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Abstract

Since the spread of COVID-19 pandemic in early 2020, modeling the related factors became

mandatory, requiring new families of statistical distributions to be formulated. In the present

paper we are interested in modeling the vaccination rate in some African countries. The

recorded data in these countries show less vaccination rate, which will affect the spread of

new active cases and will increase the mortality rate. A new extension of the inverted Nadar-

ajah-Haghighi distribution is considered, which has four parameters and is obtained by com-

bining the inverted Nadarajah-Haghighi distribution and the odd Lomax-G family. The

proposed distribution is called the odd Lomax inverted Nadarajah-Haghighi (OLINH) distri-

bution. This distribution owns many virtuous characteristics and attractive statistical proper-

ties, such as, the simple linear representation of density function, the flexibility of the hazard

rate curve and the odd ratio of failure, in addition to other properties related to quantile, the

rth-moment, moment generating function, Rényi entropy, and the function of ordered statis-

tics. In this paper we address the problem of parameter estimation from frequentest and

Bayesian approach, accordingly a comparison between the performance of the two estima-

tion methods is implemented using simulation analysis and some numerical techniques.

Finally different goodness of fit measures are used for modeling the COVID-19 vaccination

rate, which proves the suitability of the OLINH distribution over other competitive

distributions.

1 Introduction

The amount of data obtained for analysis has been growing increasingly, requiring new statis-

tical distributions that enables us to depict every phenomenon under study. Modeling real-life

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0276181 October 21, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Almongy HM, Almetwally EM, Haj Ahmad

H, H. Al-nefaie A (2022) Modeling of COVID-19

vaccination rate using odd Lomax inverted

Nadarajah-Haghighi distribution. PLoS ONE

17(10): e0276181. https://doi.org/10.1371/journal.

pone.0276181

Editor: Alessandro Barbiero, Universita degli Studi

di Milano, ITALY

Received: November 28, 2021

Accepted: September 30, 2022

Published: October 21, 2022

Copyright: © 2022 Almongy et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are within the

following Supporting Information file: https://

covid19.who.int/who-data/vaccination-data.csv.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-6821-4406
https://orcid.org/0000-0001-5915-2031
https://doi.org/10.1371/journal.pone.0276181
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0276181&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.1371/journal.pone.0276181
https://doi.org/10.1371/journal.pone.0276181
http://creativecommons.org/licenses/by/4.0/
https://covid19.who.int/who-data/vaccination-data.csv
https://covid19.who.int/who-data/vaccination-data.csv


observations using probability distributions is one of the most essential responsibilities that

statisticians must handle. Many scientific fields require statistical models to describe the trend

and to predict the future behaviour of their data, for example, medical, engineering, finance,

and others. Therefore many lifetime models have been employed in literature to describe vari-

ous forms of survival data, so the newly created families of distributions are strongly depend-

ing on the quality of statistical analysis processes,the flexibility and the characteristics of the

new models, therefore, significant efforts are focusing on constructing new statistical models.

Still there is a persistent need to create new models or formulate new extensions for achieving

better fit of the real lifetime data.

Tahir et al. [1] proposed the inverted Nadarajah-Haghighi (INH)) distribution,which is a

new inverted model with decreasing and uni-modal (right-skewed) density, with decreasing

and upside-down bathtub hazard rate shapes (UBT). They addressed several statistical features

of the INH distribution and used various frequentest approaches to estimate the model’s

parameters. They have demonstrated the suitability of INH distribution by testing real-life

data sets. They also obtained that the INH model was better fit with comparison to other well-

known lifetime models such as, the inverted exponential, the inverted gamma, the inverted

Weibull and the inverted Lindley among others.

Several researchers have addressed the applications of inverted distributions, one can refer

to Folks and Chhikara [2], Rosaiah and Kantam [3], De Gusmao et al. [4], Joshi and Kumar

[5], Almetwally [6], Ibrahim and Almetwally [7], Ramos et al. [8], Almetwally [9], Hassan et al.

[10], and Basheer et. al [11] among others. Some generalizations of the INH distribution were

introduced in literature for example, the Marshall-Olkin INH distribution was studied by Raf-

fiq et al. [12], Toumaj et al. [13] proposed the transmuted INH distribution. Elshahhat and

Rastogi [14] discussed parameter estimation of lifetime for the INH distribution with Type-II

progressively censored samples. Still there is space for new generalizations and extensions for

the INH distribution, consequently, the new extension is superior to the original INH distribu-

tion and other competitive models specially for modeling COVID-19 vaccination rate.

Let x be a random variable with the parameters δ, θ> 0 that follows the inverse Nadarajah-

Haghighi distribution (INH). The CDF and pdf are as follows:

Gðx;YÞ ¼ e1� 1þdxð Þy; x > 0; d; y > 0 ð1Þ

and,

gðx;YÞ ¼
dy

x2
1þ

d

x

� �y� 1

e1� 1þdxð Þ
y

; x; d; y > 0; ð2Þ

where Θ = (δ, θ) is a parameter vector of INH distribution.

In this work we are introducing a new extension of INH distribution with four parameters,

namely the odd Lomax INH (OLINH) based on the odd Lomax-G (OL-G) family introduced

by Cordeiro et al. [15]. Adding more parameters to the original distribution improves that dis-

tribution and make it more flexible and reliable to model some real life data.

Let g x;Yð Þ ¼
dGðx;YÞ

dx be the pdf of a baseline model with vector parameter Θ, then the CDF

of the OL-G family is given by:

Fðx;OÞ ¼ 1 � b
a
bþ

Gðx;YÞ

1 � Gðx;YÞ

� �� a

; x > 0; a;b > 0; ð3Þ
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where O = (α, β, Θ) is a vector of parameters of OL-G family. The pdf of (3) is defined by

f ðx;OÞ ¼
ab

agðx;YÞ

ð1 � Gðx;YÞÞ
2
bþ

Gðx;YÞ

1 � Gðx;YÞ

� �� a� 1

ð4Þ

where α, β> 0 are shape parameters. The random variable with pdf (4) is denoted by

X�OL-G(O). A new extended four-parameter Weibull, Lomax, log-logistic, and log-Lindley

distributions, called the OL-Weibull, OL-Lomax, OL-log-logistic, and OL-log-Lindley distri-

butions respectively, were introduced by Cordeiro et al. [15]. Odd Lomax-exponential distri-

bution was introduced by Ogunsanya et al. [16]. Yakura et al. [17] introduced the Lomax-

Kumaraswamy distribution. Marzouk et al [18] obtained a generalized odd Lomax family of

distributions with applications. The extended odd Lomax family of distribution was described

by Abubakari et al. [19].

