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ABSTRACT

We report on the development of an unsupervised
algorithm for the genome-wide discovery and ana-
lysis of chromatin signatures. Our Chromatin-profile
Alignment followed by Tree-clustering algorithm
(ChAT) employs dynamic programming of combina-
torial histone modification profiles to identify locally
similar chromatin sub-regions and provides com-
plementary utility with respect to existing methods.
We applied ChAT to genomic maps of 39 histone
modifications in human CD4+ T cells to identify
both known and novel chromatin signatures. ChAT
was able to detect chromatin signatures previously
associated with transcription start sites and enhan-
cers as well as novel signatures associated with a
variety of regulatory elements. Promoter-associated
signatures discovered with ChAT indicate that
complex chromatin signatures, made up of numer-
ous co-located histone modifications, facilitate
cell-type specific gene expression. The discovery
of novel L1 retrotransposon-associated bivalent
chromatin signatures suggests that these elements
influence the mono-allelic expression of human
genes by shaping the chromatin environment of im-
printed genomic regions. Analysis of long gene-
associated chromatin signatures point to a role for
the H4K20me1 and H3K79me3 histone modifications
in transcriptional pause release. The novel chroma-
tin signatures and functional associations un-
covered by ChAT underscore the ability of the
algorithm to yield novel insight on chromatin-based
regulatory mechanisms.

INTRODUCTION

Histone proteins are subject to a variety of covalent modi-
fications, including methylation, acetylation, phosphoryl-
ation and ubiquitylation. The identities and locations of

these histone modifications have profound effects on the
structure and regulatory properties of eukaryotic chroma-
tin (1). Indeed, over the last several years specific genomic
regulatory elements, such as promoters, enhancers and
boundary elements have been associated with distinct
combinatorial patterns of histone modifications (2–12).
The discovery and characterization of such combinatorial
histone modification patterns, or chromatin signatures as
they are often referred to, can provide valuable informa-
tion with respect to the location and activity of cell type
and developmentally specific genomic regulatory features
(13–21).

Next-generation sequencing-based technologies, chro-
matin immunoprecipitation followed by high throughput
sequencing (ChIP-seq) in particular, provide an opportun-
ity for the systematic analysis of combinatorial histone
modification patterns genome-wide (22,23). Computation-
ally, the inference of combinatorial histone modification
signatures is a pattern recognition problem in
high-dimensional space. There are currently two classes
of computational approaches designed for this purpose:
supervised and unsupervised methods. Supervised
methods identify histone modification signatures charac-
teristic of a pre-defined set of known genomic features, e.g.
promoters or enhancers (6,7,21,24). Regulatory element
characteristic combinatorial modification patterns
identified in this way can then be used to query the
genome to identify the locations of additional regulatory
elements of the same kind. The use of supervised methods
in this way was critically important for the discovery that
specific genomic regulatory elements bear distinct chroma-
tin signatures. However, supervised methods are unsuited
for the discovery of novel histone modification patterns
that may be associated with as yet unknown regulatory
activities. Unsupervised methods do not rely on training
data sets derived from previously annotated features, and
as such they have the potential to discover the kinds of
unknown chromatin signatures that characterize novel
regulatory elements. Here, we are more interested in the
unsupervised approach to the analysis of chromatin given
the potential this approach holds for novel discoveries.
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There are a number of available unsupervised algo-
rithms for the analysis of histone modification patterns.
The program ChromaSig utilizes probabilistic profiles that
are characteristic of specific histone modification patterns
(25,26). The CoSBI algorithm applies a biclustering
method to search for regions with common histone modi-
fication patterns (27). Hidden Markov Model (HMM)
based methods are widely used to segment eukaryotic
genomes into various combinatorial chromatin states
with distinct histone modification profiles (15,28,29). The
most recently developed method of this kind, Segway,
employs Dynamic Bayesian Networks to achieve greater
precision for the detection of known regulatory elements
along with superior accommodation of missing data (30).

We have developed an unsupervised algorithm for
analysis of combinatorial histone modification patterns
that extends the capabilities of existing methods in a
number of ways. First, our method does not apply any
restriction to the size of co-located histone modification
patterns. Second, our method does not utilize any motif
seed to initialize the subsequent inference of histone modi-
fication patterns. Third, our method is capable of detect-
ing histone modification patterns with multiple modes,
e.g. co-located signatures made up of constituent individ-
ual modifications that are spatially shifted with respect to
one another. Fourth, our method is capable of detecting
co-located signatures composed of alternating segments
with conserved and variant combinatorial patterns.
Fifth, our method discriminates between chromatin signa-
tures composed of the same histone modifications but with
different shapes. Sixth, our method provides an inherent
statistical criterion that allows related chromatin signa-
tures to be classified into distinct groups, and thereby de-
lineates the total number of patterns observed in any data
set. The first four features described earlier distinguish our
method from the ChromaSig and CoSBI programs. The
fifth feature provides added utility beyond what is avail-
able for the HMM and Segway methods, and the sixth
statistical feature is uniquely implemented in our
approach.

