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ABSTRACT

A novel ab initio parameter-tuning-free system to
identify transcriptional factor (TF) binding motifs
(TFBMs) in genome DNA sequences was developed.
It is based on the comparison of two types of
frequency distributions with respect to the TFBM
candidates in the target DNA sequences and the
non-candidates in the background sequence, with
the latter generated by utilizing the intergenic se-
quences. For benchmark tests, we used DNA
sequence datasets extracted by ChIP-on-chip and
ChIP-seq techniques and identified 65 yeast and
four mammalian TFBMs, with the latter including
gaps. The accuracy of our system was compared
with those of other available programs (i.e. MEME,
Weeder, BioProspector, MDscan and DME) and was
the best among them, even without tuning of the
parameter set for each TFBM and pre-treatment/
editing of the target DNA sequences. Moreover,
with respect to some TFs for which the identified
motifs are inconsistent with those in the references,
our results were revealed to be correct, by
comparing them with other existing experimental
data. Thus, our identification system does not
need any other biological information except for
gene positions, and is also expected to be applic-
able to genome DNA sequences to identify unknown
TFBMs as well as known ones.

INTRODUCTION

On the basis of experimental exploration data of tran-
scriptional factor (TF) binding sites combined with
genome DNA sequences, the detailed constitution of

transcriptional networks is a crucial issue for understand-
ing the regulatory mechanisms of cellular responses, such
as gene expression, cell differentiation, proliferation,
reprogramming, etc. (1–5).
For instance, ChIP-on-chip (6,7) and ChIP-Seq (8–11)

are experimental techniques for systematical genome-wide
mapping of the positions where specific TFs are bound.
The ChIP-on-chip technique is a combination of chroma-
tin immunoprecipitation (ChIP) and cDNA microarray
hybridization (6,7). ChIP-Seq is a combination of ChIP
and the next-generation high-throughput sequencing
method (8–11). However, the length of the detected
DNA sequence fragments is, in principle, 1�2 kb (ChIP-
on-chip) or 100�200 bp (ChIP-Seq), and so the fragments
include various types of noise, such as simple sequence
repeats (SSRs) and other biological signals (e.g. transla-
tion signals), as well as the target TFBMs. In contrast, the
lengths of the actual TFBMs are as small as 5�30 bp.
Thus, computational methodologies are required to
identify the specific motifs from the experimentally ex-
tracted DNA sequence fragments.
Various programs for identifying TFBMs are currently

available (12–17), with some employed for analyses of
experimental data obtained by protein binding
microarray (PBM) (18–20) and high-throughput SELEX
(HT-SELEX) (21) techniques (22–26). Evaluations of the
accuracy of such motif identification systems were previ-
ously reported (27,28), revealing some issues that
remained to be solved. For instance, Hu et al. indicated
that the conventional systems suffer from three serious
limitations (29). First, the accuracy of the identification
decreases with longer target DNA fragments, since the
amount of the background noise involved in the target
sequences increases. Second, it is difficult to capture
TFBMs when random sequences (i.e. gaps) are involved.
Third, to remove the false-positives, such as SSRs,
pre-processing is required to obtain highly accurate
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identification. Furthermore, this report also mentioned
that some TFBMs exhibiting significant score values are
not corresponding to the correct ones.
Moreover, with respect to some existing algorithms, the

accuracy depends on the use of biological knowledge, such
as the TF-binding intensities (i.e. P-values) and the peak
distributions of those intensities (30,31). On the other
hand, recently developed experimental techniques can sim-
ultaneously identify various, distinct TFs associated with
the specific TFBMs. The cap analysis of gene expression
(CAGE) is such a technique to quantitatively identify
genes regulated by TFs relevant to particular biological
functions (32). In fact, CAGE can identify mRNA se-
quences that exist in cells for a certain moment, without
using a microarray.
Accordingly, our goal is to develop a computational

methodology to identify various unknown TFBMs, as
well as known ones, as an ‘ab initio’ discovery technique
of characteristic base sequence patterns in genome DNA
sequences. This means that the system should identify
such TFBMs, without using other experimental data and
biological knowledge and optimizing the parameters
involved in the system with respect to each TFBM (the
gene positions in the genome DNA sequences should only
be used in the algorithm as external information). Thus, in
this study we developed a highly accurate motif identifi-
cation system with the use of only genome DNA se-
quences, by exploiting a direct comparison scheme of
signal/noise distributions, and introducing a novel
scoring function for identifying the plausible TFBMs.
To evaluate the algorithm, we applied our system to the

datasets extracted by the ChIP-on-chip and ChIP-seq
techniques. The identification of TFBMs in ChIP-on-
chip data is, in principle, more difficult than that in
ChIP-Seq data, because of the different lengths of the
DNA fragments extracted by the two types of experi-
ments. In this study, we used 65 ChIP-on-chip datasets
of yeast TFBMs, obtained from the website reported by
Harbison et al. (33). We compared the accuracy of our
algorithm with those of the existing ones, i.e. MEME
(12), Weeder (13), BioProspector (14), MDscan (15) and
DME (16). Moreover, to apply our algorithm to higher
eukaryote data, we examined whether four mammalian
TFBMs could be identified in ChIP-on-chip and
ChIP-seq datasets. We compared the accuracy of our
system with those of the above-mentioned five existing
algorithms.
The benchmark tests revealed that our algorithm accur-

ately identified various yeast TFBMs and mammalian
TFBMs using the same set of parameter values, which
means that parameter tuning is not needed for our
system. Moreover, our algorithm does not require pre-
treatment/editing of the input data, such as the removal
of SSRs prior to the adaptation. Nevertheless, the
accuracy of the present system is higher than those of
the tested existing algorithms, for which the accuracy is
dependent on pre-treatments and/or parameter tuning for
each TFBM. Thus, the present benchmark tests revealed
that our algorithm can identify various TFBMs without
using any other biological information, except for the gene
positions on the genome DNA sequences. This is an

advantage for identifying unknown TFBMs, which lack
experimental evidence, as well as the known motifs.