The main idea of this work is to study the statistical properties of the new extension model

and investigate the point and interval estimation for its unknown four-parameters. Two esti-

mation methods are considered: the maximum likelihood, and the Bayesian estimation meth-

ods. To verify the efficiency of the proposed estimation methods and to study how these

estimators perform for various sample sizes and parameter values, statistical analysis is carried

out using simulation study via R-coding. A real data example emphasizes the suitability of

OLINH model over INH and other competitive models with two and three parameters. The

rest of this article is organized as follows: The OLINH distribution is defined in Section 2. In

Section 3, some statistical properties for the OLINH distribution are obtained. Section 4 stud-

ies two methods of estimation. To judge the efficiency of these estimation methods, a simula-

tion study is performed in Section 5. The Application of COVID-19 vaccinate rate data from

46 different African countries is considered in Section 6 for illustrative purpose. Finally, in Sec-

tion 7, conclusions are provided.

2 OLINH distribution

Consider the OL-G family with the INH distribution as a baseline function, then a four-

parameters OLINH distribution is generated. By substituting the INH model’s CDF and pdf
files (1) and (2) in the OL-G family (3) and (4), the OLINH distribution CDF and pdf are

obtained as:

Fðx;OÞ ¼ 1 � b
a
bþ

e1� 1þdxð Þ
y

1 � e1� 1þdxð Þ
y

2

4

3

5

� a

; ð5Þ

and

f ðx;OÞ ¼ ayb
a

d

x2
1þ

d

x

� �y� 1

e1� 1þdxð Þ
y

1 � e1� 1þdxð Þ
y

� �2
bþ

e1� 1þdxð Þ
y

1 � e1� 1þdxð Þ
y

2

4

3

5

� a� 1

; ð6Þ

respectively, where x> 0, α, β, δ, θ> 0. A random variable with pdf (6) is denoted by

X�OLINH(α, β, δ, θ). The hazard rate function (hrf) of the OLINH distribution is given by

hðx;OÞ ¼ ady
1

x2
1þ

d

x

� �y� 1 1 � e1� 1þdxð Þ
y

� �� 1

b e� 1þ 1þdxð Þ
y

� 1

� �

þ 1

:
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The odds ratio of failure (ORF) of the OLINH distribution is otained by

ORFðx;OÞ ¼ b
� a

bþ
e1� 1þdxð Þ

y

1 � e1� 1þdxð Þ
y

2

4

3

5

a

� 1:

Figs 1 and 2 are separate shapes of the OLINH distribution’s pdf and the hrf for different

parameters values respectively. The density shape of the OLINH distribution can be right-

skewed and Rev-J shaped. The hrf of the OLINH distribution has some interesting shapes,

such as, decreasing and upside down bathtub. Different shapes of hrf create an appealing fea-

tures for modeling many lifetime data such as biomedical and biological studies, reliability

analysis, physical engineering, and survival analysis.

3 Statistical characteristics of OLINH distribution

In this section, we observe some statistical characteristics of the OLINH distribution, such as,

the linear representation of its pdf, quantile, the moments, the moment generating function

(MGF), Rényi entropy and ordered statistic function.

Fig 1. Plots of the OLINH densities for some parameter values.

https://doi.org/10.1371/journal.pone.0276181.g001
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3.1 Linear representation

According to Cordeiro et al. [15] the linear representation for the density of the OL-G family

is given by

f ðx;OÞ ¼
X1

k;j¼0

Dk;jðkþ jþ 1Þgðx;YÞGðx;YÞkþj; ð7Þ

where Dk;j ¼
ð� 1Þja

ðkþjþ1Þbkþ1

� a� 1

k

� �
� k� 2

j

� �
. The linear representation for the cumulative density of

the OL-G family is as follows

Fðx;OÞ ¼
X1

k;j¼0

Dk;jGðx;YÞ
kþjþ1

: ð8Þ

Using Eq (7), the Linear representation for the pdf of the OLINH density can be written as

f ðx;OÞ ¼
X1

k;j¼0

Dk;jðkþ jþ 1Þ
dy

x2
1þ

d

x

� �y� 1

eðkþjþ1Þ 1� ð1þdxð Þ
y

: ð9Þ

Eq (9) denotes the exponentiated INH density with power (k + j + 1). Using Eq (8), we obtain

the linear representation of CDF for the OLINH distribution

Fðx;OÞ ¼
X1

k;j¼0

Dk;jðkþ jþ 1Þeðkþjþ1Þ 1� ð1þdxð Þ
y

: ð10Þ

Linear representation for pdf and CDF of the OLINH are valuable when finding moments,

moment generating function, Rényi entropy, and ordered statistics density.

3.2 Quantile for the OLINH distribution

The quantile of a certain distribution is an important measure of location, it is usually used to

create a random sample in simulation analysis. To do so, let x = Q(x) = F(x,O)−1, hence for the

OLINH distribution the quantile can be obtained by inverting Eq (5) to get:

xq ¼ d
1

1þ ln 1þ 1

b ð1� qÞ
� 1
a � 1

� �

� �� �1
y
� 1

; 0 < q < 1
ð11Þ

In particular, the three quartiles, say Q1, Q2, and Q3 can be observed by selecting some fixed

values of q = 0.25, 0.5, and 0.75, respectively, in Eq (11). By this equation, we can obtain skew-

ness and kurtosis measures, see Fig 3.