We call our method ChAT, for Chromatin-profile
Alignment followed by Tree-clustering, and we applied
this approach to the genome-wide analysis of 39 histone
modifications characterized by ChIP-seq analysis of
human CD4+ T cells (3,11). Application of ChAT on
this data set resulted in the discovery of chromatin signa-
tures previously shown to be characteristic of specific
genomic regulatory elements along with a number of
novel chromatin signatures and features that point to as
yet unexplored chromatin-related regulatory mechanisms.
We report these discoveries in light of the design and im-
plementation of the ChAT algorithm, with an emphasis on
comparison with existing methods. The ability of the
ChAT algorithm to discern combinatorial histone modifi-
cation patterns previously observed to be associated with
known regulatory elements serves as proof of its utility for
the discovery of functionally relevant chromatin signa-
tures. The characterization of previously undiscovered
chromatin signatures and functional associations with
ChAT supports the potential utility of the algorithm to
yield novel biological insight.

MATERIALS AND METHODS

General scheme of the ChAT algorithm

The ChAT algorithm analyzes genome-wide histone modi-
fication data sets produced via ChIP-seq to characterize
distinct chromatin signatures. ChAT is an unsupervised
algorithm; its use does not require any training set based
on pre-defined genomic annotations such as the locations
of promoters, enhancers or transcription factor binding
sites. There are three major steps in the ChAT algorithm:
(i) ChIP-seq data transformation, (ii) dynamic program-
ming on histone modification profiles and (iii) hierarchical
clustering of genomic regions that correspond to related
chromatin signatures (Figure 1).

ChIP-seq data transformation

The genome is divided into 200 bp non-overlapping bins,
and for each bin arrays of ChIP-seq signals (i.e. tag
counts) for all histone modifications in the data set are
computed. In this way, combinatorial histone modifica-
tion profiles are represented as a matrix M�, where � is
the index of the genomic regions ranging from 1 to N
(assuming there are totally N genomic regions under
consideration). For each region, the number of columns
(i.e. the number of bins within that region) is denoted as
T� and the number of rows (i.e. the number of histone
modifications) is denoted as n. The column vectors corres-
pond to combinatorial histone modification tag counts
within individual genomic bins and the row vectors cor-
respond to the contiguous genomic landscape of individ-
ual histone modifications (Figure 1A). Then for each
individual histone modification (i.e. each row vector),
the tag counts are smoothed using a Gaussian kernel
(with variance set to 1) to remove noise resulting
from spurious tag counts in the ChIP-seq experiments
(Figure 1B). The resulting smoothed ChIP-seq tag
counts for each histone modification are transformed
to a score between 0 and 1 for all subsequent analysis
(Figure 1B).
The transformation is: sc ¼ 1=1+� � exp

�
�� t�Ei

Ei

�
, where

‘‘sc’’ is the transformed score and t is the smoothed tag
count. Ei is the genomic median of tag counts of histone
modification i. Thus, the transformation is dependent on
the genomic tag count distributions for each specific
histone modification. For the analysis reported here, � is
set as 9 and � is set as 2.19. In this way, the median tag
count is transformed to the score of 0.1 and a tag count
twice as big as median is transformed to the score of 0.5.
The transformation is performed for two reasons. First,
the vast majority of bin tag counts for each histone modi-
fication are very small (e.g. 1 or 2 tags), and the trans-
formation allows such regions to be effectively excluded
from subsequent analysis. Second, large differences
between high bin tag count values (e.g. 100 versus.
150 tags) can bias subsequent alignment steps, and the
transformation allows the magnitude of such differences
to be dampened.
Having quantified and transformed ChIP-seq histone

modification tag count signals in this way, the algorithm
then divides the genome into discrete genomic regions
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Figure 1. Scheme of the ChAT algorithm. (A) For a series of N genomic regions, combinatorial histone modification distributions are represented by
ChIP-seq profile matrices. Each genomic region under consideration is divided into 200 bp non-overlapping bins and each bin is associated with a
column vector (v�

i ) summarizing the ChIP-seq tag counts for n different histone modifications. The contiguous landscape of each individual histone
modification along the genomic region is represented by the corresponding row vector (m�

i ). (B) Histone modification ChIP-seq tag counts are
smoothed and transformed to produce normalized scores. (C) Dynamic programming is used to identify sub-regions with similar chromatin signa-
tures. For each pair of genomic regions, a local dynamic programming algorithm is used to compare column vectors v1i vs. v2j (i.e. the combinatorial
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(Figure 1A) by delineating contiguous regions that
contain high ChIP-seq signals for at least one histone
modification from intervening regions that do not contain
any such signal. The intervening genomic regions that do
not contain any high ChIP-seq signal are excluded from
subsequent analysis, and the contiguous genomic regions
with high ChIP-seq signal are taken as discrete units for
subsequent alignment and chromatin signature analysis.
To do this, consecutive genomic bins with high ChIP-seq
signals (sc > 0:5) are first merged into a single region, and
regions which are close to each other (<1 kb) are further
merged together. Importantly, at this step no size thresh-
old or limit for contiguous regions is used. This allows the
algorithm to characterize chromatin signatures across a
wide range of genomic sizes. In addition, consecutive
bins do not need to be enriched with the same histone
modification to be merged. This allows the algorithm to
characterize chromatin signatures with spatially shifted
patterns of individual histone modifications.

