess insulin (1x and 2x) in TNBC
under excess methionine conditions. This corroborates the
potential interplay between insulin and methionine in TNBC.

Lipid droplet distribution can be a major indicator of cell
cycle status, nutrient availability, and ER stress (54). LD size may
influence the degree to which beta oxidation occurs in cells and
be affected by mitochondrial recruitment during LD expansion
in nutrient rich environments. Regardless, the physical contact
between these organelles is thought to mediate their proper
function (55, 56). A label-free approach to identifying
mitochondrial presence near lipid droplets may be the spectral
presence of cytochrome C (cytC), which is found in the
intermembrane space of mitochondria. Some peaks canonically
representative of cytC are the heme backbone at 1558cm-1 and
the side chains of tryptophan, tyrosine, and phenylalanine in
alpha structures at 1610cm-1 (57) which were weakly present
near the fingerprint region of the spectra in MCF10A and TNBC
cells. It was found in Figures 7A, 8A that excess methionine
cases displayed a diminished spectral presence of unmixed cytC
peaks. This suggests LDs in excess methionine may cluster near
other organelles such as lysosomes, or even with other LDs for
fusion events, instead of co-localizing with mitochondria
for energy. Examples of Gaussian-Lorentzian peak unmixing
Frontiers in Oncology | www.frontiersin.org 8
for MCF10A and TNBC (Figures 7B, 8B), respectively, with
quantitative summaries in the form of bar graphs (Figures 7D,
8C, D). The number of unmixed peaks was optimized such that
the overall fit is accurate, while the unmixed peaks are easily
ascribed to canonical protein and lipid deformations. The Amide
II’ region contains various CH2 and CH3 deformations such as
wagging, stretching, scissoring, and twisting (58, 59). The Amide
I region contains secondary structure information and has been
used to study proteins such as collagen (60). Between these peaks
lies the C-C bond of the heme backbone. MCF10A and TNBC
exhibited distinct peak shapes in all areas of this region. In
MCF10A, the Amide II’ peak had a narrower shoulder at
1458cm-1 under excess methionine (Figure 7C), while TNBC
had a narrower Amide I peak under excess methionine
(Figures 8E–G). The Amide I and II’ regions also contain
protein and lipid information and have various assignments in
the literature. Figure 8G quantifies the width and prominence of
the Amide I peak in TNBC with and without excess methionine.
Results indicate altered protein folding, in which methionine
plays crucial roles. Methionine is not only a protein translational
initiator, but its metabolism is also involved in purine synthesis,
epigenetic control, and secondary disulfide bond formation (24).
Misfolded proteins have tangible effects on ER stress and lipid
A

B

D

E

F

G

I

H

J
C

FIGURE 6 | 3D SRS image lipid droplet analysis (A–D) 3D isosurface reconstructions of the single cell SRS images taken at 2850cm-1. (E–H) LD segmentation
shows representative maximum intensity projections of SRS image stacks shown in (A–D) with lipid droplets highlighted in blue outlines. (I, J) Quantitative LD
structure summary shows average lipid droplet number and volume for each experimental group. Excess methionine groups display decreased lipid droplet number
and increased size. Lipid droplets also appear qualitatively more clustered in excess methionine as well. Scale bar is 20 µm. Two-tailed t-tests were performed
between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for LD number: *P < 0.05, **P < 0.01. Octothorps
‘#’ correspond to the following p-values for LD volume: #P < 0.05, ##P < 0.01. Scale bar is 20 µm.
March 2022 | Volume 12 | Article 858017