MATERIALS AND METHODS

Experimental data used in this study

To evaluate the accuracy of our algorithm, we used
datasets of yeast genome DNA sequences, each identified
by ChIP-on-chip techniques with a treatment to induce the
specific TFs. Each DNA fragment is P< 10�3 (P repre-
sents P-value), which was calculated using experimentally
measured TF-binding intensities. The datasets are
archived in the web site of Harbison et al. (33). In the
previous study, the 65 datasets, exploited for the bench-
mark test in this study, had been identified to involve
TFBMs with high confidence (33). Here, each dataset
includes 17–195 DNA sequence fragments (see Supple-
mentary Material and Supplementary Table S1). For the
noise reduction phase (the third stage) in our algorithm,
all of the DNA sequences found in the intergenic regions
in the Saccharomyces cerevisiae genome were used. This
dataset is archived in the Saccharomyces Genome
Database (SGD) (34).

For the test of the identification of mammalian TFBMs,
we used genome DNA fragments extracted by ChIP-on-
chip and ChIP-seq techniques, and identified the binding
motifs of human estrogen receptor (hER), mouse Tcfcp2l1
(mTcfcp2l1), human androgen receptor (hAR) and human
vitamin D receptor (hVDR). All these four TFBMs
include gaps to evaluate our gap identification (GI) algo-
rithm. Since time-consuming methods are involved in the
systems used for the test (for example, the computational
cost of MEME is O(N2), where N represents the size of the
target DNA sequence), the DNA fragments employed
were restricted to those of chromosomes 1 and 2 in this
study. The detailed conditions of the four datasets are
described in Table S2. For the noise reduction phase,
the base sequences found in the upstream region within
0–2000 bp from the transcription starting site (TSSs) of
each gene in the human and mouse genome DNA se-
quences were employed as the background sequences.

Overall scheme of the present system

Our identification system is schematically depicted in
Figure 1, and consists of four phases for identifying the
TFBMs. In the first phase, the subsequences, each
involving identical sequence pieces with a length defined
by the window size (i.e. sequence redundancy is allowed
for a subsequence), are generated by scanning the target
DNA sequence, and the obtained sets of the subsequences
are used for the probes in the next stages). With respect to
each point (i.e. a subsequence) in the sequence space,
which is defined by the window size (e.g. the default
number of points that should be considered in the
sequence space is 48), its ‘neighboring’ points (i.e. the
‘similar’ subsequences to that employed as the probe)
are unified into a ‘cluster’. Then, the frequency of each
subsequence (i.e. the number of the elements included in
the subsequence) in the cluster is summed up to calculate
the size of the cluster. This is done for all of the points in
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the sequence space. In the second phase, the clusters, each
possessing a ‘distinguishable’ frequency, are selected as the
plausible candidates of the TFBMs. In the third phase, the
clusters involving the plausible candidates of TFBMs are
selected, by comparing the distribution functions obtained
using the target and background sequences. In the fourth
phase, to identify the gaps that were not detected in
the previous stages, new elements are added to the plaus-
ible candidates, and then a procedure similar to the
third phase is performed for the final selection of the
plausible TFBMs. Our algorithm is referred to here
as MODIC (MOtif identification algorithm through
DIrect Comparison of signal/noise distributions based
on maximum entropy method).

Scanning of TFBM candidates on the target DNA
sequence (phase I)

For scanning the genome DNA sequences, a set of probe
sequences is created, as follows. First, a subsequence is
extracted from the target DNA sequence by using a
search window, for which the length is given as a param-
eter wprobe (the default value is set to eight). Note here that
a subsequence involves sequence pieces with the identical
sequence, since sequence redundancy is allowed for a sub-
sequence, as described in ‘Overall scheme of the present
system’ subsection.

As the window size (wprobe), 4� n (n=1, 2, 3, . . .) is
used in our system (see further). For the identification of
longer TFBMs, larger search windows are available to
extract the full-length elements. In this study, the
binding elements of the mammalian TFs were examined
by using sixteen as wprobe (i.e. the default window size� 2).
The search window is then shifted on the target sequence
by one base, and the second subsequence with the length
of wprobe is extracted there. This process is repeated on the
target sequence, and thereby a set of all subsequences,
representing the initial candidates of TFBMs for use as
probes, is extracted from the target sequence. This
reduces the number of probe sequences, as compared
with the case where all of the sequence variations with

wprobe sites are considered. The latter scheme is computa-
tionally intensive when long TFBMs are considered.
Using each probe, the target DNA sequence is scanned,

and the subsequences that are ‘similar’ to each probe are
identified. Here, the similarity is defined by using the
Hamming distance. When wprobe is used as the window
size (which is identical to the length of the probe
sequence), the Hamming distance h(wprobe) is determined
as follows:

hðwprobeÞ ¼ 0:25wprobe � 1 ð1Þ

For example, when the wprobe value is eight, the criterion
(i.e. the threshold) of the similarity between the probes
and the chosen subsequences corresponds to one
Hamming distance; i.e. when the Hamming distance is
larger than two, the two subsequences are not defined as
being mutually similar. This criterion was determined
through tests in which various values of the above-
mentioned threshold and wprobe were examined (the
definition of this threshold is similar to that employed
by Pavesi et al. (13), but the involvement of the
gap-identification stage as phase 4 was also considered
for the determination of the threshold in our system).
In this scanning phase of the target DNA sequence

using the probes, the number of elements (identical
sequence pieces) of each subsequence included in each
cluster is counted (note that the cluster cp is specified by
the probe p); i.e. the same subsequences are also repeat-
edly counted in the other clusters. Here, f

cp
e represents the

frequency of an extracted subsequence e. When sequence e
is found repeatedly, by scanning cluster cp with the probe
p, f

cp
e is incremented every time, where the primitive

duplications of e, such as NN . . .N (here, the number of
the same continuous nucleotide residue N is larger than
wprobe), are hindered when counting f

cp
e . Thus, the size of

each cluster, scp , is defined as
P

e f
cp
e . The distance between

the two clusters is defined as the Hamming distance
between the probes that were originally involved in the
two clusters (Figure 2).