To make the algorithm more computationally efficient,
individual genomic regions with similar histone modifica-
tion profiles are grouped together prior to profile align-
ment with dynamic programming. This grouping is
achieved via a simple two-step clustering procedure.
First, genomic regions are checked for presence or
absence of a set of user-defined histone modifications
(e.g. H3K4me3, H3K27ac, H3K27me3 and H3K36me3),
and regions are grouped together if they contain the same
sets of these modifications. This step reflects the fact that
regions which differ with respect to the presence/absence
of critical user-defined histone modifications are unlikely
to have similar chromatin signatures. Second, genomic
regions are further grouped into three size categories:
small (�5 kb), medium (>5 kb and <10 kb) and large
(�10 kb). This initial grouping greatly reduces the
number of pairwise profile alignments needed to be per-
formed. It also allows for intelligent user input with respect
to the coherence of functionally related (e.g. active vs.
repressive) histone modifications.

Dynamic programming on histone modification profiles

For every pair of genomic regions within the same group,
local pairwise alignment of transformed histone modifica-
tion profile matrices is performed using dynamic progra-
mming. The dynamic programming approach entails a
number of advantages: it does not require any prior chro-
matin signature motif seed, it guarantees optimal local
alignments that can include gaps, it allows for the discov-
ery of chromatin signatures of vastly different sizes, and it
allows for the calculation of P values that quantitatively
measure chromatin signature similarities between genomic
regions.

To perform dynamic programming, the transformed
histone modification profile matrix of each discrete
genomic region is considered as a string of column
vectors and a modified cosine similarity is used as the
score to measure the similarity between each pair of
column vectors (Figure 1C). For example, the column
vector for bin i of the first region (region 1) of a pair
under comparison is denoted as v1i . Each entry of this
column vector corresponds to the transformed score for
the level of a specific histone modification, e.g. v1ik is the
value for the kth histone modification in bin i. Similarly,
the vector for bin j of the second region (region 2) of a
pair under comparison is denoted as v2j and v2jk is the
value for the kth histone modification in binj. The raw
score for the similarity between v1i and v2j is calculated

as: ~sij ¼ cos

�
f � arccos

�
v1i �v

2
j

jv1
i
jjv2j j

��
.

The factor f is an amplification factor (1 < f < 2) that
enlarges the angle between v1i and v2j . The value of ~sij is
more likely to be negative with higher values of f and
accordingly the two bins will have lower probability of
being aligned. Thus, increasing the value of f will cause
the alignment to be more stringent. Here, f is set to 2 for
small-sized region comparisons in order to focus on highly
similar sub-regions and is set to 1.5 for medium and large
size comparisons.
The raw score is further multiplied by a weight factor

to calculate the final score for v1i and v2j . The final score
is s ¼ w � ~sij and the weight factor is related to
mij ¼ minfjv1i j, jv

2
j jg. The relation between w and mij is

w ¼ 1� e�mij=�. Thus, vectors with small norms are given
small weight; the rationale being that vectors with small
norms have low levels of ChIP-seq signals and therefore
should contribute less to the final signatures even if they
are very similar with each other. � is used to control the
stringency of the weight factor. Larger values of � result in
smaller weights, and accordingly only genomic regions
with abundant ChIP-seq signals will be aligned. Here,
� is set as 0.3.
The gap penalty is designed to be proportional to the

vector norm. For example, the gap penalty of aligning v1i
to a gap is g1i ¼ k � jv1i j. The gap penalty scheme is
designed such that it highly penalizes the alignment of
vectors with large norms (i.e. high levels of ChIP-seq
signals) to gaps. The parameter k is used to control the
stringency of the alignment, and it is designed to be larger
for small size region comparisons and smaller for medium
and large size comparisons. The introduction of gaps
using this scheme enables the discovery of multi-modal
chromatin signatures, particularly for large-sized signa-
tures that often contain combinations of conserved and
variant segments.

Figure 1. Continued
histone modification signatures of individual genomic bins), and the best alignment path (red) is identified. (D) Pairwise P-values are computed based
on a null distribution of high-scoring chromatin segment pairs (islands) found between unrelated genomic regions. Dynamic programming is used to
identify high-scoring islands (grey lines), and the score distributions of the islands are used to estimate the parameters of extreme-value distributions
for P-value calculation. (E) Pairwise P-values are organized into a distance matrix that is used for hierarchical clustering of similar chromatin
sub-regions. The resulting tree of chromatin signatures can be partitioned using an explicit P-value threshold (purple line) to identify groups of
related signatures.

Nucleic Acids Research, 2012, Vol. 40, No. 21 10645



Having parameterized the dynamic programming algo-
rithm in this way, it is then used to search for the most
similar sub-regions between pairs of transformed histone
modification matrices representing discrete genomic
regions. Each entry of the alignment matrix for dynamic
programming is as follows:
ci+1, j+1 ¼ maxfci, j+sij, ci+1, j � g2j+1, ci, j+1 � g1i+1, 0g, and

ci, 0 ¼ 0, c0, j ¼ 0. Each pair of regions is compared twice:
in the same and in the opposite orientations. In this way,
sub-regions with the highest combinatorial histone modi-
fication profile similarities will be found.
P-values are calculated to quantify the similarities

between genomic sub-regions aligned in this way
(Figure 1D). To do this, the algorithm employs the
island method, based on the extreme value distribution
of high-scoring segment pairs, originally developed for
DNA sequence comparisons (31). This method creates a
null distribution of random similarity scores, against
which the observed similarity scores can be compared to
compute p-values for aligned pairs of sub-regions. To
create the null distribution of random similarity scores,
pairs of unrelated genomic regions are randomly
sampled from the entire set of regions under consider-
ation. Then for each pair of unrelated regions, dynamic
programming with the same parameter settings is applied
and all high-scoring islands of similarity, with scores
above a threshold t, are retained. Using those high-scoring
islands, the parameters Kt and �t for the extreme value
distribution are estimated as suggested by Altschul et al.
(32), and finally the P-value is calculated as:
P � 1� e�Ktmne��tx .