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fung et al. Breast Cancer Lipid Droplet Metabolism
droplet distribution and chemistry (13), as these proteins have
been shown to accumulate in LDs destined for proteasomal
breakdown (54). In this manner, LDs may serve as reservoirs
and chaperones to mitigate lipid and protein toxicity. Although
further investigations are required to confidently assign the
phenomenon observed herein, the fact that consistent
alterations in these areas were observed using label-free
vibrational imaging techniques sets the stage for more in-depth
studies of dietary methionine-controlled protein folding in breast
cancer cells. Figure 7C quantifies the changes in the Amide II’
peak of MCF10A and may indicate altered lipid and protein
structure as well. Various bond deformations occur at slightly
different wavenumbers, with CH2 scissoring being red-shifted
with respect to CH2 stretching. Acyl chains of different length
and saturation may influence the degrees to which each of these
deformations take place. Further investigation into purified LD
content with other techniques such as gas chromatography and
mass spectrometry are warranted. Spectroscopic data are usually
sensitive to baseline correction, background subtraction, and
normalization methods, and are therefore better suited to
Frontiers in Oncology | www.frontiersin.org 9
relative observations, while chromatography and spectrometry
offer absolute quantification and detailed chemical structure.
Conjugating these techniques is beyond the scope of this label-
free optical platform, but is promising and critical step in
progressing this technology.

Lipid Peroxidation Status
Another global lipid response to excess methionine takes form
in the lipid peroxidation status. Under oxidative stress, long
chain unsaturated fatty acids can undergo a vicious cycle of
lipid peroxidation (51). Several Raman shifts have been used to
describe the degree of unsaturation of fatty acids, including the
one near 3010 cm-1 that corresponds to the H-C= stretching
region (51). Interrogating the relative entropy plot in
Figure 4C, we find that the saturated lipid peak at 3010 cm-1

and the lipid peak at 2850 cm-1 both rank highly for both cell
types, but TNBC is more heavily influenced by methionine
concentration. That is, we can see from the spectroscopic data
that MCF10A, whether L-methionine was normal or in excess,
expressed relatively different levels of unsaturated lipids
A B

DC

FIGURE 7 | Spontaneous Raman Spectroscopy detects CytC presence and protein folding (A) normal vs excess methionine Expanded view of lipid droplet spectra
grouped by methionine concentration shows a high relative entropy in the 1550cm-1 region, ascribable to the heme backbone of cytochrome C. (B) Unmixing Peaks
with four peaks using a Gaussian-Lorentzian blend yields an error of 2.367% and an R2 of 0.98854. (C) Amide II’ Peak Shoulder shows an expanded view of normal
and excess methionine groups’ Amide II’ regions highlight a relatively narrowed shoulder at 1458cm-1. Unmixed peaks follow the overall shape of the average Amide
II’ peaks, with the error and correlation coefficient reported in the table below. Width and area information is also summarized in the table to clearly communicate the
disparate shoulder widths. (D) Quantitative summary of the heme backbone unmixed peak intensities for each experimental condition of MCF-10A cultures shows
decreased spectral presence. Two-tailed t-tests were performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the
following p-values: *P < 0.05, ***P < 0.001.
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depending on the level of insulin. This suggests that de novo
synthesis of branched chain fatty acids, or perhaps their
accumulation in LDs was upregulated in excess insulin
conditions. So, while insulin was critical in influencing de
Frontiers in Oncology | www.frontiersin.org 10
novo synthesis of lipids in TNBC, it may not influence lipid
peroxidation as much as methionine does. Figure 9 shows the
effects of excess methionine in TNBC using multi-modal
optical techniques.
A B