Selection of ‘distinguishable’ clusters (phase II)

To select the plausible clusters of TFBMs efficiently, we
search for the clusters with sizes that exhibit peaks on the
local sequence space, as follows.
First, the cluster for which the scp is the largest among

all of the clusters is selected and saved as the first ‘selected
cluster’; this is referred to as sc1, and its size is represented
by ssc1 . Its neighboring clusters, which are within the
Hamming distance h(wprobe) obtained by equation (1) in
the sequence space, are removed in the following selec-
tions (Figure 3A). Second, the cluster with the second
largest cluster size, among those remaining after the
above-mentioned first selection, is selected and saved as
the second selected cluster; this is referred to as sc2, and its
size is represented by ssc2 . Its neighboring clusters, which
are within the Hamming distance h(wprobe) in the sequence
space, are removed in the subsequent selections (Figure
3B). Similarly, the following selections are repeated for
all of the clusters, except for those with a cluster size of
one (Figure 3C). Here, the number of selected clusters

Figure 1. Schematic representation of the workflow of the present al-
gorithm for the identification of TFBMs in genome DNA sequences.
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is represented by N. This procedure is referred to as the
‘selection of distinguishable clusters’ (SDCs).
Next, instead of the target DNA sequence and the

probes used in the previous scanning procedure, the
intergenic region sequences of the yeast genome and
human chromosome 1 (also see the ‘Experimental data
used in this study’ subsection) are scanned as the back-
ground data, by exploiting each probe of the cluster sci
(i=1, . . . , N), which is selected in the SDC procedure, as
the probe sequence. In this manner, the size of each cluster
with respect to the background data (sbgsci ) is obtained
(Figure 3D).

Selection of clusters including plausible TFBMs
(phase III)

To identify the plausible candidates of TFBMs, the fol-
lowing score function, which is referred to as the motif
identity score (MIS), is calculated using ssci , s

bg
sci
, and a

scaling factor � (this factor normalizes the cluster sizes
in the background sequence (i.e. sbgsci), and enables the
direct comparison of two cluster sizes in the target and
background sequences).

MISðsciÞ ¼ ssci � log
ssci

�sbgsci

 !
ð2Þ

Here, to compare the two distributions concerning the
cluster sizes, i.e. ssci and sbgsci (i=1, . . . , N), � is introduced
to normalize the two distribution functions (Figure 4A).
With respect to each selected cluster, the plausible TFBM
candidates are identified in the cluster by comparing the
normalized distribution functions, as mentioned later.
It should be noted here that the TFBM sequences are
expected to be rare in the background data, but ‘distin-
guishable’ in the target DNA sequence. Based on this fun-
damental principle, the selection of TFBMs is performed
by comparing the two distribution functions, as men-
tioned below. This is referred to as the direct comparison
scheme of the signal/noise distributions.

First, the � value is determined such that the following
R is �0.7.

R ¼
1

N

XN
i¼1

cmpðssci , �s
bg
sci
Þ, cmpðp, qÞ ¼

1 if p < q

0 otherwise

(
,

ð3Þ

where R represents the ratio of the ‘noise’ in all of the
distinguishable clusters. This means that the � value is
determined such that the number of selected clusters (sci)
for which �sbgsci is higher than ssci is �0.7N (the actual MIS
values are shown in Figure 5 for two TFs). Thus, the R

Figure 2. Schematic diagram of a ‘cluster’. The frequency of each ‘set’
(i.e. cluster), in which similar subsequences (see ‘Overall scheme of the
present system’ and ‘Scanning of TFBM candidates on the target DNA
sequence (phase I)’ subsections) are extracted by scanning of the target
DNA sequence, is mapped on the sequence space of the probes used for
the scanning. The cluster size is then calculated with respect to each
subsequence, by summing up the frequencies of the ‘neighboring’ sub-
sequences (see ‘Overall scheme of the present system’ and ‘Scanning of
TFBM candidates on the target DNA sequence (phase I)’ subsections).

Figure 3. Schematic diagram of the selection scheme of the ‘distin-
guishable’ clusters. (A) In the first iteration, the cluster with the
largest size is selected, and then the neighboring sets closed to the
largest cluster are removed in the subsequent iteration for the selection.
(B) In the second iteration, the cluster with the second largest size is
selected, and the neighboring sets closed to the second largest one are
removed. Similar iterations are repeated for all of the clusters.
(C) Finally, the distinguishable clusters are only left. (D) With respect
to each extracted cluster (red), the cluster size calculated from the
background data (blue) is also mapped.
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and � values are determined in a self-consistent manner.
This calibration procedure also reduces the bias that might
be induced in the selection of the distinguishable clusters
(phase 2).

Next, the five sci clusters are selected such that their
MIS(sci) values are higher than the top five. These five
clusters are selected as ‘plausible clusters’ of TFBMs
(here, five is the default value), and are referred to as
pcj, where the suffix j ( j=1, . . . , 5) is assigned in the as-
cending order of the MISðsciÞ values. Thus, the clusters
involving the plausible TFBMs are identified.

Then, in the target sequence, the currently unselected
regions are identified for use in the next stage. To

extract the ‘noise’ sequences and to prevent them from
being included in the ‘signal’ sequences, the clusters for
which the MISs exhibit negative values are picked up
among the clusters that are selected through the SDC pro-
cedure in the second phase (as a result, the noise sequences
are selected among the subsequences). The number of re-
sultant clusters is �0.7N, due to the above-mentioned
scheme for the determination of the � value. Here, the
false negatives are minimized through the optimization
of R, since the actual noise ratio involved in the distin-
guishable clusters is approximately greater than 0.9
(i.e. the R value is selected to be sufficiently smaller than
the noise ratio, which is dominant in the clusters.

