data reports

OPEN d ACCESS

Crystal structure of [(2S)-1-[(3S)-3carboxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl]-1-oxopropan-2yl][(2S)-1-ethoxy-1-oxo-4-phenylbutan-2yl]azanium chloride acetonitrile monosolvate

Ai-zhen Li and Wen-jie Xu*

Shenzhen Salubris Pharmaceuticals CO., Ltd, Guangdong Shenzhen 361021, People's Republic of China. *Correspondence e-mail: xjhn0820@163.com

Received 14 May 2014; accepted 18 September 2014

Edited by V. Khrustalev, Russian Academy of Sciences, Russia

The title compound (trivial name moexipril hydrochloride) crystallizes as the acetonitrile monosolvate, $C_{27}H_{35}N_2O_7^+$.- $Cl^-\cdot C_2H_3N$, with the salt comprising a U-shaped cation and a chloride anion. The conformation of the cation is stabilized by a weak intramolecular $N^+ - H \cdots O$ hydrogen bond and the tetrahydropyridine ring adopts a *boat* conformation. The dihedral angle between the planes of the benzene rings is 85.6 (1)°. In the crystal, the cations and anions form tight ionic pairs by strong intermolecular $O-H\cdots Cl$ hydrogen bonds. $C-H\cdots Cl$ and $C-H\cdots N$ hydrogen bonds link these ionic pairs and the acetonitrile solvate molecules into puckered layers parallel to (100).

Keywords: crystal structure; moexipril hydrochloride; hydrogen bond.

CCDC reference: 1024892

1. Related literature

For the synthesis of the title compound, see: Klutchko *et al.* (1986); Yamazaki & Suzuki (1998). For the structure and applications of related compounds, see: Suzuki *et al.* (2000, 2010).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{27}H_{35}N_2O_7^+\cdot CI^-\cdot C_2H_3N\\ M_r = 576.07\\ Monoclinic, P2_1\\ a = 10.9391 \ (6) \\ \mathring{A}\\ b = 10.4655 \ (4) \\ \mathring{A}\\ c = 13.3159 \ (5) \\ \mathring{A}\\ \beta = 97.419 \ (4)^\circ \end{array}$

2.2. Data collection

Agilent Xcalibur, Eos, Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\rm min} = 0.516, T_{\rm max} = 0.750$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$

R[7 > 20(7)] = 0.053 $wR(F^2) = 0.087$ S = 1.035728 reflections 367 parameters 1 restraint H-atom parameters constrained Z = 2Cu K α radiation $\mu = 1.52 \text{ mm}^{-1}$ T = 103 K $0.50 \times 0.20 \times 0.20 \text{ mm}$

 $V = 1511.68 (12) \text{ Å}^3$

11078 measured reflections 5728 independent reflections 5570 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

 $\begin{array}{l} \Delta \rho_{max} = 0.55 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -0.34 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 2620 \mbox{ Friedel pairs} \\ \mbox{Absolute structure parameter:} \\ 0.000 \mbox{ (10)} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5-H5···Cl1 ⁱ	0.84	2.09	2.924 (3)	171
$N1 - H1A \cdots O3$	0.92	2.04	2.587 (2)	117
$N1 - H1B \cdot \cdot \cdot O4^{ii}$	0.92	1.87	2.724 (3)	154
C13-H13···Cl1	1.00	2.52	3.459 (2)	157
$C14-H14B\cdots Cl1^{iii}$	0.98	2.71	3.593 (2)	150
C18-H18A···N3 ^{iv}	0.99	2.39	3.367 (4)	168
$C29-H29A\cdots Cl1^{iv}$	0.98	2.74	3.698 (2)	165

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 2, y + \frac{1}{2}, -z + 2$; (iii) $-x + 2, y - \frac{1}{2}, -z + 2$; (iv) $-x + 2, y - \frac{1}{2}, -z + 1$.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Acknowledgements

This work was supported by grants from the Science and Technology Innovation Council of ShenZhen (No. JCYJ20120615172324607).