D

E F

G

C

FIGURE 8 | Spontaneous Raman Spectroscopy detects CytC presence and protein folding differences (A) normal vs excess methionine shows expanded view of
lipid droplet spectra grouped by methionine concentration shows a high relative entropy in the 1550cm-1 and 1650cm-1 regions, ascribable to the heme backbone of
cytochrome C and side chains of tryptophan, tyrosine, and phenylalanine, respectively. (B) Unmixing peaks with four peaks using a Gaussian-Lorentzian blend yields
an error of 2.620% and an R2 of 0.98544. (C, D) Quantitative summary of the unmixed peak intensities for each experimental condition of MDA-MB-231 cultures
shows decreased spectral presence of cytochrome C. (E, F) Amide I peak width shows an expanded view of lipid droplet from 1x Methionine (LEFT), and 20x
Methionine (RIGHT) experimental conditions. Two-tailed t-tests were performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’
correspond to the following p-values: *P < 0.05, **P < 0.01. (G) Peak analysis shows that the peak prominence and peak width at half prominence is significantly
narrower at the Amide I region in excess methionine lipid droplet spectra.
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FIGURE 9 | Multi-modal optical analysis depicts MDA-MB-231 1x insulin sample images demonstrate the conjugated SRS and TPF system. (A-G) Multichannel
Images illustrate SRS and TPF image channels of interest for lipidomic responses to excess methionine. (H) Overlaid Composite Regions image of the 15x
Methionine lipid (CH2), flavins, and de novo synthesized lipids (CDL). Channels were masked according to the indicated thresholds using ImageJ and contrast was
adjusted for optimal clarity. (I) Intensity profile plot depicts the intensities of pixels along the dotted yellow line shown in (H) of each of the three composite channels.
(J) Composite intensity histograms of the unsaturated lipid channel (3010cm-1). Bolded distribution outlines represent the average frequency of pixel intensities
among the cells in each group. Shaded areas around the bolded distribution outline represent the standard error of the mean of each bin of pixel intensities. Each
distribution curve represents the pixel intensities of a cell sampled from the experimental condition. (K) Quantitative Lipid saturation summary depicts the 3010cm-1

pixel intensities (Left axis) in each of the three regions shown in (H) of a typical cell from the indicated experimental condition. Additionally, the lipid arrangement
indicator ratio (2850cm-1:2880cm-1) for each of the regions in (H) is also depicted for the typical cell from each experimental condition. Two-tailed t-tests were
performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for the unsaturated lipid peak
(3010cm-1) intensities: **P < 0.01, ***P < 0.001, ****P < 0.0001. Octothorps ‘#’ correspond to the following p-values for the Lipid Arrangement Indicator (2850cm-1:
2880cm-1) intensities: #P < 0.05, ##P<0.01. (L) Optical redox ratio (Flavin/(Flavin+NADH) autofluorescence intensity) for the typical cell from each experimental
condition. Results corroborate and extend spectral data findings, as well as previous third-party studies. Scale bar is 50um. Two-tailed t-tests were performed
between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for the unsaturated lipid peak (3010cm-1)
intensities: ***P < 0.001.
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Conjugated SRS and TPF microscopy display spatial
distributions of points of interest regarding excess methionine
effects in TNBC cells (Figures 9A–G). These results also
corroborate with the spectroscopic data. Figure 9B reveals that
the cells undergo enhanced de novo lipogenesis under excess
methionine with respect to control groups. Contrary to
expectations, the unsaturated lipid signal in the excess
methionine group was weaker than the control overall but was
stronger near the large lipid droplets (Figure 9C). This
information is lost in spectral acquisitions alone because
spectra were obtained from lipid droplets only. Excess
methionine treated cells exhibited larger cross-sectional area
(Figure 9J) and may be due to the cells being more spread out
and flatter. Due to the point spread function of the confocal laser
scanning microscope, this spreading out of the cells may
contribute to an apparent decrease in concentration of
unsaturated fatty acids because the scattering cross section
along the beam path is smaller. Consistent contrast makes it
difficult to discern the abundance of smaller lipid droplets in the
control images without oversaturating the excess methionine
images. There were no discernible differences in spatial
distribution of heme groups at the 1580 cm-1 (Figure 9D), but
co-localization algorithms may help in future studies. The
indicator of crystalline arrangement in lipids corresponding to
the symmetric:antisymmetric CH2 stretching ratio indicates
that the excess methionine group may have less lipid
saturation near the plasma membrane (Figure 9E). Higher
ratios would indicate a lower concentration of 2880 cm-1

species, which has been ascribed to the Fermi resonance of CH
methylene groups (50). This ratio has been found to inversely
correlate with thermodynamic stability, and when the ratio is
larger, there may be less lattice order in the structure (61). In the
context of cell membranes, fluidity and saturation are critical
functional properties, and the decreased lipid saturation score
near the plasma membrane may also contribute to the observed
“flattness” of the cells with excess methionine, as the cells may be
able to spread out more easily.