Hierarchical clustering of related chromatin signatures

All P-values for pairwise profile alignments are organized
into a pairwise distance matrix, and hierarchical clustering
is applied on this matrix (Figure 1E). In this way,
sub-regions with the same combinatorial histone modifi-
cation signatures will be grouped together and the branch
lengths among them in the hierarchical tree will be shorter.
Furthermore, because P-values are used as pairwise dis-
tances, the branch lengths can be viewed as approximate
P-values among sub-groups or clusters. Then, for a given
P-value threshold (e.g. 0.05), the hierarchical tree divided
by this threshold will yield clusters of related sub-regions
at user-defined levels of statistical confidence (Figure 1E).
Cluster-characteristic combinatorial histone modification
signatures can then be derived.

Chromatin signature feature enrichment analysis

Chromatin signatures discovered via the application of
ChAT to genome-wide histone modification data sets are
evaluated for the enrichment over annotated genomic
features (e.g. promoters and enhancers) using a fold en-
richment (FE) criterion: FE ¼ p=q, where p is the fraction
of the patterns overlapping with specific genomic features,
and q is the fraction of the specific genomic feature in the
genome. Here, an FE threshold of 3 was taken to indicate
that a given chromatin signature is enriched over a par-
ticular genomic feature. The features analysed include
transcriptional start site (TSS) (8 kb sequences centered

on the transcription start sites of Refseq gene models),
transcriptional termination sites (TTS) (8 kb sequences
centered on the transcription termination sites of Refseq
gene models), enhancers (CD4+ T-cell specific p300
binding sites) (33) and CD4+ T-cell DNase I hypersensi-
tive sites (34).

RESULTS AND DISCUSSION

The ChAT algorithm for chromatin signature discovery

As its name implies, the ChAT algorithm analyzes
genome-wide maps of histone modifications characterized
by ChIP-seq studies via a process of Chromatin-profile
Alignment followed by Tree-clustering. To do this, chro-
matin profiles are represented as numeric matrices with
transformed scores for each histone modification along
the genomic sequence (Figure 1A and B). Alignment of
these profiles is performed using an implementation of the
local dynamic programming algorithm, which allows for
the detection of genomic sub-regions with shared chroma-
tin profiles (Figure 1C). Dynamic programming also
allows for the introduction of gaps in the chromatin
profile alignments. Gaps are critical because they allow
the algorithm to extend beyond regions with variant (or
diffuse) chromatin enrichment signatures, and in so doing
facilitate the discovery of chromatin signatures that span
long genomic regions as well as those with complex
multi-modal patterns of histone modification enrichment.
For each resulting pairwise chromatin profile alignment,
an approximate P value is calculated (Figure 1D), and
hierarchical clustering is then applied on these pairwise
values to organize genomic regions into related groups
of chromatin signatures (Figure 1E). The use of P values
for clustering allows for an inherent statistical criterion by
which the hierarchical tree can be divided into groups of
coherent chromatin signatures. Software to run the ChAT
algorithm is freely available at http://jordan.biology
.gatech.edu/page/software/ChAT. Detailed instructions
for running the ChAT software can be found on the
webpage and in Supplementary File S1.

ChAT is distinguished from existing methods for the
analysis of chromatin signatures in a number of ways.
The collection of algorithmic features that characterize
ChAT are compared with their presence among existing
methods ChromaSig, CoSBI, ChromHMM and Segway in
Supplementary Table S1. ChAT is unique among these
methods in that it does not have any size restriction, it
does not use chromatin signature motif seeds, it can
discover signatures with multi-modes and distinct shapes
and it possesses an intrinsic statistical criterion.

ChAT performs a mode of chromatin signature analysis
that differs from the analyses performed by ChromHMM
and Segway, both of which segment the entire genome
into adjacent distinct chromatin states. ChAT searches
for recurrent chromatin signatures present at different lo-
cations across the genome, similar to the analyses per-
formed by ChromaSig and CoSBI. The similarity among
ChAT and these latter two methods allows for a qualita-
tive comparison of their performance on the CD4+T-cell
histone modification data sets analyzed here. The methods
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perform similarly for the discovery of small mono-modal
signatures (Supplementary Figure S1A), but differ sub-
stantially when it comes to the discovery of more
complex chromatin signatures (Supplementary Figure
S1B–S1D). For example, ChAT is able to distinguish
bi-modal from mono-modal signatures, it is able to distin-
guish signatures that are made up of the same constituent
modifications but have different shapes, and it is able to
discern highly complex large signatures. Examples of the
ability of ChAT to discover these kinds of complex chro-
matin patterns are described in more detail later in the
context of specific biological features that the algorithm
helps to uncover.