3.3 Moments for the OLINH distribution

Let x be a random variable following the OLINH distribution, then the rth moment of x follows

from Eq (9), and using power series with some algebraic manipulations to have the following

�mr ¼ EðxrÞ

¼
X1

i;k;j¼0

Dk;jaiðrÞðkþ jþ 1Þ
� i=yeðkþjþ1ÞG

�
i
y
þ 1; 1

�

where aiðrÞ ¼ d
r ð� 1Þrþiþ1

i!

Q1

s¼0

ðr þ sÞ: The ordinary moments are useful in evaluating skewness
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and kurtosis values see Fig 3. The rth incomplete moment of OLINH is expressed as

mrðyÞ ¼
Zy

0

xrf ðxÞdx

¼
X1

i;j;k0

Dk;jaiðrÞðkþ jþ 1Þ
� i=yekþjþ1g

�
i
y
þ 1; y

�

where gðb; yÞ ¼
Ry

0

zb� 1e� zdz is the lower incomplete gamma function. The incomplete moment

is useful in finding Benferroni and Lorenz curves, mean residual life, mean waiting time and

other measures.

The moment generating function of OLINH distribution is given by

�MxðtÞ ¼ EðextÞ

¼
X1

i;k;j¼0

Dk;j

X1

m¼0

tm

m!
ðkþ jþ 1Þ

� i
y ekþjþ1g

�
i
y
þ 1; 1

�

:
ð12Þ

Fig 2. Plots of the hrf of the OLINH distribution for some parameter values.

https://doi.org/10.1371/journal.pone.0276181.g002
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Fig 3. Plots of skewness and kurtosis values the OLINH for some parameter values.

https://doi.org/10.1371/journal.pone.0276181.g003
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3.4 Rényi entropy

Rényi entropy is known as an extension of Shannon entropy, Rényi entropy of order z is

defined as

IzðxÞ ¼
1

1 � z
log

Z1

� 1

f ðxÞzdx

0

@

1

A; z > 0; z 6¼ 1

Using the OLINH density from Eq (6), and apply the power series with integration tech-

niques and some algebraic simplification Rényi entropy can be written as

IzðxÞ ¼
1

1 � z
log dy

2z� 1
X1

l;n;s¼0

Rl;nð� 1Þ
sþneðzþnþlÞðzþ nþ lÞ�

sþzðy� 1Þ

y
2ðz � 1Þ

s

� �

G
sþ zðy � 1Þ

y
þ 1

� �" #

ð13Þ

where Rl;n ¼ b
� l a

b

� �z
� 2z� l

n

� �
� zðaþ1Þ

l

� �
:

Fig 4 shows the Rényi Entropy for some parameter values of OLINH model with different

values of z. Rényi Entropy has many applications for more information see [20–23]. By this

Figure, we note that the Rényi Entropy decreases when the z values increases.

Fig 4. Plots of the OLINH Rényi entropy for some parameter values.

https://doi.org/10.1371/journal.pone.0276181.g004
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3.5 Order statistics

Let x1, . . ., xn be a sample of size n drawn randomly from a continuous pdf f(x). Suppose x1:n<

x2:n< . . .< xn:n are the related order statistics. If the random sample follow OLINH distribu-

tion, then from Eqs (8) and (9) the pdf of the kth order statistics xk:n is given by

fk:nðxÞ ¼
X1

t;u¼0

bt;uhtþuþ1ðxÞ

where ht+u+1(x) is the exponentiated INH density with power t + u + 1 and

bt;u ¼
Xn� k

j¼0

Xjþk� 1

m¼0

ð� 1Þ
mþu
ab
� t� 1

Bðk; n � kþ 1Þ

n � k
j

� �
� t � 2

u

� �
jþ k � 1

m

� �
� ðmþ 1Þa � 1

t

� �

From the above equation we can say that the OLINH order statistics pdf is a represented as

a linear combination of the exponentiated INH densities, hence many statistical properties of

the ordered statistics can be derived easily from the characteristic of ht+u+1(x).

4 Estimation methods

The estimation problem of the OLINH distribution parameters is studied in this section using:

The maximum likelihood estimator (MLE), and the Bayesian estimation based on the squared

error loss function.

4.1 Maximum likelihood estimation

Let X1, . . ., Xn be a random sample from OLINH distribution with parameters α, β, δ and θ.

Then the log-likelihood for the OLINH is provided by

lðOÞ ¼ n½ lnðaÞ þ lnðyÞ þ a lnðbÞ þ lnðdÞ� � 2
Xn

i¼1

lnðxiÞ þ ðy � 1Þ
Xn

i¼1

ln 1þ
d

xi

� �

þ

Xn

i¼1

1 � 1þ
d

xi

� �y
" #

� 2
Xn

i¼1

ln 1 � e1� 1þd
xð Þ

y
� �

� ðaþ 1Þ
Xn

i¼1

ln bþ
e1� 1þ dxið Þ

y

1 � e1� 1þ dxið Þ
y

2

4

3

5 ð14Þ

To maximize the log-likelihood equation, we need to take the partial derivatives of l(O)

with respect to the model parameters α, β, δ and θ and equate them to zero, hence we obtain

the following system of nonlinear equations:

@lðOÞ
@a
¼
n
a
þ n lnðbÞ �

Xn

i¼1

ln bþ
e1� 1þ dxið Þ

y

1 � e1� 1þ dxið Þ
y

2

4

3

5 ¼ 0 ð15Þ

@lðOÞ
@b

¼
na
b
� aþ 1ð Þ

Xn

i¼1

bþ
e1� 1þ dxið Þ

y

1 � e1� 1þ dxið Þ
y

2

4

3

5

� 1

¼ 0 ð16Þ

@lðOÞ
@d
¼
n
d
þ y � 1ð Þ

Xn

i¼1

1

xi

1þ d

xi

� y
Xn

i¼1

Ai d; yð Þ � 2y
Xn

i¼1

Ai d; yð Þe1� 1þ dxið Þ
y

1 � e1� 1þ dxið Þ
y
þ

aþ 1ð Þ
Xn

i¼1

Ai d; yð Þe1� 1þ dxið Þ
y

bþ 1 � bð Þe1� 1þ dxið Þ
y

� �

1 � e1� 1þ dxið Þ
y

� � ¼ 0 ð17Þ
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and

@lðOÞ
@d
¼
n
y
þ
Xn

i¼1

ln 1þ
d

xi

� �

�
Xn

i¼1

Bi d; yð Þ � 2
Xn

i¼1

Bi d; yð Þe1� 1þd
xð Þ

y

1 � e1� 1þd
xð Þ

y
þ

aþ 1ð Þ
Xn

i¼1

Bi d; yð Þe1� 1þd
xð Þ

y

bþ 1 � bð Þe1� 1þd
xð Þ

y
� �

1 � e1� 1þd
xð Þ

y
� � ¼ 0 ð18Þ

where Aiðd; yÞ ¼
1

xi
1þ d

xi

� �y� 1

and Biðd; yÞ ¼ 1þ d

xi

� �y
ln 1þ d

xi

� �
: It is possible to obtain the

MLE of α (â) explicitly from Eq (15), hence

â ¼
n

� n ln b̂ þ
Xn

i¼1

ln½b̂ þ
e1� 1þd̂xð Þ

ŷ

1 � e1� 1þd̂xð Þ
ŷ
�

where b̂; d̂ and ŷ, are the MLEs of β, δ and θ respectively, and they are obtained numerically

by solving the above system using some techniques such as the Newton-Raphson method, R

packages are used for that purpose.

4.2 Bayesian estimation

The Bayesian approach deals with the parameters as random variables with certain prior distri-

bution. The ability to incorporate prior knowledge into research makes the Bayesian method

very useful in the survival analysis. One of the main problems associated with survival analysis

is the limitation of data availability. For the parameters α, β, δ and θ we suggest gamma distri-

bution as prior functions, therefore the parameters α, β, δ and θ have gamma distributions

Gamma(μ1, ν1), Gamma(μ2, ν2), Gamma(μ3, ν3), and Gamma(μ4, ν4) respectively. Hence the

independent joint prior density function can be written as follows:

PðOÞ / am1 � 1b
m2 � 1

d
m3 � 1

y
m4 � 1e� ðn1aþn2bþn3dþn4yÞ ð19Þ

The joint posterior density function of O is calculated using the likelihood function and joint

prior function, and is given by

Y
Ojxð Þ / anþm1 � 1y

nþm4 � 1
b
naþm2 � 1

d
nþm3� 1

Yn

i¼1

1þ d

xi

� �y� 1

1 � e1� 1þd
xið Þ

y
� �2

bþ
e1� 1þ dxið Þ

y

1 � e1� 1þ dxið Þ
y

2

4

3

5

� a� 1

e� ðn1aþn2bþn3dþn4yÞe�
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Based on the squared error loss function, the Bayes estimators of ~O is:

S ~O
� �
¼ E ~O � O

� �2

Z 1

0

Z 1

0

Z 1

0

Z 1

0

~O � O
� �2

PðOjxÞdadbdddy
ð21Þ

It’s worth noting that the integrals offered by Eq (21) can’t be obtained manually. As a result,

we use a numerical method called the Markov Chain Monte Carlo (MCMC) method to

approximate the integrals value. The MCMC method’s most popular applications are the
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Metropolis-Hasting (MH) algorithm and the Gibbs sampling. The MH algorithm, like accep-

tance-rejection sampling, assumes that for each iteration of the process, a selected value from a

proposal distribution can be generated. We apply the MH inside Gibbs sampling to create ran-

dom samples of conditional posterior densities from the OLINH distribution family. The

Table 1. RB, MSE, and length of CI of OLINH distribution for MLE, and Bayesian when α = 1.25, β = 1.5, δ = 1.5.