Different areas of the cells provide niche microenvironments,
in which lipid peroxidation may vary. Three subcellular regions
of interest include where all lipids exist (Figure 9H, region 1),
where flavins are more present (region 2), and where newly
synthesized lipids are present (region 3). As shown in
Figures 9H, I, these regions do not necessarily overlap. Flavins
have been shown to report on oxidative stress, and certain flavin
enzymes have been associated with lipid peroxidation as well.
The quantitative image analyses of unsaturated lipids (3010cm-1)
and the lipid arrangement indicator ratio (2850cm-1:2880cm-1)
are summarized in Figure 9K, in which distinct regions are
separately quantified. Figure 9J highlights a larger cross-
sectional area of the imaged cells, which may be afforded by a
more fluid cell membrane. In certain cells, oxidative stress has
been found to increase lipid saturation for protection.
Furthermore, the presence of higher ratios near LDs suggests
there is less synthesis of saturated lipid species as well. Finally,
flavin autofluorescence decreased in the presence of excess
methionine (Figure 9F), while NADH autofluorescence
Frontiers in Oncology | www.frontiersin.org 12
remained more consistent (Figure 9G). The flavin/(NADH +
flavin) ratio has been shown to be an indicator of oxidative stress
and estimator for NAD+:NADH (62). Results corroborate with
previous studies in which this ratio was used to differentiate
breast cancer cell lines (63), with the TNBC having relatively
weaker flavin autofluorescence than the normal-like cell type.
Under oxidative stress, this ratio has been shown to increase. A
decrease here (Figure 9L) may demonstrate the antioxidant
properties of methionine. Flavin autofluorescence data is
summarized in Figure S2.
DISCUSSION

For the first time, the unique lipid metabolism of triple negative
breast cancer was studied under tandem excess methionine and
insulin conditions, and revealed key insights that span the
metabolic, spatial, and biochemical dimensions. Not only did
this study confirm lipid droplets are reflective of cellular
phenotypes and demonstrate their efficacy in classifying breast
cancer subtypes, and even phenotypes, it improves
morphological analysis using 3D imaging, as opposed to 2D,
and efficiently displays relevant chemical disparities using the
first demonstration of relative entropy for Raman data.
Considering the critical impact lipid metabolism has on the
progression of diseases such as cancer, the analyses on lipid
saturation and peroxidation, optical redox status, and LD size
and distribution solidify the effects of methionine and insulin,
which may prove to be therapeutic targets for breast cancer in
the future.

These experiments demonstrate the power of nearly label-free
optical techniques to probe LD phenotypes for the study of
TNBC’s unique metabolism. Methionine dependence, also
known as the Hoffman effect, has been explored in TNBC and
other cancers, but fewer studies explored the effects of excess
methionine, and fewer still, the tandem manipulation of
methionine and insulin. Upon the addition of insulin in TNBC
growth media, macromolecular changes appeared in the CH
stretching region of excess methionine treated cells, as the CH2:
CH3 ratio increased in TNBC, but decreased in MCF10A control
cells. A potential pathway that involves both insulin and
methionine in LD metabolism may be mediated by TNBC’s
elevated mTOR activity, and was explored through the
chemometric, spatial, and molecular imaging dimensions with
subcellular resolution. Currently the stoichiometric mass action
of this pathway remains to be investigated in these breast cancer
subtypes, but several studies have linked methionine, mTOR,
and insulin signaling pathways (25–30), albeit transitively.
Paramount in this investigation is the implication of these
metabolites in the pursuit of TNBC diagnosis and treatment.
Unmixing the interplay between insulin and methionine may
afford targeted therapies that address the rampant lipid
metabolism that facilitates breast cancer progression.

LD chemical composition also demonstrated excellent
classification ability, as lipid and protein Raman cross sections
are not only larger, but also very diverse and highly implicated in
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metabolic cellular states. Classification of breast cancer subtypes,
and even more so their phenotypic states, can be critical in
improving patient outcomes due to the necessity of early
diagnosis. MCF10A cells may exhibit differential protein
metabolism by retaining scavenged methionine or not
metabolizing proteins as much as TNBC, which is due, in part,
to very different doubling times. Several other considerations
including LD size may also contribute to these disparities, as
larger LDs have a greater volume:surface area ratio, and thus a
greater lipid:protein ratio since the apolipoproteins stud the
phospholipid surface of the lipid core. LD fusion can affect this
as well, since newly synthesized LDs may have a diluted CD
signal if fused with older LDs. Further investigation is warranted
to uncover the details of differential lipid metabolism in breast
cancer subtypes using LDs, but this platform has set the stage for
macroscopic observations using efficient optical techniques.