Application of ChAT to CD4
+
T-cell chromatin

We applied the ChAT algorithm to the analysis of
genome-wide maps of 39 histone modifications chara-
cterized using ChIP-seq on human CD4+ T cells (3,11)
in an attempt to discover all discernible histone modifica-
tion patterns. ChAT was run using the parameter values
described in the Materials and Methods section, and a
P-value threshold of 0.05 was used to partition the result-
ing hierarchical trees of patterns to explicitly delineate
individual chromatin signatures. As stated previously, ap-
plication of ChAT to ChIP-seq histone modification data
sets does not require any restriction on the size of poten-
tial chromatin signatures or the use of motif seeds to ini-
tialize the search.

ChAT identified a total of 206 distinct combinatorial
histone modification patterns genome-wide, which were
subsequently grouped into small- (144), medium- (35) and
large-sized (27) categories as explained in theMaterials and
Methods. Overall, the features of these observed chromatin
signatures are consistent with the intended design of the
algorithm and point to the additional utility provided by
its use. For instance, we detected a number of large-sized
patterns, ranging from 10 to 100 kb, which demonstrate the
utility of allowing alternating conserved and variant
segments in the detection scheme. We also find a number
of signatures with multiple modes of histone modifications
as well as spatially shifted patterns for individual constitu-
ent modifications. Combinatorial patterns that bear the
same individual histone modifications with different
relative profile shapes are recognized as distinct chromatin
signatures.

Inspection of the small-sized patterns revealed that a
substantial fraction of these signatures are associated
with known regulatory features, such as TSS, TTS and
p300 binding sites (Supplementary Table S2). A total of
41.7% of the small-sized patterns are enriched with DNase
I hypersensitive sites, using a FE threshold of 3 (FE> 3),
implying that they are located in open chromatin and
possibly co-located with individual regulatory elements.
In the following sections, we describe a number of the
chromatin signatures discovered by ChAT, with an
emphasis on the characterization of known regulatory
features, which serve as a kind of positive control for
the approach, along with descriptions of previously
uncharacterized patterns that underscore the ability of
the algorithm to facilitate novel discoveries.

TSS-associated chromatin signatures

Because chromatin signatures around active TSS have
been previously well-characterized (3,7), we searched for
ChAT identified chromatin signatures that are co-located
with annotated TSS in an attempt to evaluate the perform-
ance of the algorithm. There are 36 small-sized signatures
that were found to be enriched at TSS (Supplementary
Table S2; FE> 3), and the common characteristic
histone modifications of these patterns include the canon-
ical TSS-associated marks H3K4me3, H2AZ, H3K4me1
and H3K9me1 as well as a number of other combinations
of histone acetylations, which are known active marks.
Examples of several TSS-associated signatures detected
by ChAT are shown in Figure 2.
Figure 2A shows the histone modification enrichment

profile of the simplest TSS signature, which is charac-
terized by H3K4me3 alone. In Figure 2B, the TSS-
associated signature is shown to be enriched with five
co-located active histone modifications. Interestingly, a
number of bivalent TSS-associated signatures were also
found by ChAT. For example, the bivalent signature
shown in Figure 2C is characterized by three co-located
active marks and a spatially shifted and multi-modal en-
richment of the repressive mark H3K27me3. From the
perspective of the ChAT algorithm design, the enrichment
profiles of the bivalent signature example (Figure 2C) il-
lustrate the ability of the program to find patterns with
multiple modes caused by shifted enrichments of different
histone modifications.
Analysis of expression levels (35) in CD4+ T cells

for sets of genes with TSS marked by distinct signatures
show that bivalent signatures are associated with lower
gene expressions than seen for active signatures
(P=4.1� 10�4, Mann–Whitney test) (Figure 3A).
Furthermore, the lower gene expression levels associated
with bivalent signatures, and higher gene expression levels
associated with active signatures, are specific to T cells and
B cells compared with expression levels in other cell types
(Figure 3B). This observation indicates cell-type specific
regulatory functions of distinct TSS-associated combina-
torial histone modification signatures discovered by ChAT
for CD4+ T cells.
We also observed that sets of genes with similar T- or

B-cell expression levels can show very different TSS-
associated chromatin signatures. For instance, Figure 4A
shows two sets of genes with indistinguishable T- or B-cell
expression levels (P=0.7, Mann–Whitney test), but dif-
ferent levels of expression (P=4.9� 10�3, Mann–
Whitney test) across a panel of numerous other cell-types
and tissues (35). In other words, the first set (s1) has a
narrower cell-type specific expression pattern, whereas
the second set (s2) shows broad expression over
numerous cell-types and tissues (Figure 4A). The chroma-
tin signature for the set of cell-type specific genes
(s1, Figure 4B) is far more complex, being comprised of
six different histone modifications, than the signature
made up of two histone modifications seen for the set of
broadly expressed genes (s2, Figure 4C). This suggests the
possibility that cell-type specific expression is regulated via
a more complex chromatin promoter landscape. In fact,
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when all 36 of the TSS-related chromatin signatures are
evaluated, more complex signatures are found to be
associated with gene sets that have higher T- or
B-cell-type specific expression levels (Figure 4D). The
acetylation marks H3K36ac and H3K27ac in particular
are associated with high levels of T- or B-cell-type
specific expression.