Figure 4. Schematic diagram of the selection scheme for plausible clusters. (A) With respect to each selected cluster (red), the cluster sizes calculated
from the background data are normalized, and then are mapped (blue). (B) MISs calculated for the selected clusters. The selected clusters with
positively high and negatively low MISs are identified as the plausible clusters of the TFBMs and background noise, respectively.

Figure 5. Frequency distributions in the clusters and MISs with respect to CBF1 and FHK2. (A) The clusters sizes calculated from the target DNA
sequence are plotted in ascending order (red). For each cluster selected, the corresponding cluster size is calculated by using the background data
(blue). (B) The MISs of the selected clusters are plotted.
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As a consequence, R was set to 0.7 in our identification
system) (see Supplementary Figure S1).
Thus, these clusters are exploited as ‘noise’ clusters. The

noise clusters involve the subsequences that frequently and
commonly appear in the target DNA sequence as well as
the background data. Here, in the target DNA sequence,
the subsequences, except for those involved in the plaus-
ible and noise clusters, are referred to as the currently
unselected subsequences (CUSs), which are defined for
each plausible cluster. The CUSs are exploited to add
new subsequences to each plausible cluster in the fourth
phase. This means that the MIS classifies all of the subse-
quences in the target DNA sequence into the plausible
clusters of TFBMs, the background noise or the CUSs
(Figure 4B).

GI phase (phase IV)

To identify the large gaps in the plausible TFBMs, the
following score function, which is combined with the
PSSM (a wprobe� 4 matrix), is exploited. For each plaus-
ible cluster (pci) of TFBMs identified in the third phase,
the elements of the PSSM, Mpci , are calculated as follows:

m
pci
j, b ¼

n
pci
j, b

spci
j 2 1, 2, � � � , wprobe

� �
, b 2 T,C,A,Gf g,

ð4Þ

in which n
pci
j, b represents the number of elements in the

plausible cluster pci, for which the base of position j is b.
Next, by exploiting this PSSM, the following motif simi-
larity score (MSS), which was proposed by Kel et al. (35),
is calculated for a subsequence s (its length is equal to
the window size wprobe) in the CUSs, in which the se-
quences included in each plausible cluster are excluded,
as mentioned.

MSSðMpci , sÞ ¼
CurrentðMpci , sÞ �MinðMpciÞ

MaxðMpciÞ �MinðMpciÞ
ð5Þ

Here, Current(M, s), I(M, j ), Min(M ) and Max(M ) are
defined as follows:

CurrentðM, sÞ ¼
Xwprobe

j¼1

IðM, jÞmj, sj , ð6Þ

IðM, jÞ ¼
X

b2 T,C,A,Gf g

mj, b lnð4mj, bÞ j ¼ 1, 2, � � � ,wprobe,

ð7Þ

MinðMÞ ¼
Xwprobe

j¼1

IðM, jÞmmin
j , ð8Þ

MaxðMÞ ¼
Xwprobe

j¼1

IðM, jÞmmax
j , ð9Þ

where mmin
j and mmax

j represent the minimum and max-
imum values of the matrix elements at the column j in
the PSSM, respectively. Each MSS value ranges from
0.0 to 1.0 (1.0 represents the best match score of MSS).

I(M, j) is the information vector, which represents the
identity of position j.

The MSS is used to identify the larger gaps in the GI
phase, which is performed for each pci (i=1, . . . , 5), as
follows (Figure 6A). First, a subsequence s is extracted
from the CUSs. When the MSSðMpci , sÞ value is larger
than the threshold value MINMSSk, the subsequence is
saved as a new element of pci, which is now referred to
as pc

ð1Þ
i (here, ‘(1)‘ represents the number of updates, and

Mpci is not modified at this stage). Here, MINMSSk is
calculated as follows:

MINMSSk ¼ 0:9� 0:1 exp k� 1ð Þ, ð10Þ

where k represents the k-th cycle of the subsequence search
in the CUSs. In each k-th cycle, this procedure is con-
ducted for every s in the CUSs. Here,MINMSSk increases
from 0.8 to 0.9 for the conversion of the search, depending
on the cycle number. According to Kel et al. (35), when
the cutoff value, 0.75 (fixed in their report), was used for
the identification, the obtained TFBM candidates were
found to involve some false positives. Therefore, in this
study, to minimize the false positives, the lower limit
of MINMSSk was set to 0.8, through the optimization
using the 65 yeast datasets. This value (i.e.
0:8 �MINMSSk < 0:9) was also used for the identifica-
tion of the four mammalian datasets employed for the
present benchmark test, and thus was determined in our
system.

After the first cycle (k=1) of the search, the updated
plausible clusters pc

ð1Þ
i are used to generate the new

PSSMs. The updated PSSMs are then utilized for the cal-
culation of MSSðMpc

ð1Þ
i , sÞ, when this scanning procedure

is repeated for the CUSs. Thereby, each pc
ð1Þ
i is further

updated as a new element of the PSSM, which is
referred to here as pc

ð2Þ
i . In our present calculation, this

iteration is repeated until the new subsequences in the
CUSs are not added to the plausible cluster, as judged
on the basis of the above-mentioned criteria. Thus, pc

ðLÞ
i

(here, ‘L’ represents the last iteration) is obtained.
Finally, to evaluate the plausible clusters obtained in the

final iteration of the GI phase, MIS pc
ðLÞ
i

� �
is calculated

for each pc
ðLÞ
i (i=1, . . . , N) by using equation (2). The

variables, s
pc
ðLÞ
i
, sbg

pc
ðLÞ
i

and �0, are then calculated as follows:

For the pc
ðLÞ
i , which is updated usingMpc

ðL�1Þ
i , the variables,

s
pcðLÞ

i
and sbg

pcðLÞ
i

, represent the size of pc
ðLÞ
i and the number

of elements (i.e. identical sequence pieces; see ‘Scanning
of TFBM candidates on the target DNA sequence
(phase I)’ section) in each subsequence that is chosen
from the background data such that their MSS values
are higher than 0.8 (this threshold is equal to the value of
MINMSS1), respectively. As mentioned earlier, the
original spci and sbgpci values are obtained by counting
the number of elements in each subsequence that are
located within the value obtained by the equation (1)
from each probe sequence in the first and third stages,
respectively; i.e. the similarity of the subsequences is pri-
marily emphasized for the selection. In contrast, in the
GI stage, the sbg

pc
ðLÞ
i

values tend to be much larger than the
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original sbgpci values, since MpcðLÞ
i is obtained by involving

gap information, through the addition of new subse-

quences. Here, the � value (which is determined in the

third phase to normalize sbgpci) is not suitable to normalize

sbg
pc
ðLÞ
i

; i.e. � does not lead to the correct results, since the

elements of the two types of clusters, which correspond

to those of the TFBM candidates and noise sequences,

are distinct from those obtained in the GI phase.