α = 1.25, β = 1.5, δ = 1.5

MLE Bayesaian

θ n Bias MSE L.CI CP Bias MSE L.CI

0.3 30 α 0.1138 0.7438 2.8408 95.80% -0.1767 0.3758 1.0202

β 0.4749 0.9418 2.4175 93.60% 0.0877 0.3879 1.3903

δ -0.4943 0.8442 1.5838 92.40% -0.1720 0.4010 1.1108

θ 0.9478 0.8511 2.7743 96.80% -0.3469 0.2581 0.6394

80 α 0.0650 0.5690 2.1996 97.20% -0.1720 0.3206 0.7089

β 0.4509 0.7906 1.6069 95.00% 0.0831 0.2592 0.8553

δ -0.5736 0.8283 0.7752 93.80% -0.2205 0.3891 0.7692

θ 0.9215 0.6943 2.0380 96.40% -0.3743 0.2237 0.4409

150 α 0.0257 0.3329 1.2976 98.20% -0.1089 0.1984 0.4442

β 0.4102 0.6688 1.0284 97.00% 0.0479 0.1372 0.4435

δ -0.6099 0.7922 0.4485 95.20% -0.1753 0.2894 0.4556

θ 0.9106 0.5745 1.3749 97.60% -0.4495 0.2131 0.2057

1.5 30 α 0.2785 1.1166 4.0630 95.40% -0.0041 0.2997 1.1029

β 0.3516 1.4257 5.1972 96.00% 0.0055 0.3823 1.4560

δ 0.2608 0.7933 2.7079 97.40% 0.0363 0.2954 1.0875

θ 0.0002 0.8658 3.3973 95.80% 0.0012 0.3474 1.2692

80 α 0.0988 0.5452 2.0587 95.40% -0.0158 0.1883 0.7115

β 0.1555 0.8459 3.1906 95.60% -0.0096 0.2397 0.9489

δ 0.1222 0.5187 1.9041 96.20% 0.0059 0.1657 0.6515

θ 0.0030 0.6036 2.3685 95.40% 0.0011 0.2173 0.8495

150 α 0.0502 0.3931 1.5141 96.40% -0.0038 0.1085 0.4265

β 0.1033 0.7078 2.7102 96.80% -0.0037 0.1308 0.4954

δ 0.1332 0.5084 1.8346 96.40% 0.0051 0.0991 0.3965

θ -0.0120 0.6043 2.3703 96.20% -0.0027 0.1163 0.4597

3.5 30 α 0.2688 1.2366 4.5872 93.80% 0.0302 0.3026 1.1072

β 0.1029 1.4508 5.6604 93.40% 0.0277 0.3868 1.4855

δ 0.5312 0.9658 2.1415 95.40% 0.1453 0.3412 1.0154

θ -0.0980 1.0177 3.7598 95.20% 0.0110 0.4370 1.5967

80 α 0.0675 0.6421 2.4879 96.80% 0.0162 0.1907 0.7004

β -0.1169 0.8402 3.2242 95.40% -0.0081 0.2436 0.9779

δ 0.4556 0.8206 1.7820 95.40% 0.1338 0.2508 0.5691

θ -0.0969 0.8877 3.2188 93.60% 0.0136 0.2588 0.9759

150 α 0.0101 0.3482 1.3650 96.00% -0.0005 0.1046 0.4177

β -0.2107 0.5770 1.8942 95.40% 0.0061 0.1270 0.4924

δ 0.4091 0.6793 1.1429 95.20% 0.0879 0.1582 0.3397

θ -0.0939 0.6436 2.1717 94.60% 0.0107 0.1374 0.5276

https://doi.org/10.1371/journal.pone.0276181.t001
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posterior conditional distributions are as follows:
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Table 2. RB, MSE, and length of CI of OLINH distribution for MLE, and Bayesian when α = 1.25, δ = 1.5, θ = 1.5.

α = 1.25, δ = 1.5, θ = 1.5

MLE Bayesaian

θ n Bias MSE L.CI CP Bias MSE L.CI

0.3 30 α 0.3056 1.0132 3.6826 94.80% 0.0122 0.2857 1.0788

β 0.7582 0.5931 2.1493 94.80% 0.3020 0.2152 0.7287

δ 0.1382 0.4022 1.3523 95.80% 0.0344 0.2534 0.9057

θ -0.0690 0.4626 1.7693 95.60% -0.0062 0.3474 1.3517

80 α 0.1285 0.5077 1.8900 94.80% 0.0079 0.2055 0.8396

β 0.3738 0.3208 1.1792 94.80% 0.1538 0.1327 0.4787

δ 0.0700 0.2841 1.0357 94.80% -0.0019 0.1459 0.5681

θ -0.0467 0.3729 1.4373 94.60% 0.0083 0.2205 0.8806

150 α 0.0597 0.3363 1.2866 94.20% -0.0072 0.1056 0.4085

β 0.1859 0.2083 0.7877 94.80% 0.0208 0.0724 0.2664

δ 0.0481 0.2070 0.7613 93.60% 0.0062 0.0916 0.3556

θ -0.0356 0.3005 1.1603 94.40% -0.0025 0.1130 0.4300

2 30 α 0.2573 0.9687 3.5854 93.80% 0.0107 0.2489 0.9260

β 0.2319 1.6410 6.1767 95.60% 0.0046 0.4165 1.5837

δ 0.2761 0.8985 3.1290 98.00% 0.0105 0.2799 1.0736

θ 0.0988 1.0429 4.0505 95.80% 0.0212 0.3626 1.3178

80 α 0.0743 0.4182 1.6002 95.20% -0.0083 0.1658 0.6267

β 0.1077 1.0010 3.8360 96.40% -0.0017 0.2642 1.0425

δ 0.1918 0.6324 2.2098 97.20% 0.0155 0.1806 0.6680

θ -0.0113 0.7146 2.8034 94.40% -0.0068 0.2239 0.8697

150 α 0.0499 0.2923 1.1204 96.40% -0.0041 0.0998 0.3927

β 0.1029 0.7916 2.9992 95.60% 0.0007 0.1247 0.4835

δ 0.1501 0.5318 1.8908 96.20% 0.0018 0.1019 0.3860

θ -0.0408 0.5904 2.3042 96.20% -0.0054 0.1253 0.4770

3.5 30 α 0.1958 0.7921 2.9559 95.00% -0.0008 0.2492 0.8705

β 0.0601 1.9303 7.5291 98.20% -0.0003 0.4393 1.7002

δ 0.3755 1.1094 3.7505 98.20% 0.0204 0.3182 1.2019

θ 0.1636 1.2586 4.8439 94.80% 0.0060 0.3538 1.3703

80 α 0.1046 0.4331 1.6202 96.60% 0.0014 0.1506 0.5523

β 0.0631 1.2014 4.6339 95.60% -0.0044 0.2714 1.0539

δ 0.2101 0.7126 2.5079 97.60% -0.0026 0.1939 0.7319

θ 0.0369 0.8250 3.2299 95.00% 0.0046 0.2208 0.8245

150 α 0.0276 0.2396 0.9304 96.00% -0.0017 0.0980 0.3961

β 0.0088 0.8191 3.2118 95.20% -0.0020 0.1274 0.5033

δ 0.1439 0.5703 2.0711 96.20% 0.0049 0.1112 0.4405

θ 0.0106 0.6275 2.4616 95.20% -0.0065 0.1233 0.4875

https://doi.org/10.1371/journal.pone.0276181.t002
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Table 3. RB, MSE, and length of CI of OLINH distribution for MLE, and Bayesian when β = 1.5, δ = 1.5, θ = 1.5.