TTS-associated chromatin signatures

The nature of chromatin signatures around TTS have not
been previously characterized as well as those associated

with TSS (28,30,36), and this may be due to a lack of
coherence in the histone modification patterns found at
gene termini. Nevertheless, ChAT was able to discern
nine small-sized patterns associated with TTS in CD4+ T
cells (Supplementary Table S2; FE> 3). The common
characteristic marks for these TTS signatures are quite
distinct from those seen around TSS and include
H2BK5me1, H4K20me1 and H3K27me1. Two examples
of TTS-associated signatures are shown in Figure 5A and
B. A single genomic region showing adjacent locations of
each of these two signatures close to an annotated TTS is

Figure 2. TSS-associated chromatin signatures. (A) A TSS-associated signature based on enrichment of H3K4me3 is represented as a heatmap
(yellow, high; blue, low levels of modification) and an enrichment profile showing the average modification scores across the signature. H3K4me3 tag
counts (red) are shown for an instance of this signature at a human promoter locus. (B) A TSS-associated signature composed of five active histone
modifications along with an example of this pattern seen at a divergent promoter locus. (C) A bivalent TSS-associated signature with three active
modifications and one repressive modification (H3K27me3). Distributions of the active (red) and repressive (blue) histone modification tag counts are
shown for a single promoter locus.
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shown in Figure 5C. Both of these TTS patterns are
bi-modal with two enriched peaks linked by a relatively
depleted central region. The relatively low levels of histone
modifications seen in the central regions of these patterns
may be related to specific protein binding events as has
been suggested for the bi-modal patterns of enhancers
(15). Consistent with this possibility, these same sets of
regions show peaks of RNA polymerase II (Pol II)
binding that corresponds to the locations of the depleted
regions in the bi-modal patterns (Figure 5D and E). With
respect to the ChAT algorithm design, the bi-modal
patterns seen at TTS point to the utility of gaps in the
chromatin profile alignments, which allow chromatin
patterns to extend beyond variant regions and include
multiple peaks of individual histone modifications.

Enhancer-associated chromatin signatures

Chromatin signatures characteristic of enhancers have been
characterized in a number of studies (6,7,12,15,24–26),

many of which rely on the positions of p300 binding
sites to identify enhancer locations. We also took the
locations of p300 binding sites (33) to indicate putative
enhancers and found that ChAT characterized 18
small-sized signatures that are co-located with these sites
(Supplementary Table S2; FE> 3). The common charac-
teristic marks of these patterns include the canonical
enhancer-associated marks H3K4me1 and H3K4me3
along several other histone acetylations (Figure 6A).
Examples of enhancer-associated signatures detected by
ChAT are shown in Figure 6B and C; these two distinct
signatures are characterized by similar sets of histone modi-
fications with markedly different profile shapes, i.e.
mono-modal (Figure 6B) versus bi-modal (Figure 6C).
The different shapes of this kind discovered by ChAT
may point to distinct dynamics of histone-modifying
enzymes and/or DNA binding proteins between the
two sets of enhancers, indicative of the utility of the algo-
rithm for discovering specific chromatin-based regulatory
mechanisms.

Figure 3. Differential gene expression associated with specific TSS
chromatin signatures. (A) Median CD4+ T-cell expression levels
(±1 quartile) of genes with TSS marked by 36 distinct chromatin
signatures. Bivalent TSS signatures (blue bars) correspond to lower
overall expression levels than active signatures (orange bars). (B)
Cell-type specific gene expression patterns associated with different
TSS chromatin signatures. Gene expression levels across 79 cell types
(red, high; green, low) are shown for genes with TSS marked by a
bivalent signature versus genes with TSS marked by an active signature.
Expression differences are most pronounced for the indicated T cells
and B cells.

Figure 4. Cell-type specific expression associated with complex chro-
matin signatures. (A) Average (±SD) expression levels (blue, T- or
B-cell expression; grey, other cell-type expressions) of genes with TSS
marked by two different chromatin signatures (s1 and s2). (B)
Enrichment profiles showing the average histone modification scores
across signature s1. (C) Enrichment profiles showing the average
histone modification scores across signature s2. (D) Box plots
showing T- or B-cell specific expression level distributions for different
sets of chromatin signatures.
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Conserved non-coding element-associated chromatin
signatures

Conserved non-coding elements (CNEs) are non protein-
coding sequences that have been found to be anomalously
conserved between species; CNEs are of interest because
they are thought to correspond to regulatory regions that
have been conserved by purifying selection based on their
functional utility (37). We evaluated CNEs characterized
via the comparison of genome sequences from 28 verte-
brate species for the presence of chromatin signatures dis-
covered with the ChAT algorithm and found that all 144
signatures show substantial overlap (FE> 3) with the
CNEs (Figure 7A and Supplementary Table S2). This
result is consistent with the presumed regulatory activity
of CNEs. Not surprisingly, most of the CNE-associated
signatures are made up of active histone marks and tend
to be associated with TSS or enhancers; such CNEs are
likely to be active regulatory elements in CD4+ T cells.
However, a number of CNEs were also found to be
associated with repressive chromatin signatures. For
example, a simple chromatin signature made up of the
repressive mark H3K27me3 (Figure 7B) is highly
enriched over CNEs (FE=18.4). We surmised that
these CNEs may represent regulatory elements that are
active in other cell-types but repressed in a specific
manner in T or B cells. To evaluate this possibility, we

checked the expression levels of the genes most proximal
to these CNEs for their expression across 79 human
tissues and cell-types (35). These genes do appear to be
repressed in T or B cells in a cell-type specific manner,
because they are expressed at higher levels across other
cell types compared with T or B cells (Figure 7C and D).