Accordingly, we determine the � value again in the GI

phase (the new value is referred to as �0).
For the normalization of the sbg

pc
ðLÞ
i

values, �0 is calculated
as follows:

1

N

XN
i¼1

�sbgpci
spci
¼

1

N

XN
j¼1

�0sbg
pc
ðLÞ
j

s
pcðLÞ

j

, ð11Þ

where the � and sbgpci values are equal to those obtained in

the third phase. The value of �0 is determined such that the

average value of the ratio of �
pc
ðLÞ
j bg and s

pc
ðLÞ
j

corresponds

to that of �sbgpci and spci . Thus, �
0 is determined as follows:

�0 ¼

PN
i¼1

�sbgpci=spci

PN
j¼1

sbg
pc
ðLÞ
j

=s
pc
ðLÞ
j

, ð12Þ

Using this value, we calculate the MIS for the updated
clusters (Figure 6B). In this manner, the most plausible
motif is selected, based on the MIS values (Figure 6C).

Existing algorithms and their parameter settings

To compare the accuracy of our algorithm with those of
the existing ones, we performed motif identification using
MEME (12), Weeder (13), BioProspector (14), MDscan
(15) and DME (16), which are frequently used and are
accessible at their websites. Here, MEME, Weeder,
BioProspector, MDscan and DME use an expectation-
maximization (EM) algorithm, a consensus-based algo-
rithm that exhaustively enumerates all the subsequences,
a Gibbs sampling technique, an enumerative deterministic
greedy algorithm and a noise/signal discriminating algo-
rithm, respectively. In this study, the best five plausible
motifs (and their PSSMs) were obtained for each identifi-
cation system, and were compared with the PSSMs de-
posited in the website of Harbison et al., each of which
exhibits the highest Z-score values among the candidates
identified using the six types of conventional tools. These
TFBMs in this database are referred to as the ‘reference
TFBMs’.
When the i-th plausible motif among the five candidates

‘corresponds’ to a reference TFBM, the ‘rank’ is assigned
as i; this ranking is judged for each of the outputs of the
above-mentioned five existing programs and our algo-
rithm. Here, the similarity between the obtained and ref-
erence PSSMs is defined by employing the following

Figure 6. Schematic diagram of the GI algorithm implemented in the present program. (A) The new subsequences are extracted from the CUSs, and
are added to the plausible clusters. (B) With respect to each updated cluster (red), the normalized cluster sizes calculated from the background data
are also mapped (blue). (C) The MISs of the updated clusters are plotted. By employing the MISs for the updated clusters, the most plausible cluster
is selected.
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correlation coefficients: the obtained and reference PSSMs
are wprobe� 4 and wRef� 4 matrices, respectively. Since the
wprobe and wRef values are generally different, many com-
binations for determining the corresponding elements are
present. For all such combinations, the correlation coeffi-
cients are calculated: here, when the elements of the
obtained PSSM do not correspond to any elements in
the PSSM deposited in the reference database, those
elements of the reference PSSM are considered to be
‘random’. Both PSSMs are defined as being equivalent,
when the maximum value of the correlation coefficients
is more than 0.8. If the five candidates obtained from
each of the six programs including the present system
are different from the reference PSSMs, the rank is
assigned as ‘disagreement (DA)’.
With respect to the following programs, i.e. MEME,

BioProspector and MDscan, the default parameter value
for a Markov model, which calculates the probability of
each candidate motif observed in the background data,
was used (the third-order Markov chain was imposed as
the default). Since for BioProspector, the trial results are
different, due to the stochastic optimization scheme (the
Gibbs sampling technique is exploited). Accordingly, to
evaluate the BioProspector results, five trials were per-
formed for each of the 65 yeast datasets. In each trial,
the candidate motif with the highest score was chosen,
and thus five candidates were obtained through the five
trials. Then, with respect to each dataset, either a Rank or
a DA was assigned to the five candidate motifs, in a
similar manner to the other cases.
For MDscan, the P-value associated with the binding

intensities between each TF and its target DNA is
required, to generate the initial candidates of the
TFBMs as the initial guesses for the search (MDscan
was specifically designed for ChIP-on-chip data). Thus,
for the calculation using MDscan, the accuracy depends
on the data sorting of the target DNA fragments, prior to
the program application. Therefore, the sequence frag-
ments retrieved from the web site of Harbison et al.
were sorted in the descending order of the P-values. In
the present tests, both the descending and unsorted
orders of the sequences were utilized, to evaluate the
effect of the data sorting on the MDscan (here, the
unsorted order of the DNA fragments is corresponding
to the order that is found in the raw experimental data).