β = 1.5, δ = 1.5, θ = 1.5

MLE Bayesaian

θ n Bias MSE L.CI CP Bias MSE L.CI

0.5 30 α 0.0997 0.1983 0.7533 96.00% 0.0407 0.0956 0.3322

β 0.2218 1.4176 5.4071 95.00% 0.0166 0.3915 1.5627

δ 0.1974 0.6554 2.2944 96.80% 0.0210 0.3211 1.1880

θ 0.0415 0.7196 2.8132 95.20% 0.0221 0.3806 1.4486

80 α 0.0397 0.1033 0.3979 95.00% 0.0163 0.0568 0.2127

β 0.0693 0.7226 2.8060 95.00% -0.0081 0.2574 1.0337

δ 0.1093 0.4118 1.4823 95.60% 0.0060 0.1929 0.7347

θ -0.0151 0.4188 1.6411 96.20% 0.0031 0.2292 0.8833

150 α 0.0078 0.0666 0.2610 95.00% 0.0070 0.0385 0.1435

β 0.0198 0.5127 2.0083 96.80% 0.0017 0.1280 0.4827

δ 0.0854 0.3194 1.1482 95.40% 0.0049 0.1145 0.4576

θ -0.0413 0.3014 1.1576 94.00% -0.0075 0.1235 0.4714

1.75 30 α 0.2290 1.1879 4.3881 94.40% -0.0066 0.3415 1.3009

β 0.2237 1.1951 4.5009 95.40% -0.0027 0.3824 1.4830

δ 0.2637 0.7904 2.6851 98.40% 0.0450 0.2828 1.0202

θ 0.0208 0.8637 3.3867 95.40% 0.0020 0.3342 1.2597

80 α 0.0851 0.6607 2.5258 94.60% -0.0102 0.1937 0.7272

β 0.1329 0.8555 3.2647 96.00% -0.0055 0.2457 0.9412

δ 0.1428 0.5255 1.8831 96.80% 0.0175 0.1675 0.6197

θ -0.0151 0.6154 2.4131 95.40% -0.0074 0.2107 0.8207

150 α 0.0911 0.5307 1.9864 94.20% -0.0043 0.1200 0.4604

β 0.1522 0.7020 2.6051 95.20% 0.0045 0.1377 0.5195

δ 0.1005 0.4668 1.7334 97.80% -0.0038 0.0987 0.3609

θ -0.0040 0.5595 2.1953 96.80% 0.0030 0.1230 0.4724

3.5 30 α 0.0880 1.5161 5.8248 95.80% -0.0164 0.4089 1.5354

β 0.0680 0.8528 3.3222 95.80% 0.0011 0.3622 1.3914

δ 0.2331 0.7859 2.7617 97.80% 0.0393 0.2572 0.9488

θ 0.0044 0.8943 3.5090 95.20% 0.0105 0.3298 1.2096

80 α 0.0064 0.9096 3.5680 95.00% -0.0069 0.2481 0.9660

β -0.0086 0.5052 1.9818 95.20% -0.0041 0.2255 0.8644

δ 0.1430 0.5293 1.8988 96.20% 0.0164 0.1571 0.5881

θ -0.0257 0.5943 2.3272 95.60% 0.0002 0.2071 0.7571

150 α 0.0369 0.9408 3.6565 95.00% -0.0012 0.1302 0.4980

β 0.0456 0.5366 2.0886 96.20% -0.0060 0.1297 0.4906

δ 0.1113 0.4687 1.7186 97.20% 0.0054 0.0922 0.3519

θ 0.0092 0.6261 2.4562 97.20% 0.0021 0.1158 0.4301

https://doi.org/10.1371/journal.pone.0276181.t003
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Table 4. Minimum, first and third quarterly, median, mean and variance for COVID-19 vaccination.

Min. 1st Qu. Median Mean 3rd Qu. Max. var

0.0420 1.1190 3.1710 9.8037 12.5448 72.2860 256.9492

https://doi.org/10.1371/journal.pone.0276181.t004

Table 5. MLE estimates, SE, and different measures for COVID-19 vaccination.

estimates SE CVMS ADS KSS KSP-value AICS CAICS BICS HQICS

OLINH α 9.0385 4.1244 0.0501 0.3185 0.0856 0.8606 292.1784 293.1540 299.4930 294.9185

β 1.8521 0.9203

δ 716.7624 66.2961

θ 0.2115 0.1034

EL α 1.0330 0.4006 0.0638 0.3782 0.1070 0.6294 292.7365 293.3080 299.5222 295.7916

β 1.3510 0.6870

δ 5.1071 6.1123

KW α 1.3645 0.9455 0.0993 0.6261 0.1276 0.4084 297.3417 298.3173 304.6563 300.0818

β 0.7670 0.0020

δ 1.4914 0.4256

θ 0.1863 0.0257

KITL α 0.6727 0.0338 0.0554 0.3824 0.1058 0.6433 293.3680 293.9395 299.8540 295.4231

β 0.0905 0.0133

δ 9.0592 0.0122

INH δ 0.3538 0.0561 0.0545 0.3393 0.0890 0.8283 293.0967 293.3757 300.7540 295.4667

θ 11.1900 5.0294

OWITL α 0.7249 0.1680 0.0545 0.3689 0.0875 0.8423 292.9472 293.5186 299.6433 298.0023

β 0.7639 0.5142

δ 0.6648 0.3838

NEF α 101.8728 13.3171 0.0546 0.3366 0.0916 0.8018 292.4949 293.8066 299.9809 295.5500

β 8.2935 3.4193

δ 0.2780 0.1416

WL α 29.2803 2.1566 0.0539 0.3292 0.0994 0.7165 292.4813 293.4569 299.7959 295.2214

β 2.9211 0.5771

δ 0.0538 0.0146

θ 0.0361 0.0390

EOWINH α 2.8130 0.5873 0.0549 0.3347 0.0985 0.7264 293.8822 294.8578 301.1968 296.6223

β 2.1734 2.0397

δ 0.1565 0.1711

θ 64.0368 14.5102

MKINH α 5.6926 3.4110 0.0547 0.3299 0.0910 0.8073 292.2558 293.8272 299.7417 295.3108

δ 771.0487 64.8183

θ 0.2142 0.1024

https://doi.org/10.1371/journal.pone.0276181.t005
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5 Simulation

In this section, the Monte-Carlo simulation process is utilized to compare the conventional

estimation methods: MLE and Bayesian estimation method under square error loss function.

Simulation analysis is based on MCMC method for estimating the OLINH lifespan distribu-

tion’s parameters using R software with 5000 iterations, hence random samples are generated

from the OLINH distribution samples, where x represents the OLINH lifetime for various

parameter actual values and sample sizes n: (30, 80, and 150). Different real values of the

parameters of the OLINH distribution are obtained.