Supporting information for this paper is available from the IUCr electronic archives (Reference: KQ2014).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

- Klutchko, S., Blankley, C. J., Fleming, R. W., Hinkley, J. M., Werner, A. E., Nordin, I., Holmes, A., Hoefle, M. L., Cohen, D. M., Essenburg, A. D. & Kaplan, H. R. (1986). J. Med. Chem. 29, 1953–1961.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suzuki, T., Araki, T., Kitaoka, H. & Terada, K. (2010). Int. J. Pharm. 402, 110-116.
- Suzuki, T., Kitaoka, H., Miwa, Y. & Taga, T. (2000). Anal. Sci. 16, 343–344. Yamazaki, K. & Suzuki, M. (1998). Anal. Sci. 14, 463–464.

supporting information

Acta Cryst. (2014). E70, o1126-o1127 [doi:10.1107/S160053681402090X]

Crystal structure of [(2S)-1-[(3S)-3-carboxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl]-1-oxopropan-2-yl][(2S)-1-ethoxy-1-oxo-4-phenylbutan-2yl]azanium chloride acetonitrile monosolvate

Ai-zhen Li and Wen-jie Xu

S1. Comment

Moexipril is a nonsulfhydryl containing precursor of the active angiotensin-converting enzyme. It is well known that the polymorphic and *pseudo*-polymorphic crystals of moexipril show different physico-chemical properties (Klutchko *et al.*, 1986; Suzuki *et al.*, 2010). The crystal structure of the β -form, the monohydrate and the sesquihydrate have been already reported previously (Yamazaki & Suzuki, 1998; Suzuki *et al.*, 2000). In this paper, we report the *X*-ray crystal structure and stereochemistry of moexipril hydrochloride acetonitrile monosolvate.

S2. Experimental

A solution of 2-[2-[(1-Ethoxycarbonyl-3-phenylpropyl)amino]propanoyl]-6,7-dimethoxy–3,4-dihydro-1*H*-isoquinoline-3-carboxylic acid in absolute ethanol was treated with hydrochloride in the presence of 5% Pd/C. The resulting mixture was concentrated and stood for 3 h at reduced pressure. The residue obtained was recrystallized from acetonitrile at room temperature to give colourless crystals of **I** suitable for X-ray diffraction analysis.

S3. Refinement

The absolute structure of I was objectively determined by the refinement of Flack parameter (2620 (94%) Friedel pairs measured), which has become equal to 0.00 (1). The calculated Hooft parameter is equal to -0.003 (6).

The hydroxyl and amino hydrogen atoms were objectively localized in the difference-Fourier map and include into refinement with fixed positional and isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(O) \text{ and } U_{iso}(H) = 1.2U_{eq}(N)]$. The other hydrogen atoms were placed in the calculated positions with C—H distances = 0.95 (aryl-H), 0.98 (methyl-H), 0.99 (methylene-H) and 1.00 (methine-H) Å and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl groups and $1.2U_{eq}(C)$ for the other groups].

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius. Dashed lines indicate the intramolecular N—H…O and the intermolecular C—H…Cl hydrogen bonds.

Figure 2

Crystal packing showing the puckered layers parallel to (100). Dashed lines indicate the intra- and intermolecular hydrogen bonds.

[(2S)-1-[(3S)-3-carboxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl]-1-oxopropan-2-yl][(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]azanium chloride acetonitrile monosolvate

F(000) = 612

 $\theta = 3.3 - 71.7^{\circ}$

 $\mu = 1.52 \text{ mm}^{-1}$ T = 103 K

 $R_{\rm int} = 0.021$

 $h = -13 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$

Block, colourless

 $0.50 \times 0.20 \times 0.20$ mm

 $\theta_{\rm max} = 71.8^\circ, \ \theta_{\rm min} = 3.4^\circ$

11078 measured reflections 5728 independent reflections 5570 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.266 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 6099 reflections

Crystal data

 $C_{27}H_{35}N_2O_7^+ \cdot Cl^- \cdot C_2H_3N$ $M_r = 576.07$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 10.9391 (6) Å b = 10.4655 (4) Å c = 13.3159 (5) Å $\beta = 97.419$ (4)° V = 1511.68 (12) Å³ Z = 2

Data collection

Agilent Xcalibur, Eos, Gemini
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 16.0971 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\min} = 0.516, \ T_{\max} = 0.750$