Bivalent chromatin signatures associated with L1
retrotransposons

Bivalent chromatin signatures, composed of co-located
active and repressive histone modifications (38,39), have
previously been associated with TSS sequences, and the
ChAT algorithm was also able to detect such bivalent sig-
natures at TSS in CD4+ T cells (Figures 2C and 3).
Application of ChAT here revealed two bivalent signa-
tures that were not found to be associated with TSS:
H3K9me3 and H3K36me3 (Supplementary Figure S2)
along with H3K4me3 and H3K9me3 (Figure 8A).
Interestingly, both of these bivalent signatures were
found to be highly enriched within L1 retrotransposon
sequences; 68.4% of the genomic regions marked by the
H3K9me3-H3K36me3 signature overlap with L1 as do
77.0% of genomic regions marked by H3K4me3 and
H3K9me3. A broad genomic region with several L1
encoded segments that overlap the H3K4me3-H3K9me3
signatures can be seen in Figure 8B.

Figure 5. TTS-associated chromatin signatures. TTS signatures associated with three (A) and two (B) histone modification combinations are shown
(histone modification representations described as for Figure 2). (C) A specific TTS proximal locus showing adjacent locations of each of these two
patterns. (D) Pol II enrichment profile within genomic regions marked by the signature shown in (A). (E) Pol II enrichment profile within genomic
regions marked by the signature shown in (B).
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This particular bivalent pattern has previously been
associated with imprinted genomic loci wherein genes
tend to be expressed in a mono-allelic fashion based on
the parent of origin for the allele (39). Interestingly, a
number of studies have also shown that L1 retrotrans-
posons are enriched in-and-around imprinted genomic
loci (40–43). Thus, the enrichment of these bivalent signa-
tures on L1 retrotransposons may point to a chromatin-
based mechanism by which L1 sequences contribute to
the mono-allelic expression of human genes. On the
other hand, such bivalent patterns may actually result
from ChIP-seq analyses performed heterogeneous cell

populations with the locations in some cells marked by
active modifications and others with repressive modifica-
tions. In this case, the patterns revealed by the algorithm
would represent an artifact of the ChIP-seq experimental
design.

Large-sized chromatin signatures

The ChAT algorithm places no restriction on the size of
chromatin signatures that it can identify, and we found 27
large-sized signatures in CD4+T cells ranging from 10 to
100 kb in length. These large-sized chromatin signatures

Figure 6. Enhancer-associated chromatin signatures. (A) �100 kb genomic region with three locations (black bars) marked by a specific
enhancer-associated signature composed of co-located peaks of H3K4me1, H3K4me3, H3K27ac and H3K36ac (ChIP-seq tag counts in red). All
of the three locations overlap with p300 binding sites. (B) Histone modification enrichment profiles of an enhancer-associated mono-modal signature.
(C) Enrichment profiles of an enhancer-associated bi-modal signature. Histone modification representations are as described for Figure 2.
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can be classified into two groups. The first group contains
long contiguous co-located blocks of repressive marks,
presumably representing heterochromatic or repressive
chromatin domains. The second group shows more
complex and potentially interesting patterns resembling
the known H3K4me3-H3K36me3 domains, which are
associated with gene bodies and long non-coding RNAs
(3,5,44). For example, the signatures shown in Figure 9A
and B (see also Supplementary Figures S3 and S4) are
characterized by the presence of similar active marks
albeit over different size ranges. In both cases, the long
chromatin signatures show punctate enrichments of
several active marks at one end of the pattern together
with broader enrichments of different active marks
throughout the rest of the signature. These two large-sized
signatures show substantial overlaps with gene bodies
(Figure 9C), suggesting the utility of ChAT for annotating
genes.

However, while more than 90% of these two large-sized
signatures do overlap with known gene bodies
(Figure 9D), there is still a small fraction which does not
overlap with gene bodies. For example, Figure 9E shows
two specific genomic regions where the signatures do not
overlap with annotated gene models. Inspection of
RNA-seq and spliced EST data from these regions
suggests the possibility that the regions marked by these
chromatin signatures represent as yet uncharacterized al-
ternative promoters of nearby genes.

The biggest difference in the enrichment levels for any
individual mark between these two patterns is seen for
H3K36me3, a mark of transcriptional elongation (3,15).
Consistent with this observation, genes marked by these
two chromatin signatures show different expression levels
in CD4+ T cells (P=0.016; Figure 9F). These data

Figure 7. CNE-associated chromatin signatures. (A) Distribution of
FEs of CNEs for all small-sized signatures. (B) Histone modification
enrichment profiles (as described for Figure 2) for a repressive signature
highly enriched within CNEs. (C) Cell-type specific expression levels for
genes proximal to CNEs bearing the repressive signature shown in
(B). (D) Distribution of the ratios of T- or B-cell average expressions
and other cell type average expressions for genes shown in
(C) (observed, red; expected, grey). Observed ratios are significantly
smaller than expected ratios calculated from gene expression levels
randomly simulated across cell-types and tissues (P=1.3� 10�10,
Mann–Whitney test).