Both TNBC and MCF10A cells exhibited similar spatial
information of LDs under these treatments as excess
methionine conditions generally decreased the number of lipid
droplets while increasing their volume in both cell types, while
insulin generally increased both size and number of LDs. Insulin
restriction appeared to increase LD number as well, and in
TNBC, appeared to attenuate the effects of excess methionine
on LD number. This interesting pattern not only suggests that
TNBC has unique insulin-mediated lipid metabolism, but that
insulin and methionine may have more complex concentration-
dependent interactions in general as well. LD distribution also
seemed to be more clustered in the excess methionine cases, and
we intuit from the diminished spectral presence of cytC that
these lipid droplets were less co-localized with mitochondria.
Finally, the antioxidant properties of methionine expectedly
diminished flavin autofluorescence and resulting lipid droplet
spectra showed higher degrees of lipid unsaturation. In
Figures 9K, L the optical redox ratios and the lipid
arrangement indicator ratios indicate that methionine plays a
large role in lipid peroxidation and saturation. The degree of
saturation of lipids is a critical consideration for cell membrane
fluidity, especially in aggressive cancers that can alter their extra
cellular matrix (ECM), or those that metastasize and migrate
rapidly. For the first time, the dynamics of lipid saturation and
peroxidation under nutritional control has been imaged with
label-free subcellular resolution.

To broaden the scope of the investigation and capitalize on
the rich chemical data of the Raman spectrum, relative entropy
was used to rank the features that exhibited the greatest variance
between different groups. As expected, there are several areas
other than the CH stretching region that offer strong
classification ability despite lower Raman intensities. This may
be attributed to the higher intensity deviations at higher
intensities typical of multiplicative scattering effects.
Additionally, the effects of individual nutritional manipulations
become clearer with all Raman peaks being visible
simultaneously. From this insight, the interrogation of
pathways with Raman spectra can be done more efficiently, as
the relative entropy scores for each Raman shift can be seen at
once, reducing the number of spectra and subplots that need to
Frontiers in Oncology | www.frontiersin.org 13
be displayed. With this demonstration of efficacy, more critical
quantitative analyses, as well as algorithmic improvements will
be conducted. For example, incorporation of directional shifts
in intensities can be made visible on the relative entropy plot, as
opposed to absolute distance metrics alone. This will not only
identify discriminating variables but will also circumvent the
need to manually determine significant ratios, ratio differences,
and other trends as well. Further, this relative entropy plot may
be useful in feature reduction, so that fewer hyperspectral
imag e s may be r equ i r ed f o r d i s c r im ina t i n g LD
microenvironments and subpopulations. Other methods more
directly identify the wavenumbers that contribute the most to a
spectrum ’s classification, such as the hybrid variable
combination population analysis (VCPA) and iterative
retaining important variables (IRIV) approach (64). However,
due to the large number of variables, IRIV can be time and
resource intensive.

The diverse pathophysiology of breast cancer may have
important mechanisms involving methionine and insulin that
can be studied with optical techniques such as spontaneous
Raman spectroscopy and SRS/TPF microscopy. This study also
emphasizes that LDs are organelles diverse in structure and
function and can yield rich metabolic information when
interrogated by Raman techniques. Future studies that involve
automated high-throughput acquisitions of spectra and images
at more finely tuned concentrations of insulin and methionine
may increase the power of the results discussed here. Different
distribution fits for the relative entropy algorithm, displaying
directionality of peak intensity changes, as well as the
multiplexing of dietary manipulations such as glucose,
pyruvate, and glutamine may paint a clearer picture of the
metabolic dynamics in breast cancer (65, 66). This will also
help make hyperspectral imaging more efficient in terms of disk
space and clustering ability. Utilizing morphological
characteristics and intensity changes to augment classification
has not been performed in this study but will be a prudent next
step in developing these optical techniques for classification
purposes. Additionally, spatial distribution of LD by size and
chemometric composition, as well as quantitative descriptions of
LD distribution and co-localization would further enrich this
investigation. This kind of quantitative hyperspectral image data
will bolster the utility of LD analysis in the study of breast cancer,
and ultimately improve not only our understanding of the
complex disease, but patient outcomes in eventual translation
as well.
MATERIAL AND METHODS