Refinement

```
Refinement on F^2
                                                                         Secondary atom site location: difference Fourier
Least-squares matrix: full
                                                                            map
R[F^2 > 2\sigma(F^2)] = 0.033
                                                                         Hydrogen site location: difference Fourier map
wR(F^2) = 0.087
                                                                         H-atom parameters constrained
S = 1.03
                                                                         w = 1/[\sigma^2(F_0^2) + (0.0513P)^2 + 0.3525P]
                                                                            where P = (F_0^2 + 2F_c^2)/3
5728 reflections
367 parameters
                                                                         (\Delta/\sigma)_{\rm max} = 0.001
1 restraint
                                                                         \Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}
                                                                         \Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}
Primary atom site location: structure-invariant
   direct methods
                                                                         Absolute structure: Flack (1983), 2620 Friedel
                                                                            pairs
                                                                         Absolute structure parameter: 0.000 (10)
```

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.93335 (4)	0.48179 (4)	0.82049 (3)	0.02184 (10)

O6	0.52273 (13)	0.26128 (14)	0.40381 (11)	0.0274 (3)
05	0.79427 (13)	-0.28384 (13)	0.76776 (12)	0.0286 (3)
Н5	0.8374	-0.3472	0.7887	0.043*
03	0.81278 (12)	-0.00568(13)	0.94514 (9)	0.0204 (3)
04	0.96943 (12)	-0.17651 (13)	0.81353 (10)	0.0214 (3)
02	0.73833(13)	0.45383 (13)	1.15813 (10)	0.0240(3)
C22	0.77885 (16)	0.30103 (17)	0.60435 (13)	0.0174(3)
H22	0.8293	0.3680	0.6349	0.021*
01	0.0293 0.73521 (14)	0.24231(14)	1 19090 (11)	0.021
07	0.75521(14) 0.65710(12)	0.24231(14) 0.44801(12)	0.48979(10)	0.0205(3)
N2	0.05710(12) 0.85280(14)	0.44001(12) 0.05279(14)	0.78967(10)	0.0229(3)
N2 C25	0.63280(14)	0.03279(14) 0.10402(18)	0.78907(11) 0.51823(14)	0.0173(3)
U25	0.02000(17)	0.10402 (16)	0.31823 (14)	0.0204 (4)
П23 С17	0.3703	0.0373	0.4902	0.024°
C17	0.80038 (16)	-0.1/996(1/)	0.78125(12)	0.0170(3)
C23	0.684/5 (16)	0.32815 (18)	0.52690 (13)	0.0185(3)
C15	0.86015 (16)	0.06883 (17)	0.88977 (13)	0.0168 (3)
C26	0.7471 (2)	0.54471 (19)	0.51712 (15)	0.0278 (4)
H26A	0.7196	0.6252	0.4840	0.042*
H26B	0.8257	0.5190	0.4954	0.042*
H26C	0.7578	0.5564	0.5908	0.042*
N1	0.87847 (13)	0.20668 (14)	1.03592 (10)	0.0154 (3)
H1A	0.8400	0.1330	1.0528	0.018*
H1B	0.9429	0.2227	1.0859	0.018*
C20	0.79909 (16)	0.17574 (18)	0.63698 (12)	0.0172 (3)
C6	0.50803 (18)	0.34869 (19)	0.75184 (15)	0.0242 (4)
H6	0.5901	0.3387	0.7369	0.029*
C8	0.67413 (17)	0.28867 (19)	0.95447 (14)	0.0209 (4)
H8A	0.7007	0.2557	0.8911	0.025*
H8B	0.6235	0.2219	0.9818	0.025*
C24	0.61083 (17)	0.22814 (19)	0.48234 (14)	0.0202 (4)
C13	0.92855 (16)	0.18674 (17)	0.93702 (12)	0.0160 (3)
H13	0.9074	0.2624	0.8923	0.019*
C21	0.90294 (16)	0.13908 (17)	0.71794 (13)	0.0174 (3)
H21A	0.9693	0.0957	0.6870	0.021*
H21B	0.9379	0.2164	0.7536	0.021*
C14	1.06858 (16)	0.17006 (19)	0.95410 (13)	0.0207(4)
H14A	1 0983	0.1501	0.8896	0.031*
H14R	1.0900	0.1001	1.0020	0.031*
H14C	1.1071	0.2493	0.9817	0.031*
C9	0.78851 (16)	0.2493 0.31546 (17)	1.03144(13)	0.031
	0.8205	0.3054	1.0118	0.01/1(3)
C19	0.8233 0.75499 (17)	-0.05622(18)	0.63247(12)	0.021°
	0.75400(17)	-0.0882	0.03247 (13)	0.0202(4)
	0.6204	-0.0885	0.0015	0.024*
	0.0040	-0.1152	0.0111	0.024°
	0.78550 (16)	-0.0609/(1/)	0.74921 (13)	0.01/0(3)
H10	0.7063	-0.0656	0.7790	0.020*
CI2	0.5522 (2)	0.4949 (2)	1.23442 (16)	0.0331(5)
HI2A	0.5295	0.5680	1.1899	0.050*