RESULTS

Identification of yeast TFBMs

We evaluated the accuracy of the six programs, i.e. the five
existing systems and the present algorithm, by employing
65 datasets, which were experimentally extracted from the
yeast genome DNA sequences by using the ChIP-on-chip
technique in the previous study (33). Some conditions
were modified in the identification: for the six programs,
we obtained the results coupled/uncoupled to the
reduction of SSRs using RepeatMasker (http://www
.repeatmasker.org/). For MDscan, we obtained the results
coupled/uncoupled to the rearrangement of the target
DNA fragments, in the descending order of the P-values

(in the latter case, the unsorted order of the DNA frag-
ments was used, as described in ‘Existing algorithms
and their parameter settings’ subsection). In Figure 7,
the following cumulative frequency c(r) (r represents
‘Rank’, i.e. r=1, . . . , 5) is plotted with respect to the six
programs, each performed using the best conditions for
the program (i.e. minimal DA) (see the legend of Figure 7)

cðrÞ ¼
Xr
i¼1

X
j2fdataset1�65g

cmpmotifði, jÞ, ð13Þ

where cmpmotifði, j Þ is either one, when the i-th candidate
corresponds to the reference TFBM of the dataset j, or
zero, when it does not correspond to it. For example, c(1)
is equal to the number of ‘Rank 1’ among the 65 datasets.
The detailed results of the TFBM identification using the
six programs are shown in Supplementary Tables S3–S16,
and those generated by the various other conditions are
shown in Supplementary Figures S2–S7.

When the reduction of SSRs and the rearrangement of
the DNA fragments were not performed (i.e. the most
‘difficult’ case for identification), the number of TFBMs
in ‘Rank 1’ identified using our program (i.e. 48) was
larger than those of the five existing systems, each
performed under the best conditions for the system
(Figure 7). Moreover, for all cases specified by c(r)
(r= 1, . . . , 5), our system exhibited the best accuracy, as
compared with the other five programs. As shown in
Figure 7, our system identified the correct TFBMs in
higher ranks (i.e. ‘Rank 1’ or ‘Rank 2’). In fact, the c(r)
of our system is converged for r=2, and the c(2) value
obtained using our system (�83% in all of the datasets) is
larger than those obtained using the other five programs,
by 15–28%. The accuracy of our program is higher than
the second best ones (i.e. DME together with the SSR
reduction and MDscan together with the SSR reduction
and the rearrangement of the DNA fragments), by �15%.

Figure 7. The cumulative frequency c(r) (r represents ‘Rank’, i.e.
r=1, . . . , 5) in equation (13) is plotted with respect to the six programs.
MDscan (squares) was performed with pre-treatments of each dataset (i.e.
the SSR reduction and the rearrangement of the target DNA fragments).
DME (asterisks) and Weeder (circles) were performed with the SSR re-
duction. Our system (rhombuses), BioProspector (triangles) and MEME
(crosses) were performed without any pre-treatments. See Supplementary
Figures S1–S4, concerning the results performed under other various
conditions.
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The accuracy of MDscan, DME and Weeder was
slightly improved by performing the reduction of SSRs.
Moreover, the combination of the reduction of SSRs and
the sorting of the DNA fragments in the descending order
of P-value (i.e. the ‘easiest’ case) remarkably improved the
accuracy of MDscan (Supplementary Figure S3).

In contrast, for our program, BioProspector and
MEME, the accuracy did not depend on such pre-
treatments. Furthermore, the results of our program
without performing any pre-treatments were better than
those of MDscan with the full pre-treatments. More spe-
cifically, when the reduction of SSRs was performed, the
accuracy of our program was actually slightly worse.
This means that the pre-treatment may reduce the
signals of the TFBMs as well as the noisy sequences.

Identification of the mammalian TFBMs

To apply our algorithm to higher eukaryote data and to
test the GI of the TFBMs, we performed a test using
ChIP-on-chip/ChIP-seq data inducing mammalian TFs
(i.e. hER, mTcfcp2l1, hAR and hVDR), for which the
binding motif involves a gap composed of 2–6 bases (see
Supplementary Table S2). In a similar manner to the case
of the yeast TFBMs, we compared the accuracy of our
system with those of the existing ones.

To identify these mammalian TFBMs, we commonly
used a larger window size (sixteen) in the five programs
tested. Here, for Weeder, 12 is used for the large window
size, due to the limitation of the available program. Since
MDscan requires the descending order of the P-values of
the DNA sequence fragments, we tested two cases, i.e. the
unsorted order and the descending order of the P-values.
To examine whether the existing programs are sensitive to
the presence/absence of SSRs, we further examined two
cases with/without the use of the pre-reduction of SSRs.
Thus, with respect to these mammalian datasets, we
examined the responses of the six identification systems
with various combinations of the above-mentioned condi-
tions (Table 1).

When the order of the DNA sequence fragments was
unsorted without the pre-reduction of SSRs (the most ‘dif-
ficult’ case in the present test of the mammalian TFBMs),
only our system identified all four mammalian TFBMs
(Table 1). When the SSRs were reduced, BioProspector
and Weeder identified the hAR binding motif as ‘Rank
5’ and ‘Rank 1’, respectively, and DME identified the
mTcfcp2l1 motif as ‘Rank 1’. On the other hand, for the
hVDR binding motif, Weeder failed to identify it when
the SSRs were reduced. These results mean that, with
respect to BioProspector and DME, the reduction of
SSRs is effective to identify these mammalian TFBMs.
Furthermore, MDscan failed in the identification, for all
the datasets, in both the absence and presence of the SSRs,
when the DNA fragments were not sorted (data not
shown). In contrast, with our identification system, all
four of the mammalian TFBMs were found in both the
absence and presence of the SSRs, as shown in Table 1.
More specifically, the hVDR binding motif was identified
as Rank 5 in the absence of the SSRs, and as Rank 1 in the
presence of the SSRs. This suggests that the SSR T
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reduction decreased the accuracy of our system, indicating
that RepeatMasker reduces the signals as well as the noise
from the target DNA sequences.
When the two datasets lacking SSRs were rearranged in

descending order, MDscan identified the three mamma-
lian TFBMs (i.e. the binding motifs of hER, mTcfcp2l1
and hAR) as ‘Rank 1’ or ‘Rank 2’. However, for datasets
involving SSRs, MDscan failed, except for the case of
mTcfcp2l1. Thus, for MDscan, the two conditions, i.e.
the descending order of the DNA sequences and the
lack of SSRs, are important to correctly identify the motif.
In this manner, only our identification system success-

fully identified the four mammalian TFBMs without
editing the target DNA sequences and using any
additional combinations of information, such as the
P-values of the sequence data obtained from experiments.
Moreover, the other sets of background data that involved
more distal regions from TSS were tested, and we found
that the calculated results of our system are not sensitive
to such differences of background data (data not shown).