Experimental Design
An experimental outline is shown below (Figure 10). First, three
cell subtypes were grown in media with either 1x methionine
(0.03g/L) or 20x methionine (0.6g/L). Then the experiment was
repeated with the addition of 3 insulin concentrations for each of
the groups to investigate their relationship.
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Cell Culture
Human triple negative breast cancer cell line (MDA-MB-231)
and normal-like breast epithelial cell line (MCF10A) were
cultured in Dulbecco’s modified Eagles’ medium (DMEM),
Frontiers in Oncology | www.frontiersin.org 14
supplemented with 5% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (Fisher Scientific, Waltham, MA), and
incubated with 5% CO2 at 37°C. Cell cycles were synchronized
using double thymidine block (67). After passaging at 80%
A

B

FIGURE 10 | Experimental Design and Points of Interest A Experimental design illustration of the groups in this study. Only methionine concentration is modulated
at first, and then insulin and methionine were modulated in tandem. DMEM used in this experiment already contains 0.03g/L of L-methionine, which corresponds to
the 1x methionine group. NOTE: in part 2, the excess methionine concentration is 20x for the Raman spectroscopy, and 15x for SRS imaging. (B) Points of interest
where SRS images relating to lipid metabolism are acquired, related to the lipidomic investigation. Hyperspectral Image (HSI) format is shown conceptually to convey
the multi-modal approach to quantitative optical analysis. Vibrational modes are color coded, with an example image of a HSI of MCF10A control cells.
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confluence, cells were seeded at a concentration of 2×105/mL
atop 70% ethanol-soaked cover glass in 24-well plates and
incubated for 8 hours. Then the growth media was changed to
50% heavy water (D2O) and treatment media as follows.

For MDA-MB-231 and MCF10A cell culture media, 57 mg/L
and 42 mg/L L-methionine (M8439, Sigma Aldrich) was added
to DMEM for the excess methionine group for spontaneous
Raman spectroscopy and SRS imaging (20x and 15x
concentration), respectively. The DMEM powder used in this
study already contains 0.03g/L (1x concentration) L-methionine
and corresponds to the physiological concentration group. The
reason for lowering the excess methionine concentration for SRS
imaging analysis is because the cell morphological changes were
more varied and poorer with 20x methionine, making it more
difficult to acquire quantitative metabolic activity from images
on a per-cell basis. Insulin (Sigma Aldrich, St. Louis, MO) was
added at 1µg/mL, 10 µg/mL, and 20 µg/mL for the 0.1x, 1x, and
2x insulin groups, respectively.