H12B	0.5200	0.5075	1.2990	0.050*
H12C	0.5170	0.4166	1.2021	0.050*
C2	0.36654 (19)	0.3986 (2)	0.86908 (16)	0.0288 (4)
H2	0.3510	0.4224	0.9351	0.035*
C10	0.75218 (16)	0.33115 (19)	1.13720 (14)	0.0203 (4)
C19	0.72420 (17)	0.07729 (18)	0.59540 (13)	0.0185 (4)
C28	0.9733 (2)	0.2135 (3)	0.4377 (2)	0.0452 (6)
C29	0.9077 (2)	0.1088 (2)	0.38715 (17)	0.0317 (5)
H29A	0.9422	0.0895	0.3245	0.048*
H29B	0.8205	0.1315	0.3709	0.048*
H29C	0.9155	0.0335	0.4313	0.048*
C27	0.49224 (18)	0.1638 (2)	0.32940 (14)	0.0260 (4)
H27A	0.4375	0.1993	0.2721	0.039*
H27B	0.4506	0.0933	0.3595	0.039*
H27C	0.5678	0.1322	0.3056	0.039*
C1	0.48732 (18)	0.38403 (19)	0.84900 (15)	0.0235 (4)
C11	0.69039 (18)	0.4832 (2)	1.25307 (14)	0.0283 (4)
H11A	0.7266	0.5643	1.2812	0.034*
H11B	0.7138	0.4145	1.3030	0.034*
C3	0.26836 (19)	0.3788 (2)	0.79368 (18)	0.0326 (5)
Н3	0.1862	0.3895	0.8082	0.039*
C5	0.41007 (19)	0.3281 (2)	0.67694 (15)	0.0276 (4)
H5A	0.4253	0.3031	0.6111	0.033*
C4	0.28987 (19)	0.3435 (2)	0.69729 (17)	0.0303 (4)
H4	0.2228	0.3300	0.6455	0.036*
N3	1.0276 (3)	0.2938 (3)	0.4810 (3)	0.0866 (12)
C7	0.59528 (19)	0.40899 (19)	0.93067 (15)	0.0268 (4)
H7A	0.5636	0.4384	0.9931	0.032*
H7B	0.6473	0.4778	0.9079	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0299 (2)	0.01598 (18)	0.01952 (19)	0.00160 (16)	0.00259 (15)	0.00102 (15)
O6	0.0268 (7)	0.0263 (7)	0.0257 (7)	0.0052 (6)	-0.0092 (6)	0.0006 (6)
O5	0.0232 (7)	0.0160 (7)	0.0432 (9)	-0.0014 (5)	-0.0095 (6)	0.0032 (6)
O3	0.0274 (6)	0.0178 (6)	0.0161 (5)	-0.0040(5)	0.0039 (5)	0.0010 (5)
O4	0.0188 (6)	0.0201 (6)	0.0235 (7)	0.0006 (5)	-0.0033 (5)	0.0023 (5)
O2	0.0287 (7)	0.0232 (7)	0.0213 (6)	-0.0008(5)	0.0084 (5)	-0.0059 (5)
C22	0.0185 (8)	0.0208 (9)	0.0135 (8)	-0.0032 (7)	0.0040 (6)	-0.0023 (6)
O1	0.0358 (8)	0.0269 (7)	0.0250 (7)	0.0003 (6)	0.0121 (6)	0.0033 (6)
O7	0.0258 (7)	0.0203 (7)	0.0211 (6)	0.0029 (5)	-0.0020 (5)	0.0027 (5)
N2	0.0198 (7)	0.0162 (7)	0.0150 (7)	-0.0004 (6)	-0.0006 (6)	-0.0003 (6)
C25	0.0200 (9)	0.0220 (9)	0.0184 (8)	-0.0002 (7)	-0.0005 (7)	-0.0030 (7)
C17	0.0204 (8)	0.0181 (9)	0.0117 (8)	0.0003 (7)	-0.0007 (6)	-0.0003 (6)
C23	0.0204 (8)	0.0206 (9)	0.0156 (8)	0.0040 (7)	0.0068 (6)	0.0016 (7)
C15	0.0179 (8)	0.0163 (8)	0.0157 (8)	0.0040 (6)	0.0009 (6)	0.0003 (6)
C26	0.0367 (11)	0.0193 (10)	0.0260 (10)	0.0000 (8)	-0.0019 (8)	0.0028 (8)