Figure 8. A bivalent chromatin signature associated with L1
retrotransposons. (A) Histone modification enrichment profiles (as
described for Figure 2) for the bivalent signature. (B) A single
genomic region with three locations marked by the L1 characteristic
bivalent signature. ChIP-seq tag counts are shown for the active mark
H3K4me3 (red) and the repressive mark H3K9me3 (blue).
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Figure 9. Large-sized chromatin signatures associated with gene bodies. (A, B) Histone modification enrichment profiles (as described for Figure 2)
are shown for two chromatin signatures composed of the same constituent modifications and spatial patterns with distinct sizes. (C) Specific instances
of each signature co-located with human gene bodies are shown with modification ChIP-seq tag counts in red and RNA-seq tag counts in black.
(D) Percentage of these two large-sized signatures that overlapping with gene bodies (grey, any coverage; blue >50% coverage; orange >80%
coverage; red >95% coverage of the gene body). (E) Two examples where signature B is co-located with individual genomic regions that are
annotated as intergenic but show evidence of being genic from RNA-seq and spliced EST data. (F) Average CD4+ T-cell expression levels for genes
marked by signatures A and B.
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underscore the functional relevance of slight differences in
chromatin signatures that are able to be distinguished by
the ChAT algorithm.
Both of these long chromatin signatures show enrich-

ment of H4K20me1 and H3K79me3 that tend to be
located within gene bodies and start just downstream of
TSS (Figure 9A–C). This suggests the possibility that these
marks are associated with transcriptional pause release, a
phenomenon whereby Pol II complexes paused at pro-
moter regions are allowed to proceed into gene bodies to
facilitate active transcription of the genes (45,46).
Previously, the relative levels of bound Pol II seen in
promoter proximal versus downstream regions have
been used to evaluate the extent of transcriptional pause
release (47,48). Here, we show that the ratio of gene
body-to-TSS Pol II density is positively correlated with
the gene body levels of H4K20me1 (Figure 10A) and
H3K79me3 (Figure 10B) consistent with a role for these
marks in transcriptional pause release.
The discoveries of those complex large-sized signatures

highlight the performance of ChAT with respect to several
aspects of the algorithm design. First of all, the large-size
of these signatures underscores the advantage of

predicting chromatin signatures without size restrictions.
Second, the prediction of large-sized signatures was
facilitated by the ability of the algorithm to extend
histone modification profile alignments through the use
of gaps in the dynamic programming implementation.
Third, the complex histone modification enrichment
profiles apparent in these signatures, i.e. the specific en-
richments of several histone modifications over a narrow
range of the pattern and the broad enrichments of other
marks in the rest of the pattern, demonstrates the ability
of the algorithm to detect patterns with spatially shifted
multi-modal enrichments of multiple modifications.

CONCLUSIONS

We developed ChAT an unsupervised algorithm for the
discovery and characterization of recurrent combinatorial
histone modification patterns, i.e. chromatin signatures.
ChAT utilizes a novel dynamic programming and hier-
archical clustering approach to relate and group similar
chromatin signatures dispersed across the genome. The
algorithm was explicitly designed to provide complemen-
tary utility with respect to existing methods. For example,
ChAT can identify chromatin signatures across a vast
range of different sizes, it finds multi-modal chromatin
signatures composed of individual histone modifications
that are spatially shifted as well as complex signatures
composed of conserved and variant segments, and
ChAT can also distinguish between chromatin signatures
that are made up of the same constituent histone modifi-
cations with different shapes. The algorithm also employs
an explicit statistical criterion that provides confidence
levels for the grouping of similar chromatin signatures.

We applied ChAT to the analysis of genome-wide
histone modification maps in human CD4+ T cells. The
algorithm was able to discern combinatorial histone modi-
fication patterns previously observed to be associated with
genomic regulatory features such as TSS and enhancers,
serving as a proof of its utility for the discovery of func-
tionally relevant chromatin signatures. Perhaps more
interestingly, we were also able to discover a number of
previously unknown chromatin signatures with ChAT.
For example, we discovered novel chromatin signatures
associated with TTS, enhancers and CNEs. We were
also able to uncover functional associations, based on en-
richment of chromatin signatures at specific genomic regu-
latory features, which point to novel chromatin-based
mechanisms of gene regulation. For example, we found
evidence for the role of complex chromatin signatures,
made up of numerous co-located histone modifications,
in the cell-type specific regulation of human genes. We
also found evidence suggesting that L1 retrotransposons
can influence the mono-allelic expression of human genes
by creating a local genomic environment enriched for
specific bivalent chromatin signatures. Finally, novel
long chromatin signatures found to be associated with
human genes suggest a role for the H4K20me1 and
H3K79me3 histone modifications in transcriptional
pause release. The discovery of these novel chromatin sig-
natures and functional associations underscores the

Figure 10. Transcriptional pause release associated with H4K20me1
and H3K79me3. The ratio of Pol II density downstream of TSS (+1
to +5kb) over its density around TSS (�1 to +1kb) is positively cor-
related with the density of downstream H4K20me1 (A, Spearman’s
�=0.54) and H3K79me3 (B, Spearman’s �=0.51).
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potential utility of the algorithm to provide novel biolo-
gical insight and to help focus future experimental efforts
for the characterization of chromatin-based regulatory
mechanisms.

SUPPLEMENTARY DATA

Supplementary Data are available on NAR Online:
Supplementary Tables 1 and 2, Supplementary Figures
1–4 and Supplementary File 1.
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