Asymptotic confidence intervals for MLE and the Bayesian credible intervals are obtained,

the highest posterior density interval (HPDI) was used for finding the credible intervals. The

best estimator method is defined by minimizing estimator’s relative bias (RB), the mean

squared error (MSE), and the length of confidence interval (L.CI).

RBðOÞ ¼
1
N

PN

1
Ô j � O

O
, MSEðOÞ ¼ 1

N ð
PN

1
Ô j � OÞ

2
and L.CI(O) = Upper(O)−Lower(O)

Fig 5. Estimated CDF and pdf of the OLINH distribution for COVID-19 vaccination data.

https://doi.org/10.1371/journal.pone.0276181.g005

Fig 6. P-P and Q-Q plot of the OLINH distribution for COVID-19 vaccination data.

https://doi.org/10.1371/journal.pone.0276181.g006
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Tables 1–3 summarize the simulation results of the methods discussed in this paper for

point and interval estimation. The RB, MSE, and L.CI values are used to make the essential

comparisons between various point and interval estimating methods. The following conclu-

sions are summarized from these tables:

1. The RB, MSE, and L.CI decrease as n increases for actual parameters of the OLINH

distribution.

2. Bayesian estimation is the best estimation method.

3. Credible interval of Bayesian estimation by HPDI is the shortest CI of parameters of

OLINH distribution.

4. For fixed α, β, δ, and sample size, the RB, MSE, and L.CI increase as θ increases.

5. For fixed α, δ, θ, and sample size, the RB, MSE, and L.CI increase as β increases, in almost

all cases.

6. For fixed β, δ, θ, and sample size, the RB, MSE, and L.CI increase as α increases,in almost

all cases.

6 Analysis of COVID-19 vaccination

COVID-19 vaccination rate data from 46 different countries in southern Africa is considered,

some statistical measures are summarized in Table 4. Our goal is to model these rates by imple-

menting the OLINH distribution to describe their trend and to predict future values of the vac-

cination rate. For that purpose some goodness of fit measures are used and a comparison

between our model and other competitive models are presented in Table 5. The goodness of fit

measures are: Kolmogorov-Smirnov statistics (KSS) with P-value (KSP-value), Cramér-von

Fig 7. Boxplot, TTT plot and estimated hazard of COVID-19 vaccination data.

https://doi.org/10.1371/journal.pone.0276181.g007

PLOS ONE Modeling of COVID-19 vaccination rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0276181 October 21, 2022 16 / 24

https://doi.org/10.1371/journal.pone.0276181.g007
https://doi.org/10.1371/journal.pone.0276181


Mises statistics (CVMS), Anderson-Darling statistics (ADS), Akaike information criterion sta-

tistics (AICS), Bayesian information criterion statistics (BICS), Hannan-Quinn information

criterion statistics (HQICS) and consistent AICS (CAICS).

The considered data belong to 46 Countries in southern Africa, as following: Saint Helena,

Nigeria, Seychelles, Democratic Republic of the Congo, Mali, Malawi, Madagascar, Mauritius,

South Sudan, Equatorial Guinea, Burkina Faso, Mauritania, Botswana, Cabo Verde, Ethiopia,

Guinea-Bissau, Ivoire, Liberia, Algeria, Mozambique, Chad, Gambia, Kenya, Comoros,

Guinea, Central African Republic, Congo, Eswatini, Namibia, Benin, Niger, Uganda, United

Republic of Tanzania, South Africa, Senegal, Angola, Cameroon, Zambia, Ghana, Rwanda,

Zimbabwe, Sierra Leone, Lesotho, Togo, Sao Tome and Principe, and Gabon.

Fig 8. Estimated CDF for different models of COVID-19 vaccination data.

https://doi.org/10.1371/journal.pone.0276181.g008
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The data represents the rate of persons fully vaccinated per 100 as follows: 0.042, 0.205,

0.285, 0.319, 0.464, 0.550, 0.889, 0.895, 0.939, 0.986, 1.000, 1.088, 1.212, 1.244, 1.450, 1.593,

1.844, 2.039, 2.157, 2.167, 2.334, 2.440, 2.657, 3.685, 3.879, 4.493, 4.800, 4.944, 5.155, 5.674,

7.602, 10.004, 12.238, 12.520, 12.553, 13.063, 15.105, 15.229, 15.629, 15.848, 18.641, 18.940,

29.885, 58.162, 61.838, and 72.286.

Table 5 shows that the OLINH distribution has the least values for all information measures

with respect to other distributions. The suggested competitive distributions are: the extended

odd Weibull inverse Nadarajah-Haghighi (EOWINH)(Almetwally [24]), exponential Lomax

(EL) (El-Bassiouny et al. [25]), Kumaraswamy Weibull (KW) (Cordeiro et al. [26]),

Fig 9. Estimated pdf for different models of COVID-19 vaccination.

https://doi.org/10.1371/journal.pone.0276181.g009

PLOS ONE Modeling of COVID-19 vaccination rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0276181 October 21, 2022 18 / 24

https://doi.org/10.1371/journal.pone.0276181.g009
https://doi.org/10.1371/journal.pone.0276181


Kumaraswamy Inverted Topp-Leone (KITL) (Hassan et al. [10]), odd Weibull inverse Topp-

Leone (OWITL) (Almetwally [27]), new exponential-X Fréchet (NEF) (Alzeley et al. [28]),

Modified Kies INH (MKINH), and Weibull Lomax (WL) (Tahir et al. [29]). As a result, we

conclude that OLINH best suits and fit the COVID-19 vaccination rate data set. Fig 5 shows

the OLINH estimated CDF and pdf of the COVID-19 vaccination data. Fig 6 shows the PP-

plot, and QQ-plot of fitted OLINH of the COVID-19 vaccination data. The Q-Q and P-P plots

in Fig 6 indicate that our distribution is a good fit for modeling the actual data. Fig 7 shows

Box plot, TTT plot and estimated hazard with empirical hazard. Fig 8 represents the estimated

CDF with empirical CDF for different models of COVID-19 vaccination. Fig 9 shows esti-

mated pdf with probability in histogram for different models of COVID-19 vaccination. The

Bayesian estimation method of the OLINH distribution is the best estimation method, accord-

ing to Table 6. Fig 10 show the estimates values have maximum of log-likelihood values of

Table 6. MLE, and Bayesian estimates, SE of OLINH distribution for COVID-19 vaccination.