supporting information

N1	0.0168 (7)	0.0175 (7)	0.0116 (6)	0.0005 (5)	0.0006 (5)	-0.0003 (5)
C20	0.0172 (8)	0.0235 (9)	0.0112 (7)	0.0007 (7)	0.0037 (6)	0.0000 (7)
C6	0.0213 (9)	0.0263 (10)	0.0253 (10)	0.0046 (7)	0.0037 (7)	0.0044 (8)
C8	0.0204 (9)	0.0230 (9)	0.0187 (9)	0.0022 (7)	-0.0002 (7)	-0.0019 (7)
C24	0.0169 (8)	0.0270 (10)	0.0162 (8)	0.0036 (7)	-0.0003 (7)	0.0006 (7)
C13	0.0197 (8)	0.0167 (8)	0.0116 (7)	0.0018 (7)	0.0017 (6)	0.0007 (6)
C21	0.0173 (8)	0.0206 (9)	0.0142 (8)	-0.0013 (6)	0.0015 (6)	0.0003 (6)
C14	0.0190 (9)	0.0254 (10)	0.0179 (8)	0.0000 (7)	0.0026 (7)	-0.0005 (7)
C9	0.0189 (8)	0.0155 (8)	0.0172 (8)	0.0010 (7)	0.0030 (6)	-0.0025 (6)
C18	0.0243 (9)	0.0191 (9)	0.0160 (8)	0.0011 (7)	-0.0015 (7)	-0.0027 (7)
C16	0.0188 (8)	0.0170 (8)	0.0151 (8)	-0.0006 (7)	0.0010 (6)	-0.0008 (6)
C12	0.0349 (11)	0.0371 (12)	0.0291 (10)	0.0074 (10)	0.0111 (8)	-0.0039 (9)
C2	0.0284 (10)	0.0317 (11)	0.0274 (10)	0.0094 (8)	0.0079 (8)	0.0054 (8)
C10	0.0158 (8)	0.0251 (9)	0.0203 (9)	-0.0016 (7)	0.0032 (7)	-0.0035 (7)
C19	0.0200 (9)	0.0210 (9)	0.0146 (8)	0.0016 (7)	0.0029 (7)	-0.0018 (7)
C28	0.0409 (13)	0.0531 (16)	0.0477 (14)	-0.0144 (12)	0.0293 (12)	-0.0160 (12)
C29	0.0277 (10)	0.0404 (12)	0.0278 (10)	-0.0020 (9)	0.0064 (8)	-0.0019 (9)
C27	0.0229 (9)	0.0316 (10)	0.0207 (9)	-0.0006 (8)	-0.0071 (7)	0.0004 (8)
C1	0.0251 (9)	0.0203 (9)	0.0248 (9)	0.0070 (7)	0.0020 (8)	0.0032 (7)
C11	0.0311 (10)	0.0326 (10)	0.0222 (9)	-0.0015 (9)	0.0077 (7)	-0.0106 (9)
C3	0.0211 (10)	0.0326 (11)	0.0443 (13)	0.0066 (8)	0.0054 (9)	0.0093 (9)
C5	0.0323 (10)	0.0259 (10)	0.0239 (10)	0.0029 (8)	0.0013 (8)	0.0012 (8)
C4	0.0261 (10)	0.0230 (10)	0.0388 (12)	0.0017 (8)	-0.0069 (8)	0.0042 (8)
N3	0.081 (2)	0.088 (2)	0.105 (2)	-0.0498 (18)	0.0661 (19)	-0.059 (2)
C7	0.0289 (10)	0.0260 (11)	0.0243 (9)	0.0101 (8)	-0.0004 (8)	-0.0035 (7)

Geometric parameters (Å, °)