DISCUSSION

TFBMs that are not included in the database identified
using our program

We found the four reference TFBMs that were not
identified by each of the six programs (‘DA’ is assigned
in Supplementary Tables S3–S16). For example, with
respect to PHO2, which regulates genes involved in phos-
phate metabolism, we found that all of the TFBMs

identified with the top five score values, using our
program, are different from the reference described in
the database built by Harbison et al. To the best of our
knowledge, the PHO2 binding motif has not yet been
elucidated experimentally (only MEME_c (33) exclusively
predicted the TFBM candidate deposited in Harbison’s
web site, among the six programs employed to build
their database). However, it should be noted here that
previous experimental studies revealed that PHO2 forms
a complex with Pho4, which binds to the (Pho4-binding)
consensus sequence, 50-CACGTGc-30 (36). In fact, our
system identified the candidate motif (50-CACGTGct-30)
(Table 2), which is equivalent to the above-mentioned
Pho4-binding sequence, as the second best score;
however, this TFBM was not identified by the other five
existing systems. Thus, for PHO2, the reference may be
incorrect, on the basis of the previous and present results.
For the other three cases, we could not obtain the relevant
literature, and thus did not compare the references.

With respect to MET4, the TFBM (50-AAnTGTGg-30)
was identified as ‘Rank 1’ by using our system (Table 2).
In addition to the reference, we noticed that another
motif, 50-CACGTGAn-30, which is equivalent to the ref-
erence of CBF1, was also found as the TFBM candidate
of MET4 with our system (Table 2). It should be noted
here that Met4 itself does not bind to the DNA, but does
so in the complex with Met28 and either Met31 or Met32,
or in the complex with Met28 and Cbf1. In previous bio-
chemical experiments, the former complex was revealed
to bind to the sequence 50-AACTGTGg-30 (which is

Table 2. Results of our identification system, with respect to FKH2, MET4 and PHO2 ‘logo’ representing information contents of the identified

PSSMs is generated by STAMP (41)

Dataseta Identified by experiments Identified by the present program

DNA-binding subunitb Binding sequencec Motif Frequencyd Order of MISe

PHO2 PHO4(PHO2) CACGTGc 16 2

MET4 MET31/32(MET4) AACTGTGG 34 1

CBF1(MET4) tCACGTGa 24 2

FKH2 FKH2 TGTTTAC 146 1

MCM1(FKH2) CCnnwTTaGGAAA 88 5

aDataset deposited in the database involving the target DNA sequence.
bSubunit that binds to DNA in the complex.
cExperimentally identified DNA-binding consensus sequence.
dThe plausible cluster size (see ‘TFBMs that are not included in the database identified using our program’ subsection).
eThe order of the MIS value, where the corresponding plausible cluster was experimentally identified in previous studies.
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equivalent to the reference of MET4) in the upstream
regions of the MET3 and MET28 genes, and the latter
complex bound to the sequence 50-tCACGTGa-30 (this is
equivalent to the above-mentioned TFBM, identified by
our system as the second best score) in the upstream
region of the MET16 gene (37,38). Thus, our system cor-
rectly identified the two TFBMs corresponding to both
complexes involving MET4. In contrast, the five existing
systems identified only one of the two TFBMs, which is
the one distinct from the reference deposited in the
database.

Similarly, Fkh2, which regulates the G2/M phase genes,
forms a complex with Mcm1, and this complex binds to
both 50-TGTTTAC-30 (which is bound by the Fkh2
subunit) and 50-CCnnwTTaGGAAA-30 (which is bound
by the Mcm1 subunit) (39,40). In fact, our system
identified both TFBMs of FKH2; i.e. 50-TGTTTAC-30

(the reference), and 50-TtAGGAcA-3 (see Table 2). In
contrast, the latter TFBM was not identified by the five
other programs.

Scoring function of our identification system

The fundamental idea for the identification of the correct
TFBMs in target genome DNA sequences is based on the
direct comparison of the frequencies of each TFBM can-
didate in the target and background sequences, as follows.
The signal is defined as the subsequences that exhibit
higher and lower frequencies in the target and background
sequences, respectively. The noise is defined as the subse-
quences that exhibit high frequency in the background
sequence. For example, when the frequency of a subse-
quence is high in the background sequence, this candidate
is usually defined as noise, although it also actually
depends on the frequency in the target sequence through
theMIS value. This is the concept of our scoring function.

In this manner, the scoring function (equation (2))
evaluates the identity of each distinguishable cluster,

which is classified to a TFBM candidate, the background
noise or a CUS, by comparing the frequencies (sizes) of
the two distinguishable clusters, each possessing the
common probe sequence in the target or background se-
quences. For example, with respect to the clusters
involving SSRs, which are quite frequent among both
the target and background sequences, the values of the
scoring function are negative and their absolute values
are very large. Such sequence clusters are considered to
be noise (e.g. SSRs), and can be removed as background
noise by our scoring function, without any pre-treatments
of the target DNA sequences.
In the sequence space, we define a ‘similar’ region as a

space that includes the properties of a TFBM candidate;
i.e. a ‘similar’ region in the sequence space, referred to
here, does not include the properties of more than two
TFBM candidates. Where a cluster, as defined by
equation (1), covers a region, it should be small, such
that the cluster does not involve more than two TFBM
properties or involves only noise properties. Conversely,
the properties for one TFBM are, in general, divided into
more than two clusters; therefore, to reproduce the con-
sensus sequence of the TFBM, one should unify a cluster
with the others that possess ‘similar’ properties. In fact, as
shown in Figure 8, the candidate motifs that exhibit the
higher MIS values include few false positives (FPs), where
the FP rate (rFP) is defined, together with the true positive
(TP) rate (rTP), by the following equations:

rTPðMISÞ ¼

RMIS+�MIS

MIS fTPðxÞdxRMIS+�MIS

MIS fallðxÞdx
, ð14Þ

rFPðMISÞ ¼ 1� rTPðMISÞ: ð15Þ

Here, fallðxÞ represents the summation of the cluster size
(cf. ‘Scanning of TFBM candidates on the target DNA
sequence (phase I)’ subsection) of each distinguishable
cluster for which the MIS value is equal to x. Similarly,