MLE Bayesian

estimates SE Lower Upper estimates SE Lower Upper

α 9.0385 4.1244 0.9547 22.7255 9.9268 2.7435 5.1000 15.1619

β 1.8521 0.9203 0.0483 4.6616 2.1348 0.6641 0.9533 3.6020

δ 716.7624 66.2961 586.8220 1573.1849 716.4462 11.6813 694.5620 738.8099

θ 0.2115 0.1034 0.0089 0.5166 0.2096 0.0196 0.1690 0.2464

https://doi.org/10.1371/journal.pone.0276181.t006

Fig 10. Log-likelihood value with parameters values of the OLINH distribution for COVID-19 vaccination data.

https://doi.org/10.1371/journal.pone.0276181.g010
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OLINH distribution. Figs 11 and 12 depicts history plots, estimated marginal posterior density,

and MCMC convergence of α, β, δ and θ. Fig 13 show estimated survival and and hazard rate

by the MLE and the Bayesian estimation methods.

7 Conclusion

A new Extension of INH and Lomax distributions called OLINH distribution is formulated in

this paper. We studied its statistical properties and obtained its pdf as linear representation,

quantile function of moments, moment generation functions, and Rényi entropy are also

obtained. Point estimation of the OLINH unknown parameters α, β, δ, and θ were considered

Fig 11. Convergence of MCMC estimation of OLINH distribution for COVID-19 vaccination for the parameters α, and β.

https://doi.org/10.1371/journal.pone.0276181.g011
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by the MLE, and the Bayesian estimation methods. Interval estimation of the OLINH

parameters α, β, δ, and θ were considered by the MLE asymptotic approximation, and Bayes-

ian credible interval estimation methods. To distinguish the performance of the different esti-

mation methods, a comparison was carried out through Monte-Carlo simulation analysis

using the R package. For that reason, the COVID-19 data sets were also considered, and

OLINH was shown to match these data better compared to other competitive distributions.

Bayesian estimation was better than the MLE for estimating the parameters of OLINH

distribution.

Fig 12. Convergence of MCMC estimation of OLINH distribution for COVID-19 vaccination for the parameters δ, and θ.

https://doi.org/10.1371/journal.pone.0276181.g012
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20. Renner R, Wolf S. Smooth Rényi entropy and applications. InInternational Symposium onInformation

Theory, 2004. ISIT 2004. Proceedings. 2004 Jun 27 (p. 233). IEEE.

21. Popescu TD, Aiordachioaie D. Signal segmentation in time-frequency plane using renyi entropy-appli-

cation in seismic signal processing. In2013 conference on control and fault-tolerant systems (SysTol)

2013 Oct 9 (pp. 312–317). IEEE.

22. Hughes MS, Marsh JN, Arbeit JM, Neumann RG, Fuhrhop RW, Wallace KD, et al. Application of Renyi

entropy for ultrasonic molecular imaging. The Journal of the Acoustical Society of America. 2009 May;

125(5):3141–3145. https://doi.org/10.1121/1.3097489 PMID: 19425656

PLOS ONE Modeling of COVID-19 vaccination rate

PLOS ONE | https://doi.org/10.1371/journal.pone.0276181 October 21, 2022 23 / 24

https://doi.org/10.1080/00949655.2018.1487441
https://doi.org/10.1007/s00362-009-0271-3
https://doi.org/10.18576/msl/100102
https://doi.org/10.1080/00949655.2020.1830991
https://doi.org/10.3390/axioms10010025
https://doi.org/10.3390/axioms10010025
https://doi.org/10.32604/cmc.2021.013971
https://doi.org/10.32604/cmc.2021.013971
https://doi.org/10.18576/jsap/100205
https://doi.org/10.1007/s40745-020-00297-7
https://doi.org/10.1007/s40745-020-00297-7
https://doi.org/10.18187/pjsor.v17i2.3734
https://doi.org/10.1007/s41096-021-00097-z
https://doi.org/10.1016/j.cam.2018.08.008
https://doi.org/10.9734/jsrr/2020/v26i430247
https://doi.org/10.9734/jsrr/2020/v26i430247
https://doi.org/10.1121/1.3097489
http://www.ncbi.nlm.nih.gov/pubmed/19425656
https://doi.org/10.1371/journal.pone.0276181


23. Liu F, Gao X, Zhao J, Deng Y. Generalized belief entropy and its application in identifying conflict evi-

dence. IEEE Access. 2019 Sep 4; 7:126625–126633. https://doi.org/10.1109/ACCESS.2019.2939332

24. Almetwally E. M. (2021). Extended Odd Weibull Inverse Nadarajah-Haghighi Distribution with Applica-

tion on COVID-19 in Saudi Arabia. Mathematical Sciences Letters, 10(3), 1–15.

25. El-Bassiouny AH, Abdo NF, Shahen HS. Exponential lomax distribution. International Journal of Com-

puter Applications. 2015 Jan 1; 121(13):24–29. https://doi.org/10.5120/21602-4713

26. Cordeiro GM, Ortega EM, Nadarajah S. The Kumaraswamy Weibull distribution with application to fail-

ure data. Journal of the Franklin Institute. 2010 Oct 1; 347(8):1399–1429. https://doi.org/10.1016/j.

jfranklin.2010.06.010

27. Almetwally EM. The odd Weibull inverse topp–leone distribution with applications to COVID-19 data.

Annals of Data Science. 2022 Feb; 9(1):121–140. https://doi.org/10.1007/s40745-021-00329-w

28. Alzeley O, Almetwally EM, Gemeay AM, Alshanbari HM, Hafez EH, Abu-Moussa MH. Statistical infer-

ence under censored data for the new exponential-X Fréchet distribution: Simulation and application to
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