O6—C24	1.372 (2)	C13—C14	1.529 (2)
O6—C27	1.431 (2)	С13—Н13	1.0000
O5—C17	1.306 (2)	C21—H21A	0.9900
O5—H5	0.8400	C21—H21B	0.9900
O3—C15	1.232 (2)	C14—H14A	0.9800
O4—C17	1.213 (2)	C14—H14B	0.9800
O2—C10	1.327 (2)	C14—H14C	0.9800
O2—C11	1.462 (2)	C9—C10	1.521 (2)
C22—C23	1.389 (2)	С9—Н9	1.0000
C22—C20	1.390 (3)	C18—C19	1.506 (3)
С22—Н22	0.9500	C18—C16	1.548 (2)
O1—C10	1.202 (2)	C18—H18A	0.9900
O7—C23	1.368 (2)	C18—H18B	0.9900
O7—C26	1.426 (2)	C16—H16	1.0000
N2—C15	1.336 (2)	C12—C11	1.505 (3)
N2—C16	1.465 (2)	C12—H12A	0.9800
N2—C21	1.471 (2)	C12—H12B	0.9800
C25—C24	1.389 (3)	C12—H12C	0.9800
C25—C19	1.395 (3)	C2—C3	1.388 (3)
C25—H25	0.9500	C2—C1	1.390 (3)

C17—C16	1.522 (2)	С2—Н2	0.9500
C23—C24	1.406 (3)	C28—N3	1.141 (4)
C15—C13	1.535 (2)	C28—C29	1.430 (3)
C26—H26A	0.9800	С29—Н29А	0.9800
C26—H26B	0.9800	C29—H29B	0.9800
C26—H26C	0.9800	С29—Н29С	0.9800
N1—C9	1.501 (2)	C27—H27A	0.9800
N1—C13	1.505 (2)	С27—Н27В	0.9800
N1—H1A	0.9200	C27—H27C	0.9800
N1—H1B	0.9200	C1-C7	1 521 (3)
C_{20} $-C_{19}$	1 386 (3)	C11—H11A	0.9900
C_{20} C_{21}	1 511 (2)	C11—H11B	0.9900
C6-C5	1.311(2) 1 383(3)	$C_3 C_4$	1 385 (3)
C6-C1	1.303 (3)	С3—Н3	0.9500
C6 H6	0.9500	$C_5 = C_4$	1 386 (3)
C_{0}^{8}	1.536 (2)	C5_U5A	0.0500
C_{0}	1.550(2) 1.527(2)		0.9500
C_{0}	1.337(2)		0.9300
	0.9900		0.9900
С8—Н8В	0.9900	С/—Н/В	0.9900
C24—O6—C27	115 19 (15)	C10-C9-C8	110 46 (14)
C17 - 05 - H5	109 5	N1-C9-H9	109.4
C10-02-C11	116 64 (15)	C10-C9-H9	109.1
C_{23} C_{22} C_{20}	110.84 (16)		109.4
$C_{23} = C_{22} = C_{20}$	120.1	C_{19} C_{18} C_{16}	111 62 (14)
$C_{23} = C_{22} = H_{22}$	120.1	$C_{19} = C_{18} = C_{10}$	100.3
$C_{20} = C_{22} = 1122$	120.1 116.47(14)	$C_{16} = C_{18} = H_{18A}$	109.3
$C_{23} = 07 = C_{20}$	110.47(14) 115.50(14)	$C_{10} = C_{18} = H_{18R}$	109.3
$C_{13} = N_2 = C_{10}$	115.59 (14)	C16 C18 H18P	109.3
$C_{13} - N_2 - C_{21}$	120.23(13) 118 14(14)	$\begin{array}{c} 10 \\ 110 \\ $	109.3
$C_{10} = N_2 = C_{21}$	118.14(14) 120.04(17)	$\frac{1110}{10} = \frac{110}{10} = \frac{110}{10}$	100.0
$C_{24} = C_{25} = C_{19}$	120.04 (17)	$N_2 = C_{10} = C_{17}$	109.30(14)
$C_{24} = C_{25} = H_{25}$	120.0	$N_2 - C_{10} - C_{18}$	112.10(14)
C19 - C23 - H23	120.0 125.15(16)	17 - 10 - 18	110.20 (14)
04 - 017 - 03	123.13(10) 122.06(10)	$N_2 = C_{10} = H_{10}$	108.2
04-017-016	122.90 (10)	C12 - C10 - H16	108.2
03 - 017 - 010	111.00(14) 124.21(17)	С18—С10—Н10	108.2
0/-23-22	124.31 (17)	CII - CI2 - HI2A	109.5
0/	116.23 (16)	CII—CI2—HI2B	109.5
$C_{22} = C_{23} = C_{24}$	119.46 (17)	H12A—C12—H12B	109.5
03—C15—N2	122.80 (17)	С11—С12—Н12С	109.5
03-C15-C13	118.93 (15)	H12A—C12—H12C	109.5
N2—C15—C13	118.26 (15)	H12B—C12—H12C	109.5
O7—C26—H26A	109.5	C3—C2—C1	120.7 (2)
O7—C26—H26B	109.5	C3—C2—H2	119.7
H26A—C26—H26B	109.5	C1—C2—H2	119.7
O7—C26—H26C	109.5	O1—C10—O2	126.37 (17)
H26A—C26—H26C	109.5	O1—C10—C9	123.12 (18)
H26B—C26—H26C	109.5	O2—C10—C9	110.47 (16)