Cells were incubated for 48 hours, which corresponds to a
deuterium-retarded cell cycle. Cyclin dependent kinase 1
(CDK1) inhibitor (RO-3066, Sigma) was added with 8 hours
remaining to arrest growth before mitosis. Cells were gently
rinsed with 1x PBS with Calcium and Magnesium ions at 4°C
(Fisher Scientific, 14040216), and finally fixed in 4% methanol-
free PFA solution (VWR, 15713-S) for 15 minutes. The cover
glass was mounted on 1mm thick glass microscope slides with
120 µm spacers filled with 1x PBS without calcium and
magnesium ions. These samples are stored at 4°C submerged
in PBS when not in use.
Spontaneous Raman Spectroscopy
Spontaneous Raman scattering spectra were obtained by a
confocal Raman microscope (XploRA PLUS, Horiba) equipped
with a 532 nm diode laser source and 1800 lines/mm grating. The
acquisition time is 30 s with an accumulation of 4. The excitation
power is ~40 mW after passing through a 100x objective
(MPLN100X, Olympus). The background spectra were taken
for each LD at the same focus plane as the LD and were
subtracted from each LD spectrum immediately. Spectra were
preprocessed using vector normalization and simplex
normalized. Peaks were normalized to the protein peak at 2940
cm-1. Previous studies suggest Raman microspectroscopy can
quantify lipids non-invasively (68).
Stimulated Raman Scattering
Imaging Microscopy
An upright laser-scanning microscope (DIY multiphoton,
Olympus) with a 25x water objective (XLPLN, WMP2, 1.05
NA, Olympus) was applied for near-IR throughput.
Synchronized pulsed pump beam (tunable 720–990 nm
wavelength, 5–6 ps pulse width, and 80 MHz repetition rate)
and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz
repetition rate) were supplied by a picoEmerald system (Applied
Physics & Electronics) and coupled into the microscope. The
pump and Stokes beams were collected in transmission by a high
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NA oil condenser (1.4 NA). A high O.D. shortpass filter (950nm,
Thorlabs) was used that would completely block the Stokes beam
and transmit the pump beam only onto a Si photodiode for
detecting the stimulated Raman loss signal. The output current
from the photodiode was terminated, filtered, and demodulated
in X with a zero phaseshift by a lock-in amplifier (HF2LI, Zurich
Instruments) at 20MHz. The demodulated signal was fed into the
FV3000 software module FV-OSR (Olympus) to form the image
during laser scanning. All 3D lipid droplet images were obtained
with a pixel dwell time 40 µs with 3-frame averaging for a total
imaging speed of ~10-15 min per image stack. Laser power
incident on the sample is approximately 40mW.
Two Photon Fluorescence Microscopy
Autofluorescence of flavins was excited at 820 nm and
autofluorescence of NADH was excited at 780nm using the
same tunable picosecond laser described in section 2.3. Epi-
detected emission offlavin autofluorescence was collected using a
460 nm filter cube (OCT-ET460/50M32, Olympus), and NADH
was collected using a 515nm filter. These images were also
512x512 pixels and were acquired with a 12.5 µs/pixel dwell
time using a 300mW power at the laser shutter. Autofluorescence
images were background subtracted using a rolling ball
algorithm with a radius of 50px, which is intended to
approximate cell size in these images.
Data Analysis
Spectral Clustering
Previous studies have shown these breast cancer subtypes have
unique Raman features (16, 69). Machine learning was
conducted to determine the extent to which these features can
be used to segregate these subtypes and be augmented using the
metabolic dimension of excess methionine. Neural network
classification was done using a simple multi-layer perceptron
(MLP) model with 100 neurons in the hidden layer and a
rectified linear unit (ReLU) activation function for each
neuron. An L2 regularization term with hyperparameter
a=0.0002 penalizes the model for incorrect classification
during learning with cross-entropy loss minimization. The
classification is stochastically optimized using an adaptive
moment estimation algorithm called Adam. Advantages of this
choice of activation function and solver in an MLP include
invariance to rescaling gradients, the ability to learn non-linear
models, and a natural simulated annealing to optimize the
gradient (70). MLP are, however, sensitive to parameter
tuning, and all spectra were normalized to have the same range.

The input for the MLP model consists of a matrix of Raman
spectra, and a vector of target classes. In this study, target
classes are of categorical type and correspond to the cell subtype
and metabolite concentration groups. Each spectrum Xi is
represented as a vector containing m wavenumbers which are
each input into a first layer of neurons. Each neuron in the
hidden layer accepts the weighted linear combination of input
features and applies the ReLU activation function, outputting
the data to the output layer. Softmax is used to probabilistically
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determine the target class of the multiclass model. The model is
trained via backpropagation to minimize cross-entropy loss
with a maximum of 200 iterations in which subsequent weight
vectors reflect a subtracted loss gradient according to equation
1 below.