Figure 8. The distributions of our score function (i.e. MIS) (rhombuses) and the FP rate (i.e. rFP(MIS)) (triangles) are plotted. �MIS (see ‘Scoring
function of our identification system’ subsection) is set to 10.
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with respect to the same distinguishable clusters (i.e. their
MIS values are equal to x), fTPðxÞ represents the
summation of the numbers of subsequences (cf. ‘Overall
scheme of the present system’ subsection) that are
‘corresponding to’ the reference TFBM (as described in
‘GI phase (phase IV)’ subsection, ‘corresponding’ means
that the MSS value of the element is more than 0.8 with
respect to the PSSM of the reference). �MIS represents
the step width to obtain the distributions.
Thus, our scoring function was found to decrease the

ratio of false positives in the candidates, which may be
critical for the discrimination of the correct/incorrect
ones. Moreover, we conducted another examination by
calculating the ratio of the correctly identified TFBMs
(the identification rates) as a function of the enrichment
score, which exhibits the degree of difficulty for the correct
identification of each TFBM (33). As a result of the
analysis, our system also exhibited the best identification
rates with respect to the TFBMs with lower enrichment
scores (Figure 9). More specifically, for the TFBMs with
enrichment scores as small as 10–20, the identification
rates of the existing systems are less than 55%, whereas
that of our system is more than 80%. This indicates that
our system can identify the correct TFBMs with better
accuracy than the other programs that were tested here,
even when the datasets are noisy.

Characteristic features of our identification system

In the conventional programs, the number of distinct
TFBMs considered in the algorithms should initially be
assumed; for example, the default values are one type in
MEME, 40 in BioProspector, and 5 in MDscan. In
contrast, in our system, this assumption is not required,
and thus the number of TFBMs that can be identified by
our system is restricted by the length of the search window
used in the first phase (in this sense, the number of TFBMs
that can be identified is limitless in our algorithm). Thus,
due to its exploration capability, based on the

simultaneous comparison of various TFBMs, our system
can explore a much wider sampling space than the other
conventional programs. Nevertheless, the number of FPs
is less than those of the conventional algorithms, as shown
in Figure 7. This advantage is established by the direct
comparison scheme of the signal/noise distributions.
Despite the enhanced exploration capability, the execution
time is comparable to those of BioProspector and DME.

It should be noted that the cluster size, i.e. the frequency
of a TFBMobserved in genomeDNA, is not substantial for
the biological functions. In general, some clusters with
small/large sizes (i.e. low/high frequencies) are crucial in
their biology. In fact, in the second phase, the maximum
peak of the cluster sizes is chosen in each iteration, and
thereby even the smaller ‘distinguishable’ clusters can be
identified in the later iterations. Thus, our system can find
the characteristic clusters in the target DNA sequence
without neglecting the small, but biologically significant,
clusters. The combination of this iterative scheme and our
scoring function (equation (2)) is the most crucial imple-
ment to identify the TFBMs correctly even in noisy
datasets, without depending on their frequencies (Figure 9).

The accuracy of the five existing algorithms significantly
depends on the pre-treatments for the identification, i.e.
the removal of the background noise and other biological
signals, which are well-conserved in the target base se-
quences (e.g. SSRs) (Table 1). However, the reduction of
SSRs via RepeatMasker (and other similar programs)
does not always effectively improve the accuracy of the
motif identification. In fact, such programs sometimes
remove signal sequences as well as noise. Accordingly, in
this study, we developed a novel scoring function (i.e.
MIS), which identifies the plausible TFBMs, without
pre-treatments, in the third phase. Furthermore, as men-
tioned earlier, our algorithm also discriminates the SSRs
and the other biological signals from TFBMs, by
comparing the frequencies of the subsequences that are
extracted from the target DNA sequence and the

Figure 9. For the 65 yeast datasets, the rates of successful identification, defined as Ranks 1 and 2, are shown with the respect to the enrichment
scores employing the results obtained by our system (rhombuses), BioProspector (triangles), MEME (crosses), MDscan (squares), DME (asterisks)
and Weeder (circles). Note that in the datasets, there is one sample in the 50–60 enrichment score range.
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background data (i.e. the intergenic sequences) in the third
phase. Thereby, in the fourth phase (i.e. the GI stage), we
can minimize the addition of noise and such other signals
as the updating sequences into the plausible TFBM
clusters, by using another scoring function (i.e. MSS) to
evaluate the agreement between the selected subsequences
and the PSSM for each plausible TFBM cluster (i.e. this
means the comparison between a string and a matrix,
which MSS can perform).

In summary, our system identifies the plausible TFBMs
without pre-treatments of the target DNA sequences and
tuning of the parameter set involved in the system. The
accuracy of our system is not sensitive to the S/N ratios of
the experimental data, as compared with some conven-
tional programs. Although eight sites are used as the
default length of its search window, the PSSMs of the
reference yeast TFBMs, which are longer/shorter than
eight, were precisely identified. Even if the gap regions
are included in the TFBMs, our system exactly identified
them without tuning the parameter set; this is an import-
ant advantage of our system, as compared with the con-
ventional programs. Thus, the present system is also
applicable to genome DNA sequences as well as experi-
mental data extracted by using ChIP-on-chip/Chip-Seq
techniques.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–17, Supplementary Figures 1–7
and Supplementary Reference [42].
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