C9—N1—C13	112.41 (13)	C20—C19—C25	119.49 (17)
C9—N1—H1A	109.1	C20—C19—C18	117.64 (16)
C13—N1—H1A	109.1	C25—C19—C18	122.78 (16)
C9—N1—H1B	109.1	N3—C28—C29	177.4 (4)
C13—N1—H1B	109.1	С28—С29—Н29А	109.5
H1A—N1—H1B	107.9	C28—C29—H29B	109.5
C19—C20—C22	120.94 (16)	H29A—C29—H29B	109.5
C19—C20—C21	116.57 (16)	С28—С29—Н29С	109.5
C22—C20—C21	122.49 (16)	H29A—C29—H29C	109.5
C5—C6—C1	120.51 (18)	H29B—C29—H29C	109.5
С5—С6—Н6	119.7	O6—C27—H27A	109.5
С1—С6—Н6	119.7	O6—C27—H27B	109.5
C7—C8—C9	112.03 (15)	H27A—C27—H27B	109.5
С7—С8—Н8А	109.2	O6—C27—H27C	109.5
С9—С8—Н8А	109.2	H27A—C27—H27C	109.5
С7—С8—Н8В	109.2	H27B—C27—H27C	109.5
С9—С8—Н8В	109.2	C2—C1—C6	118.74 (18)
H8A—C8—H8B	107.9	C2—C1—C7	120.87 (18)
O6—C24—C25	123.58 (17)	C6—C1—C7	120.37 (17)
O6—C24—C23	116.26 (16)	O2—C11—C12	109.82 (15)
C25—C24—C23	120.15 (16)	O2—C11—H11A	109.7
N1—C13—C14	110.89 (13)	C12—C11—H11A	109.7
N1—C13—C15	104.89 (14)	O2—C11—H11B	109.7
C14—C13—C15	113.26 (15)	C12—C11—H11B	109.7
N1—C13—H13	109.2	H11A—C11—H11B	108.2
C14—C13—H13	109.2	C4—C3—C2	120.15 (19)
C15—C13—H13	109.2	С4—С3—Н3	119.9
N2-C21-C20	108.06 (14)	С2—С3—Н3	119.9
N2—C21—H21A	110.1	C6—C5—C4	120.46 (19)
C20—C21—H21A	110.1	С6—С5—Н5А	119.8
N2—C21—H21B	110.1	С4—С5—Н5А	119.8
C20—C21—H21B	110.1	C3—C4—C5	119.44 (19)
H21A—C21—H21B	108.4	C3—C4—H4	120.3
C13—C14—H14A	109.5	C5—C4—H4	120.3
C13—C14—H14B	109.5	C1—C7—C8	111.73 (16)
H14A—C14—H14B	109.5	C1—C7—H7A	109.3
C13—C14—H14C	109.5	С8—С7—Н7А	109.3
H14A—C14—H14C	109.5	C1—C7—H7B	109.3
H14B—C14—H14C	109.5	С8—С7—Н7В	109.3
N1-C9-C10	107.06 (14)	H7A—C7—H7B	107.9
N1—C9—C8	111.17 (14)		
C26—O7—C23—C22	14.3 (2)	C15—N2—C16—C18	166.61 (15)
C26—O7—C23—C24	-166.07 (16)	C21—N2—C16—C18	-12.1 (2)
C20—C22—C23—O7	179.68 (16)	O4—C17—C16—N2	-16.0 (2)
C20—C22—C23—C24	0.0 (3)	O5-C17-C16-N2	165.23 (15)
C16—N2—C15—O3	-0.8 (2)	O4—C17—C16—C18	107.90 (19)
C21—N2—C15—O3	177.83 (16)	O5-C17-C16-C18	-70.85 (19)