Wi+1 = Wi− ∈ ∇LossiW (1)

where, ϵ corresponds to the learning rate. A python
implementation of model is readily available from scikit-learn
v0.24.1 (71). The width of the hidden layer, k=100, as well as its
depth of 1 single layer, are tunable depending on the dataset.
Larger datasets may require more neurons and deeper networks
to perform better. The geometric mean of input variables and
classes roughly totaled 100, and an underlying assumption of a
simple binary effect of excess methionine and very distinct
Raman spectra was comfortable with only a single layer.
However, multiplexing of variables such as cell subtype,
methionine concentration, and other manipulations may
intuitively justify additional hidden layers in future
experiments. Classification in this study mainly attempts to
highlight the higher dimensionality of methionine’s non-linear
effects on breast cancer subtypes, and discuss potential pathway
interactions for further investigation. That is, if all breast cancer
subtypes responded similarly and to a similar degree, more
complex neural nets may not be necessary to achieve
good performance.

Principal component analysis (PCA) is performed using
Orange 3.26 on the pre-processed data. The first 10 PCs are
used as the vectors for tSNE visualization without any
exaggeration and a perplexity of 30. A graphical method
outline can be found in Figure S2.
Selected Raman Feature Analysis
Spectroscopic data is extracted using MATLAB and is plotted
using either MATLAB or Prism 7. To visualize the influence of
all Raman peaks on classification simultaneously, relative
entropy is employed. For binary classification systems, the
amount of data lost in classifying data B as data A is described
by the one-dimensional cross entropy equation 2 below.

H(A,B) = −Sn
i (pA 〚 (v〛i ) log pB(vi)) (2)

H(A,B) is the cross-entropy, pA(vi) and pA(vi) are probability
vectors from the distributions of intensity values a wavenumber
variable vi. Probability vectors can be derived from various
distributions, but only gaussian normal distributions were used
in this study. The DKL is related to cross-entropy as it is the
additional entropy beyond the entropy of the data A. Since both
distributions are already labeled and we are not interested in
generating probability vectors, but rather supply them, the DKL is
described by Equation 3 below.

DKL(AjjB) =on
i (PA(vi) log

pA(vi)
pB(vi)

� �
(3)

This divergence is made symmetric by equation 4 below. For
this analysis probability vectors are of length 107
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DKL =
DKL(AjjB) + DKL(BjjA)

2
(4)

For multiclass situations in which the number of groups
exceeds two, the average divergence is calculated following
equation 5 (72, 73).

D(P1 … Pk) =
1

k(k − 1)o
k
iok

j DKL(PijjPj) (5)

Relative Entropy is an excellent method for quantifying the
relative importance of a wavenumber in the discrimination of
spectral datasets because it is computationally fast and capitalizes
on the tremendous chemometric potential afforded by the
spectral resolution of modern spontaneous Raman systems. To
date, this method has not yet been employed and reported in
Raman spectroscopy applications. Second derivative barcode
analysis may be coupled with this method, and improve it, as
barcode analysis contains both amplitude and width
information (74).

Image Analysis
Images were processed using MATLAB and ImageJ. 3D image
stacks of lipid droplets underwent bandpass filtering to suppress
horizontal noise artifacts from laser beam scanning, and
smoothed. Lipid droplets received a sphericity score based on
Euclidean distance from perfect spheres emanating from the
center of mass of the lipid droplet to the surface of the lipid
droplet. Those with low sphericity scores were discarded.
Autofluorescence images underwent sliding paraboloid
background subtraction before manual cell segmentation and
measurement was conducted via ImageJ.

Statistical Analysis
All experiments were run in triplicate. LD spectra for display,
ratiometric peak analysis, subtype clustering, and relative
entropy comprise 5 LD spectra per cell, and 5 cells per
experimental group per trial. SRS and TPF images used in
multi-modal analysis consist of 3 or 4 ROI of approximately 5
cells per ROI in each experimental group per trial. SRS images
used in 3D spatial analysis consist of 4 cells per experimental
group per trial. 2-way balanced ANOVA results were consistent
between trials, so to communicate the impact patterns of
methionine and insulin, results were pooled such that each
datum represents a measurement, not a trial mean.
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