C16—N2—C15—C13	-179.54 (14)	C19—C18—C16—N2	-36.4 (2)
C21—N2—C15—C13	-0.9 (3)	C19—C18—C16—C17	-158.82 (15)
C23—C22—C20—C19	-2.0 (3)	C11—O2—C10—O1	-4.1 (3)
C23—C22—C20—C21	177.53 (15)	C11—O2—C10—C9	173.57 (14)
C27—O6—C24—C25	-29.9 (3)	N1-C9-C10-O1	-39.3 (2)
C27—O6—C24—C23	150.20 (17)	C8—C9—C10—O1	81.9 (2)
C19—C25—C24—O6	177.08 (17)	N1—C9—C10—O2	142.99 (15)
C19—C25—C24—C23	-3.0 (3)	C8—C9—C10—O2	-95.82 (17)
O7—C23—C24—O6	2.7 (2)	C22—C20—C19—C25	1.4 (3)
C22—C23—C24—O6	-177.65 (16)	C21—C20—C19—C25	-178.13 (16)
O7—C23—C24—C25	-177.23 (16)	C22-C20-C19-C18	178.01 (16)
C22—C23—C24—C25	2.5 (3)	C21—C20—C19—C18	-1.5 (2)
C9—N1—C13—C14	133.60 (15)	C24—C25—C19—C20	1.1 (3)
C9—N1—C13—C15	-103.80 (15)	C24—C25—C19—C18	-175.32 (17)
O3—C15—C13—N1	-21.2 (2)	C16—C18—C19—C20	44.4 (2)
N2-C15-C13-N1	157.68 (15)	C16-C18-C19-C25	-139.15 (18)
O3—C15—C13—C14	99.90 (19)	C3—C2—C1—C6	-0.2 (3)
N2-C15-C13-C14	-81.27 (19)	C3—C2—C1—C7	178.4 (2)
C15—N2—C21—C20	-124.98 (18)	C5—C6—C1—C2	-0.3 (3)
C16—N2—C21—C20	53.6 (2)	C5—C6—C1—C7	-178.89 (19)
C19—C20—C21—N2	-46.4 (2)	C10-02-C11-C12	-92.1 (2)
C22-C20-C21-N2	134.08 (17)	C1—C2—C3—C4	0.3 (3)
C13—N1—C9—C10	-176.13 (14)	C1-C6-C5-C4	0.7 (3)
C13—N1—C9—C8	63.13 (18)	C2—C3—C4—C5	0.1 (3)
C7—C8—C9—N1	-167.02 (15)	C6—C5—C4—C3	-0.6 (3)
C7—C8—C9—C10	74.3 (2)	C2—C1—C7—C8	118.7 (2)
C15—N2—C16—C17	-70.60 (18)	C6—C1—C7—C8	-62.7 (2)
C21—N2—C16—C17	110.70 (16)	C9—C8—C7—C1	175.96 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
05—H5…Cl1 ⁱ	0.84	2.09	2.924 (3)	171
N1—H1 <i>A</i> ···O3	0.92	2.04	2.587 (2)	117
N1—H1 <i>B</i> ····O4 ⁱⁱ	0.92	1.87	2.724 (3)	154
C13—H13…Cl1	1.00	2.52	3.459 (2)	157
C14—H14 <i>B</i> ···Cl1 ⁱⁱⁱ	0.98	2.71	3.593 (2)	150
C18—H18A…N3 ^{iv}	0.99	2.39	3.367 (4)	168
C29—H29A…Cl1 ^{iv}	0.98	2.74	3.698 (2)	165

Symmetry codes: (i) x, y-1, z; (ii) -x+2, y+1/2, -z+2; (iii) -x+2, y-1/2, -z+2; (iv) -x+2, y-1/2, -z+1.